东北大学数值分析2014-2015试卷手抄版
- 格式:doc
- 大小:12.97 MB
- 文档页数:1
中北大学数值分析课程考试试题(课程名称须与教学任务书相同)2014/2015 学年第1 学期试题类别 A 命题期望值70拟题日期2014.12.12 拟题教师课程编号教师编号1120048 基层教学组织负责人课程结束时间2014.11.28 印刷份数使用班级2014级研究生备注:(1)试题要求用B5纸由计算机打印,并将其电子稿于课程结束后上传至考务管理系统。
(2)试题类别指A卷或B卷。
(3)试题印制手续命题教师到院教务科办理。
2014/2015 学年 第 1 学期末考试试题(A 卷)课程名称 数值分析1使用班级: 2014级研究生一、填空题(每空2分,共30分)1. 用1457ˆe536=作为常数e (自然对数的底)的近似值具有 位有效数字,用355ˆπ113=作为圆周率π的近似值的绝对误差限可取为 ;用ˆπˆe u=%作为πe u =的近似值 具有 位有效数字;2. 已知求解某线性方程组的Jacobi 迭代公式为(k+1)(k)(k)123(k+1)(k)(k)213(k+1)(k)(k)3120.10.27.20.10.28.3,1,2,0.20.28.4x x x x x x k x x x ⎧=++⎪=++=⎨⎪=++⎩L 记其迭代矩阵为J G ,则J ∞=G ,又设该线性方程组的解为*x ,取初始解向量为()T(0)0,0,0=x,则(1)=x ,(20)*∞-≤x x ;3. 方程e 0xx +=的根*x ≈ (要求至少具有7位有效数字);4. 用割线法求解方程ln 20x x --=的迭代公式为;若取初始值03x =,14x =,则由该公式产生的迭代序列的收敛速度的阶至少是 。
5. 取权函数()x ρ=,在区间[-1,1]上计算函数()1f x =与()221g x x =-的积(),f g =;6. 设()()10.5,01,(1)2f f f -===,二阶差商[]1,0,1f -= ;7. 设()f x 在区间[,]a b 上具有连续的二阶导数,取等距节点(),0,1,,k x a kh k n =+=L ,b ah n-=,则近似计算积分()d b a I f x x =⎰的复化梯形公式的截断误差T R = ;该公式具有 次代数精度;8.求解常微分方程初值问题()()00,,y f t y t t T y t y'=≤≤⎧⎪⎨=⎪⎩的Euler折线法的计算公式为;它是一个阶方法。
数值分析实验(2014,9,16~10,28)信计1201班,人数34人数学系机房数值分析计算实习报告册专业__________________学号_______________姓名_______________2014~2015年第一学期实验一数值计算的工具Matlab1. 解释下MATLABS序的输出结果程序:t=0.1n=1:10e=n/10-n*te 的结果:0 0 -5.5511e-017 0 0-1.1102e-016 -1.1102e-016 0 0 02. 下面MATLABS序的的功能是什么?程序:x=1;while 1+x>1,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值x=1;while x+x>x,x=2*x,pause(0.02),e nd用迭代法求出x=2*x,的值,使得2x>Xx=1;while x+x>x,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值,使得2x>X3. 考虑下面二次代数方程的求解问题2ax bx c = 0公式x=电上4ac是熟知的,与之等价地有_____________________________ ,对于2a-b ■ b -4aca =1,b =100000000,c =1,应当如何选择算法。
b ~4ac计算,因为b与b2— 4ac相近,两个相加减不宜应该用2a u做分母3 5 74. 函数sin(x)有幂级数展开sin x = x - x - - ■■3! 5! 7!利用幕级数计算sinx的MATLAB程序为fun cti on s=powers in(x)s=0;t=x;n=1;while s+t~=s;s=s+t ;t=-x A2/ ((n+1)*(n+2) ) *t ;n=n+2 ;endt仁cputime;pause(10);t2=cputime;t0=t2-t1(a) 解释上述程序的终止准则。
东 北 大 学秦 皇 岛 分 校课程名称: 高等数学(一) 试卷: A 考试形式:闭卷授课专业:相关专业 考试日期:2015年1 月 9 日 试卷:共2页一、填空题(每小题3分,共18分)1. 201sin3coslimln(1)x x x x x →+=+ 。
