压水堆核电厂
- 格式:pdf
- 大小:7.63 MB
- 文档页数:59
简述压水堆核电站的原理流程及作用
压水堆核电站是一种常见的核电站类型,其原理流程如下:
1. 核反应堆:压水堆核电站采用铀核燃料进行核裂变反应。
铀燃料经过加工制成小颗粒的燃料元件,装入核燃料组件中放置在核反应堆中。
2. 反应堆压力容器:核反应堆由反应堆压力容器包裹,其主要作用是容纳核燃料,维持反应堆内部的高压状态,以及承受核反应过程中产生的热量和中子辐射。
3. 热水循环:核燃料在反应堆中进行核裂变反应时会释放出大量的热量,这些热量通过循环的高压水冷却剂来吸收。
冷却剂在反应堆压力容器内部形成循环,将核燃料释放的热量带出反应堆。
4. 蒸汽发生器:冷却剂经过吸热后,进入蒸汽发生器。
在蒸汽发生器中,冷却剂与外部循环的非放射性水流进行热交换,将冷却剂的热量转移到非放射性水中,使之蒸发为高温高压蒸汽。
5. 蒸汽涡轮机:由于高温高压蒸汽的压力能量,通过蒸汽涡轮机将热能转化为机械能。
蒸汽涡轮机驱动发电机旋转,产生电能。
6. 冷却水循环:蒸汽在蒸汽涡轮机中释放部分能量后,通过凝汽器冷凝,转化为水。
凝汽器中冷却水从外部环境吸收热量,使蒸汽得以冷凝为水。
冷凝后的水再次进入蒸汽发生器,参与循环。
压水堆核电站的主要作用是通过控制核反应堆中的核裂变反应来产生高温高压的蒸汽,然后利用蒸汽驱动汽轮发电机组产生电能。
同时,核电站还能提供稳定可靠的电力供应,减少对传统化石燃料的依赖,降低碳排放,实现清洁能源和可持续发展。
此外,核电站还可以用于核科学研究、医疗放射性同位素生产等多个领域。
压水堆核电站设计指南核能是目前被广泛使用的清洁能源之一,核电站是核能的重要应用场所之一,其中压水堆核电站是最为常见和成熟的一种类型。
本文将针对压水堆核电站的设计指南进行详细介绍。
1. 压水堆核电站概述压水堆核电站是将核能转化为电能的设施,其工作原理是通过使用轻水作为冷却剂和热交换介质,将核反应产生的热能转化为蒸汽,再经过蒸汽轮机发电。
压水堆核电站的建设和运行过程需要高度注重安全性和可靠性。
2. 核电站选址和安全要求核电站选址是核电站设计的重要步骤。
选址应远离人口密集区、地震带、火山地区等自然灾害风险区域,同时要考虑水源供应和废水处理等因素。
安全要求包括防爆设施、安全壳、独立冷却系统等,以确保核电站在事故发生时能够有效防护和应对。
3. 压水堆反应堆核心设计压水堆核电站的核心是核反应堆,其设计需要考虑燃料元件、燃料位移、热力学参数、核反应堆稳定性等因素。
核心设计应满足核反应的需求,同时减少污染物排放,提高燃烧效率。
4. 冷却系统设计冷却系统是压水堆核电站的关键部分,它负责冷却反应堆、蒸汽发生器和凝汽器。
冷却系统的设计应考虑到不同工况下的冷却效果、冷却剂的流动性能和系统的可靠性等因素,以确保核电站的稳定运行。
5. 安全壳设计安全壳是核电站的重要组成部分,其设计目的是在发生意外事故时,避免核辐射物质泄漏到环境中,确保人员和环境的安全。
安全壳的设计应考虑防护层厚度、材料的选择和辅助设备的配置等因素。
6. 废物处理和辐射防护核电站会产生大量的废弃物和辐射物质,为了确保环境和人员的安全,需要合理处理这些废物和辐射物质。
处理措施包括废物贮存、转运、处理和辐射防护设施的建设等。
7. 运行和维护核电站的运行需要高度精确的控制和维护,运营商应具备专业技术和操作经验。
维护工作包括定期巡检、设备维修和更新、事故应对和紧急救援等。
8. 环境影响评价核电站作为一个大型的能源设施,其建设和运营过程对环境会产生一定的影响。
为了规范核电站的环保工作,需要进行环境影响评价,包括大气、水域、土壤等方面的评估,以确保核电站在环境保护方面达到相关标准。
简述压水堆核电站工作原理嘿,朋友们!今天咱来聊聊压水堆核电站那神奇的工作原理。
