北师大版-数学-七年级上册-5.1 认识一元一次方程(2) 教案
- 格式:docx
- 大小:35.96 KB
- 文档页数:4
北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》说课稿一. 教材分析北师大版七年级数学上册《第五章一元一次方程5.1认识一元一次方程(第2课时)》这一节的内容,是在学生已经掌握了代数基础知识的基础上,进一步引导学生认识一元一次方程,并学会解一元一次方程。
本节课的内容对于学生来说,既有挑战性,又具有实用性。
二. 学情分析对于七年级的学生来说,他们已经具备了一定的代数基础,对于方程也有了一定的认识。
但是,对于一元一次方程的概念、性质和解法,他们还不是很清楚。
因此,在教学过程中,我需要从学生的实际出发,循序渐进地引导他们理解和掌握一元一次方程的相关知识。
三. 说教学目标1.知识与技能目标:使学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生发现问题、分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的重要性。
四. 说教学重难点1.教学重点:一元一次方程的概念、性质和解法。
2.教学难点:一元一次方程的解法,特别是解方程的步骤和注意事项。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合学习pad等现代教育技术,提高教学效果。
六. 说教学过程1.导入新课:通过复习旧知识,引导学生进入新课,激发学生的学习兴趣。
2.自主学习:让学生自主探究一元一次方程的概念和性质,培养学生独立思考的能力。
3.合作交流:让学生分组讨论一元一次方程的解法,互相学习,共同进步。
4.教师讲解:针对学生在自主学习和合作交流中遇到的问题,进行讲解和解答。
5.巩固练习:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。
6.课堂小结:让学生总结一元一次方程的概念、性质和解法,加深对知识的理解。
北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
5.1 认识一元一次方程(第1课时)一、学生起点分析学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。
对方程已有初步认识,但并没有学习“一元一次方程”准确的理性的概念。
二、学习任务分析本节从有趣的“猜年龄”游戏入手,通过对五个熟悉的实际问题的分析,学生结合已有知识,能得出一元一次方程。
在此过程中,学生逐渐体会方程是刻画现实世界、解决实际问题的有效数学模型。
本节的重点:学生在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念。
本节的难点:由特殊的几个方程的共同特点归纳一元一次方程的概念。
三、教学目标1、在对实际问题情境的分析过程中感受方程模型的意义;2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计环节一:阅读章前图内容1:请一位同学阅读章前图中关于“丟番图”的故事。
(大约1分钟)丢番图(Diophantus)是古希腊数学家。
人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程。
上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛。
五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉。
悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。
——出自《希腊诗文选》(The GreekAnthology)第 126 题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2。
第五章 一元一次方程1 认识方程1.从生活的实际问题出发,通过小组讨论、教师引导发现数学与生活密不可分.2.通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会到由算式到方程式是数学的一大进步,从而体会方程思想.重点:初步认识一元一次方程的特征,形成一元一次方程的概念.难点:理解方程的解的概念.一、情境导入二、合作探究探究点一:方程及一元一次方程的概念【类型一】 方程的识别下列各式是方程的有( )(1)2x -3=7;(2)8+5=13;(3)2m -3n =0;(4)2+5x ;(5)x +2>3.A .0个B .1个C .2个D .3个解析:(1)2x -3=7,(3)2m -3n =0是含有未知数的等式,属于方程;(2)8+5=13中不含有未知数,不是方程;(4)2+5x 不是等式,不是方程;(5)x +2>3不是等式,不是方程.故选C .方法总结:含有未知数的表示量相等的等式称为方程.下列方程中,是一元一次方程的是( )A .2x +3y =5B .x 2-x +2=0C .3x -5=4x +1D .1x-x =1 解析:紧扣一元一次方程的概念,A 中含有两个未知数;B 中未知数的最高次数是2;D 中分母含有未知数.故选C .方法总结:识别一个方程是否为一元一次方程,不能仅以未知数的个数和次数去判断,必须先化简保证未知数的系数不为0.【类型二】 利用一元一次方程的概念求字母的值方程(m +1)x |m|+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足指数为1,系数不等于0,所以⎩⎨⎧|m|=1,m +1≠0,解得m =1.故选B . 方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解.(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B .方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计认识方程 ⎩⎪⎨⎪⎧方程→含有未知数的表示量相等的等式叫作方程.一元一次方程→只含有一个未知数,且方程中的代数式都是整式,未知数的次数是1的方程叫作一元一次方程.方程的解→使方程左、右两边的值相等的未知数的值,叫作方程的解.教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.。
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的主要任务是让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。
教材通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生逐步认识一元一次方程,并在解决实际问题的过程中体验到方程思想的重要性和应用价值。
二. 学情分析七年级的学生已经掌握了代数的基础知识,具备一定的逻辑思维能力。
但对于一元一次方程这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握一元一次方程的相关知识。
同时,学生对于实际问题的解决方法还不够成熟,需要教师在教学中给予引导和培养。
三. 教学目标1.了解一元一次方程的概念、性质和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和创新思维。
四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。
2.难点:如何将实际问题转化为方程,并运用方程思想解决问题。
五. 教学方法1.情境教学法:通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考和解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作交流能力。
4.实践操作法:教师引导学生动手操作,加深对一元一次方程的理解。
六. 教学准备1.教学课件:制作课件,展示一元一次方程的相关知识点。
2.教学素材:准备一些实际问题,作为课堂练习和拓展的内容。
3.的黑板:提前准备好黑板,以便于教师在课堂上进行板书。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题情境,引导学生发现实际问题中存在等量关系,从而引出一元一次方程的概念。
2.呈现(15分钟)教师讲解一元一次方程的定义、性质和解法,让学生初步认识一元一次方程。
3.操练(15分钟)教师给出一些实际问题,让学生尝试用一元一次方程解决。
认识一元一次方程(2)
教学目标
知识与技能
1.理解等式的基本性质.