2. 设()f x 在点1x =处可导,且满足条件14)1()1(lim-=--→xf x f x ,则曲线()y f x =在(1,(1))f 处的切线斜率为 。
3. 设函数()y y x =由方程1y y xe =-确定,则x dydx== 。
4. =-)d(arctane x x -e d 。
5.32222(sin )cos x x xdx ππ-+=⎰。
6. 曲线0=tan (0)4x y tdt x π≤≤⎰的弧长s = 。
二、选择题 (每小题3分,共18分)1. [ ] 设212,1()2,1x x x f x x ⎧-+≠⎪=⎨=⎪⎩,则在点1=x 处函数)(x fA .不连续B .连续但不可导C .可导,但导数不连续D .可导且导数连续2. [ ] 已知极限0arctan limkx x xc x→-=,其中,k c 为常数,且0c ≠,则下列说法正确的是A .13,3k c ==B .13,3k c ==-C .12,2k c ==-D .12,2k c ==3. [ ] 曲线122+=x x y 渐近线的条数是A . 0B .1C .2D .3 4. [ ] 设()f x 在[0, 1]有二阶连续导数,且(0)1,(2)3,(2)5,f f f '=== 则10(2)x f x dx ''⎰等于A .0B .1C .2D .4 5. [ ] 下列反常积分中收敛的是A .22(1)dxx -⎰B . 1+∞⎰C .422(2)dx x -⎰D .33()dxx lnx +∞⎰ 6. [ ] 曲线)4(3-=x x y 在区间[)∞+,3上是A .上升且凹的B . 下降且凹的C .上升且凸的D .下降且凸的三、计算题 (每小题8分,共32分)1. 求20tan limsin x x xx x→-装订线装 订 线 内 不 要 答 题学 号姓 名班 级2. 设2203t u x e du y t -⎧=⎪⎨⎪=⎩⎰,求212d d t y x =。
数值分析考试及答案作者:日期:班级• • •• • •• • •• • • o • • •学号• • •• • •姓名密• • •• • •o• • •• • •东北大学研究生院考试试卷2011 —2012 学年第一学期课程名称:数值分析(共3页)一、解答下列各题:(每题5分,共30分)1.设近似值x具有5位有效数字,则x的相对误差限为多少? 解:记x* 0.吋2…10m,则x的相对误差为:0.5 10m 50.a1a2... 10m0.5 10 50.10.5 10即,相对误差限为:0.5 102.问a, b满足什么条件时,矩阵Ao • • •• • •• • •线总分一——二三四五4 2 02 5a有分解式A GG T,并求a b 2时0 b 54 2 0 2 1 0解:由于A 2 5 a 1 2 a/2 (A对称正定时)0 b 5 0 b/2 5 ab/4所以,当2 .5 a b 2 5时有分解式 A GG T,a b 2 时有:4 2 0 2 0 0 2 1 0A 2 5 2 1 2 0 0 2 10 2 5 0 1 2 0 0 23.解线性方程组X1 2x2 2 的Jacobi 迭代法是否收敛,为什么?2x19x2 3的分解式(其中G是对角线元素大于零的下三角形矩阵)解:Jacobi迭代矩阵为:B2/92,所以,(B) 2/3 1所以,Jacobi迭代法是否收敛.4.对方程f (x) (x3 a)20建立敛?若收敛,收敛阶是多少?解:Newton迭代格式为:X k 1 X kf(xk)f (X k)由于迭代函数为:(x)?X ka6x2所以,此迭代格式收敛,收敛阶是Newton迭代格式,并说明此迭代格式是否收3X k a2~ ,x k6X k,方程根为:1.56k 6:k2, k 012-3 a,所以,5.设f (x) 4x3 3x 5,求差商f[0,1], f[1,2,3,4]和f [1,2,3,4,5]。