你看啊,这压水堆核电站就好比一个超级大的能量制造工厂。
核燃料呢,就像是工厂里的超级原料,蕴含着巨大的能量。
在这个大工厂里,核燃料被放进反应堆这个核心区域。
就好像是把宝贝放进了一个特别的魔法盒子里。
然后呢,核燃料在里面发生链式裂变反应,这可不得了啦,就像一场超级能量大爆发!释放出大量的热能。
这热能可不能浪费呀,水就来帮忙啦!水在反应堆里被加热,变成高温高压的水蒸汽。
你想想,这水蒸汽就像充满力量的小火车,呼呼地跑起来。
接着呢,这些水蒸汽就冲向汽轮机,推动汽轮机快速转动。
汽轮机就像是一个大力士,被水蒸汽推动着拼命干活。
汽轮机一转起来,又带动着发电机也跟着转起来啦。
发电机就像一个勤劳的小精灵,把机械能转化成电能。
那发出来的电呢,就顺着电线跑到我们家里啦,给我们带来光明和便利。
哎呀,你说神奇不神奇?这就好像是变魔术一样,从核燃料开始,经过一系列的过程,最后就变成了我们能用的电。
有人可能会担心啦,这么厉害的能量会不会有危险呀?嘿嘿,别担心,核电站有很多安全措施呢。
就像给这个大工厂装上了好多把安全锁,保证一切都稳稳当当的。
而且啊,这压水堆核电站可是为我们的生活做出了巨大贡献呢!它能提供大量的电力,让我们的生活更加丰富多彩。
想想看,如果没有核电站,我们的电可能就不够用啦,那得多不方便呀!
所以说呀,压水堆核电站虽然听起来很复杂很神秘,但其实它就像我们生活中的好帮手,默默地为我们工作着。
我们可得好好感谢它呢!大家说是不是呀!。
压水堆核电站压水堆核电站用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
这就是最普通的压水反应堆核电站的工作原理。
压水堆核电站由反应堆、一回路系统、二回路系统以及电站的配套设施等主要部分组成。
压水堆燃料是高温烧结的圆柱形二氧化铀陶瓷块,直径约8毫米,高13毫米,称之为燃料芯块。
其中铀-235的浓缩度约3%。
燃料芯块-个一个地重叠着放在外径约9.5毫米,厚约0.57毫米的锆合金管内,锆管两端有端塞。
燃料芯块完全封闭在锆合金管内,构成燃料元件。
这种锆合金管称为燃料元件包壳。
这些燃料元件用定位格架定位,组成横截面是正方形的燃料组件(见图4-2)。
每一个燃料组件包括两百多根燃料元件。
一般是将燃料元件排列成横十七排、纵十七行的17×17的组件,中间有些位置空出来放控制棒。
控制棒的上部连成-体成为棒束。
每一个棒束都在相应的燃料组件内上下运动。
控制棒在堆内布置得很分散,以便堆内造成平坦的中子通量分布。
燃料组件外面不加装方形盒,以利于冷却剂的横向流动。
加上端部构件,整个组件长约四米,横截面为边长约20厘米的正方形。
图4-3是典型压水堆压力容器与堆芯结构原理图;图4-4为压力容器的结构布置图。
由燃料组件组成的堆芯放在一个很大的压力容器内。
控制棒由上部插入堆芯。
在压力容器顶部有控制棒的驱动机构。
作为慢化剂和冷却剂的水,由压力容器侧面进来后,经过吊篮和压力容器之间的环形间隙,再从下部进入堆芯。
冷却水通过堆芯后,温度升高,密度降低,再从堆芯上部流出压力容器。
一般入口水温300C ο,出口水温332C ο,堆内压力15.5Mpa 。
一座100万千瓦的压水堆,堆芯每小时冷却水的流量约6万吨。
这些冷却水并不排出堆外,而是在封闭的-回路内往复循环。
堆芯放了一百多个燃料组件,这些组件总共包括四万多根三米多长、比铅笔略粗的燃料元件。
压水堆核电站的组成及总布置(1)反应堆厂房–该厂房主要布置核反应堆和反应堆冷却剂系统及部分核岛辅助系统、专设安全设施系统。
从结构上来讲,反应堆厂房由筏板基础,带钢衬里的圆筒形预应力钢筋混凝土安全壳及其内部结构组成。
安全壳内径37m,屏蔽墙厚0.9m,总高59.4m,设计压力0.52Mpa (绝对压力)。