2.会根据等式的基本性质解方程.
过程与方法
经历探索等式的基本性质的过程,培养学生的动手能力以及对数学的兴趣.
情感、态度与价值观
通过由具体实践操作与合作探索的过程培养学生实事求是的态度.
教学重难点
重点:等式的基本性质.
难点:用等式的基本性质解方程.
教学过程
一、温故知新
师:同学们,你们知道什么叫方程吗?方程的解呢?那么什么是等式呢?
学生回答,教师点评.
二、讲授新课
1.合作探究.
师:像m+n=n+m,x+2x=3x,3×3+1=5×2等都是等式.通过下面的实验,我们一起来探究等式的一些性质.我们利用天平做一个实验,请同学们仔细观察实验过程,并用语言叙述这个实验过程.
生:天平两边分别放入一个铁球和砝码,天平平衡,再在两边都加上相同的木块,天平仍平衡,再拿掉木块天平仍平衡.
师:这位同学回答得完全正确!如果我们把天平看成是等式,那么又会得到什么结论呢?
小组讨论,合作交流.
师:总结得出等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍是等式.请同学们继续观察下面的实验,并用语言表述出这个实验过程.
生:天平两边各放入一个小球和砝码,天平平衡,如果把两边小球与砝码的数量都变成原来的3倍,那么天平仍平衡.
师:与上面一样,如果我们把天平看成是等式,那么又有什么结论呢?
小组讨论,合作交流.
师:我们可以得出等式的性质2:等式两边同时乘以同一个数(或除以同一个不为0的数)结果仍相等.
2.例题讲解.
例1:利用等式的性质解下列方程:
(1)x+7=26;(2)-5x=20;(3)-x-5=4.
分析:要使方程x+7=26转化为x=a的形式,要去掉方程左边的7,因此两边要同时减7,你会类似地思考另外两个方程如何转化为x=a的形式吗?
解:(1)两边同时减7,得x+7-7=26-7,
于是x=19;
(2)两边同时除以-5,得()()() 55205
x
-÷-=÷-
,
于是x=-4;
(3)两边同时加5,得-x-5+5=4+5,
化简,得-x=9.两边同乘-3,得x=-27.
例2:已知2x-5y=0,且y≠0,判断下列等式是否成立,并说明理由. 2x=5y.
解:成立,理由如下:已知2x-5y=0,
两边都加上5y,得2x-5y+5y=0+5y(等式的性质1),
∴2x=5y.
例3:利用等式的性质解下列方程:
(1)5x=50+4x;(2)8-2x=9-4x.
解:(1)方程的两边都减去4x,得
5x-4x=50+4x-4x(等式的性质1),
合并同类项,得x=50.
检验:把x=50代入方程.
左边=5×50=250,
右边=50+4×50=250.
∵左边=右边,
∴x=50是方程的解. (2)方程的两边都加上4x,得8-2x+4x=9-4x+4x,
合并同类项,得8+2x=9.
两边都减去8,得2x=1.
两边都除以2,得x=1 2.
三、巩固练习
1.下列等式的变形正确的是()
A.若m=n,则m+2a=n+2a
B.若x=y,则x+a=y-a
C.若x=y,则xm=ym
D.若(k2+1)a=-2(k2+1),则a=2
2.利用等式的基本性质解方程:
(1)10x-3=9;(2)5x-2=8;(3)x-1=5.
四、课堂小结
师:本节课主要学习了哪些知识?你在探索新知的过程中得到了哪些启示?与同伴交流.
学生发言,教师予以点评.
参考答案:
三、巩固练习
1.A
2.(1)x=6 5
(2)x=2
(3)x=9。