反应堆厂房内部结构布置如下:–·-3.5m放置堆芯仪表系统、安注系统、余热排出系统热交换器、化容控制系统的再生热交换器、安全壳连续通风系统及反应堆坑通风系统的风机。
–·±0.00m放置余热排出系统泵、稳压器卸压箱、安全壳的过滤净化系统过滤器、各系统管道、应急人员气闸门。
–·4.65m主要为三套蒸汽发生器、主泵和稳压器的支承楼板的隔间,放置在本层的还有安全壳过滤净化系统的风机和反应堆压力容器顶盖存放地,压力容器也通过该层。
–·8.00m层为反应堆换料水池楼板层,堆内构件存放及燃料组件倒换装置也放置在该层,进入安全壳的人员闸门也在此标高。
–·20.00m层为反应堆操作大厅,有设备闸门通入。
–·反应堆压力容器占有从-3.50至8.20m的堆本体中心净空间。
M310加改进型反应堆本体由压力容器、堆芯、堆内构件、堆内测量仪表和控制棒驱动机构等设备组成。
–·各层之间的交通由楼梯与电梯联系。
反应堆在运行期间,一般人员不得进入;事故检修和停堆检修时,人员可经由空气闸门进入;设备闸门为安装大件设备时的进入通道,运行时封闭。
–以下简要对堆内构件进行补充说明。
(2)核辅助厂房–由1、2号机组共用,主要布置核辅助系统及设备,厂房面积74×46m,高22m。
布置(层高变化较大,仅介绍几个重要的层间)有如下系统和设备:–·±0.00m主要有上充泵、硼回收系统、废物处理系统、设备冷却水系统、电气用房。
–·5.00~8.00m主要为硼回收系统的气体分离器和蒸发器间,过滤器及除盐装置间,废气处理系统的气体衰变箱隔间、化容控制系统设备间、阀门操作间等。
压水堆核电站和沸水堆核电站的区别此次日本发生泄露的核电站为沸水堆,我国运行的核电站均为压水堆,无沸水堆。
说一下压水堆和沸水堆的区别。
简单点说就是一点区别:沸水堆的热交换只有一个回路,堆芯加热冷却水直接驱动汽轮机;压水堆的热交换有两个回路,堆芯加热冷却水,冷却水通过蒸汽交换器产生蒸汽驱动汽轮机。
带来的后果有两个:1、沸水堆驱动汽轮机的蒸汽有放射性,一旦泄露很麻烦2、沸水堆蒸汽回路的压力较小,所以整个蒸汽回路的抗压能力小于压水堆BWR-沸水堆,PWR-压水堆。
沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。
由于冷却剂会沸腾成为蒸汽去推动汽轮机,因此堆芯内冷却剂不断的被消耗,必须由给水系统不断的补充水,水从汽轮机处冷凝得来,由泵送回堆芯内。
由主泵提供动力保证一回路内冷却剂的流动使堆芯内热量分布均匀,并能充分带走燃料棒的热量。
由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入。
在插入过程中,平均反应性逐渐降低,但是功率峰逐渐向燃料组件顶部靠拢,因此。
在插入过程中,燃料组件顶部的温度可能是升高的。
现在来说福岛遇到的问题。
由于丧失厂内电和厂外电,泵全挂,无法对堆芯内失去的冷却剂进行补充,导致堆内水位降低。
使燃料组件裸露,此时失去冷却剂的保护,燃料棒温度肯定是骤然升高,此为一。
同时有传言说福岛电站的燃料棒没有插到位,堆没有完全停下。
那么,可能的原因是在由于电力丧失或者机械故障燃料棒行走不到位。
由于沸水堆是从堆芯底部向上插棒,那么一旦丧失动力,就会停在中间某处,使燃料棒上部反应性很大,处于高功率状态,温度也较高。
这样就会加剧燃料棒上部失去冷却剂后的恶劣情况,此为二。
现在把一和二结合起来看,就知道福岛面临很严峻的燃料组件烧毁的风险。
此时听到传言说福岛电站用人命去填,手动把控制棒顶上去了。
压水堆核电站的工作原理
压水堆核电站是一种常见的核电站类型,其工作原理如下:
1. 核燃料的使用:压水堆核电站使用低浓缩铀(U-235)作为
核燃料。
铀矿石被加工成浓缩的铀燃料棒,然后装入核反应堆。
2. 反应堆:核反应堆是核电站的核心部分,它包含大量的燃料棒(通常有数千个),并由冷却剂包围。
冷却剂一般是水。
3. 燃料棒中的核裂变:核燃料在核反应堆中被中子激活,引发核裂变反应,产生大量的热量。
4. 热量传递:核裂变带来的热量将被传递给循环系统,以便产生蒸汽。
5. 蒸汽产生:核反应堆中的热量使循环系统中的水变为高温高压的蒸汽。
6. 蒸汽驱动涡轮机:蒸汽进一步流入涡轮机,蒸汽流通过涡轮使其旋转。
7. 发电机运转:涡轮机旋转带动发电机运转,将机械能转化为电能。
8. 冷却剂循环:经过涡轮机后,蒸汽会被冷凝成水,并通过冷却剂循环系统重新注入核反应堆。
9. 安全控制:核电站配备了多重安全系统,以确保核反应过程的安全性,如反应堆冷却、核裂变链式反应的控制等。
总结起来,压水堆核电站的工作原理是通过核裂变产生热能,将燃料棒中的热量传递给循环系统中的水,使其转化为高温高压的蒸汽,然后利用蒸汽驱动涡轮机运转发电机,最终产生电能。
同时,核电站配备多层安全系统以确保反应的安全进行。
压水堆核电站工作原理
压水堆核电站(PWR)是一种重要的核反应堆系统,它是利用水作为中子反应媒介来产生核能的。
这种核电站经常被称为“汽轮发电机”,因为它是由蒸汽产生动力来驱动汽轮发电机发电,从而生产电能的。
压水堆核电站的基本原理是:由核反应堆提供的热能,通过循环的冷却剂(水)来移动,从而使压力增加,从而使水热能变成动能,把水中的热量转换为动能,转换成机械能,进而变成电能。
压水堆核电站的主要部件有核反应堆、汽蒸发器和汽轮发电机。
核反应堆是核电站中最重要的部分,它是核电站的热源,是产生电能的核动力装置。
核反应堆中发生核裂变,产生的热量可以把水变成蒸汽,使其增压,从而驱动汽轮机发电。
汽蒸汽器是将水加热到一定的温度,从而蒸发形成蒸汽,并将其导入汽轮发电机,从而获得动力的装置。
汽轮发电机是将发动机的机械能转变成电能而发电的装置。
压水堆核电站的工作过程可以概括为:核裂变产生热量,使水蒸发,从而使水中的热量转换为动能,动能转换为机械能,把机械能转换为电能,最后通过变压器将电能转换成高压电后输出到家庭用电。
- 1 -。
压水堆控制概述压水堆核电站控制概述§1.1压水堆核电站及流程图压水堆核电站主要是由反应堆、一回路系统、二回路系统及其它辅助系统和设备组成。
由于压水堆核电站中具有放射性的一回路与不带放射性的二回路系统是相分开的,所以通常又把压水堆核电站分为核岛和常规岛两大部分,如图1-1所示。
核岛是指核的系统和设备部分;常规岛是指那些和常规火电厂相似的系统和设备部分。
压水堆结构如图1-2所示,堆芯由157个燃料组件组成,燃料在4Z r合金制成的包壳内,燃料用低浓缩235U制成,形状是小圆柱体,由氧化铀烧结而成。
使用普通水作冷却剂和慢化剂,压力约为15.5MPa,核反应是通过移动插入在堆内的53个控制棒束组件以及调节慢化剂中的硼酸浓度来控制的。
图1-1 压水堆核电站的组成压水堆核电站工艺流程如图1-3所示。
一回路冷却剂水在三个冷却回路中循环,将堆芯的热量带到三个蒸汽发生器。
冷却剂的循环靠冷却剂泵(主泵)来完成。
一台稳压器使一回路的压力维持恒定。
在蒸汽发生器中,热量是通过蒸汽发生器管壁从一回路传到二回路,使进入蒸汽发生器的水在5.8MPa压力下汽化,产生的蒸汽送到汽轮机,汽轮机带动发电机组发电,最终把核能转化为电能。
再通过26kv/400kv(香港)或26kv/500kv(广东)变压器变电压送到枢纽变电站进入电网。
由汽轮机排出的蒸汽经过冷凝器后,由给水泵打入给水加热器加热,最后回到蒸汽发生器二次侧再被一次侧冷却剂加热完成一次循环。
1图1-2 压水堆本体结构图2图1-3 压水堆核电站工艺流程图§1.2压水堆核电站控制系统压水堆核电站控制系统如图1-4所示,主要包括:·反应堆冷却剂平均温度(R棒组)控制系统;·反应堆功率(N1、N2、G1、G2棒组)控制系统;·硼酸浓度控制系统(属反应堆辅助系统—化学与容积控制系统);·稳压器压力和水位控制系统;·蒸汽发生器水位控制系统;·大气蒸汽排放控制系统;·汽机调节(负荷控制)系统;·冷凝器蒸汽排放控制系统;·给水流量控制系统;·汽动泵速度控制系统;·电动泵速度控制系统;·发电机电压控制系统等。
压水堆核电站的工作原理
压水堆核电站的工作原理是利用铀-235或钚-239核燃料的裂
变反应释放的热能来产生蒸汽,驱动涡轮发电机转动,最终产生电能。
在压水堆核电站中,核燃料以固体形式装入长而薄的金属管中,这些管被称为燃料棒。
多个燃料棒组成的燃料组装在核反应堆的核心区域内。
核反应堆中还包括有水、调节棒和冷却介质。
水被用作冷却剂和中子减速剂,它能吸收产生的热量并将其带出核反应堆。
调节棒的作用是调节反应的强度,负责减速或抑制裂变过程。
当核燃料棒被注入核反应堆后,发生裂变反应。
裂变释放的中子被水吸收并减速,与铀-235或钚-239核燃料发生链式反应,释放大量的热能。
在核反应堆中,水被加热并转化为高压蒸汽,然后通过管道输送到汽轮机中。
蒸汽驱动汽轮机的涡轮转动,转动的涡轮与发电机相连,将机械能转化为电能。
在发电之后,蒸汽会从汽轮机中排出,并通过冷凝器将其冷却变为液态水,然后再次被抽回核反应堆,循环利用。
压水堆核电站的工作原理基本上就是这样,通过核反应堆中核燃料的裂变反应来产生热能,再通过蒸汽驱动发电机来生成电能,最后通过冷凝器将蒸汽冷却后再次循环使用。
我国压水堆核电站主要设备及原理完整文档(可以直接使用,可编辑完整文档,欢迎下载)压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。
容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。
堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。
它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。
堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。
压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。
该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。
原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。
蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。
这样不断地循环往复,构成一个密闭的循环回路。
一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。
一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。
做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。
这样构成第二个密闭循环回路。
二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。
汽轮发电机机组是二回路系统的主要设备。
它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。