线封密三峡大学试卷班级姓名学号2011年春季学期《数值分析》课程考试试卷( A 卷)答案及评分标准注意:1、本试卷共3页;2、考试时间:120 分钟;3、姓名、学号必须写在指定地方;一、(16分)填空题1. 已知1125A ⎡⎤=⎢⎥⎣⎦,则1A 6= (1分),∞A 7= . (1分)2.迭代过程),1,0)((1 ==+n x x n n ϕ收敛的一个充分条件是迭代函数)(x ϕ满足1|)(|<'x ϕ. (2分)3. 设),,2,1,0(,,53)(2==+=k kh x x x f k 则差商0],,,[321=+++n n n n x x x x f .(2分)4. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是.2,1,0,)(1)(1='---=+k x f x f x x x k k k k k (2分)5. 用二分法求方程01)(3=-+=x x x f 在区间]1,0[内的根,迭代进行二步后根所在区间为]75.0,5.0[.(2分)6.为尽量避免有效数字的严重损失,当1>>x 时,应将表达式x x -+1改写为xx ++11以保证计算结果比较精确.(2分)7. 将2111A ⎛⎫= ⎪⎝⎭作Doolittle 分解(即LU 分解),则100.51L ⎛⎫= ⎪⎝⎭(2分),2100.5U ⎛⎫= ⎪⎝⎭(2分)二、(10分)用最小二乘法解下列超定线性方程组:⎪⎩⎪⎨⎧=-=+=+2724212121x x x x x x 解:23222121,e e e x x ++=)(ϕ221221221)2()72()4(--+-++-+=x x x x x x由 ⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=-+=∂∂0)1662(20)1323(2212211x x x x x x ϕϕ(8分)得法方程组 ⎩⎨⎧=+=+166213232121x x x x 7231=⇒x , 7112=x所以最小二乘解为: 7231=x 7112=x . (10分)三、(10分)已知)(x f 的函数值如下表25.15.001)(15.005.01---x f x用复合梯形公式和复合Simpson 公式求dx x f ⎰-11)(的近似值.解 用复合梯形公式,小区间数4=n ,步长5.0)]1(1[41=--⨯=h )]1())5.0()0()5.0((2)1([24f f f f f hT +++-+-=.线封密三峡大学试卷班级姓名学号25.1]2)5.15.00(21[25.0=++++-=(5分) 用复合Simpson. 小区间数2=n ,步长1)]1(1[21=--⨯=h)]1())5.0()5.0((4)0(2)1([62f f f f f hS ++-+⨯+-=33.168]2)5.10(45.021[61≈=+++⨯+-= (10分)四、(12分)初值问题 ⎩⎨⎧=>+='0)0(0,y x b ax y有精确解 bx ax x y +=221)(, 试证明: 用Euler 法以h 为步长所得近似解n y 的整体截断误差为n n n n ahx y x y 21)(=-=ε证: Euler 公式为:),(111---+=n n n n y x hf y y代入b ax y x f +=),(得:)(11b ax h y y n n n ++=-- 由0)0(0==y y 得:bh b ax h y y =++=)(001; 11122)(ahx bh b ax h y y +=++= )(3)(21223x x ah bh b ax h y y ++=++=……)()(12111---++++=++=n n n n x x x ah nbh b ax h y y (10分)因nh x n =,于是 )]1(21[2-++++=n ah bx y n n 2)1(2nn ah bx n -+==n n n bx x x a+-12∴n n n y x y -=)(ε)2(2112n n n n n bx x x abx ax +-+=-=n n n x x x a )(21--=n hx a 2 =221anh (12分)五、(10分) 取节点1,010==x x ,写出x e x y -=)(的一次插值多项式),(1x L 并估计插值误差.解: 建立Lagrange 公式为()=x L 110100101y x x x x y x x x x --+--=10101101-⨯--+⨯--=e x x x e x 11-+-=.(8分)())1)(0(!2)()()(11--''=-=x x y x L x y x R ξ )10(<<ξ ()811)0(max 2110≤--≤≤≤x x x(10分)六、(10分) 在区间]3,2[上利用压缩映像原理验证迭代格式,1,0,4ln 1==+k x x k k 的敛散性.解 : 在]3,2[上, 由迭代格式 ,1,0,4ln 1==+k x x k k , 知=)(x ϕx 4ln .因∈x ]3,2[时,]3,2[]12ln ,8[ln )]3(),2([)(⊂=∈ϕϕϕx (5分) 又1|1||)(|<='xx ϕ,故由压缩映像原理知对任意]3,2[0∈x 有收敛的迭代公式),1,0(,4ln 1 ==+k x x k k (10分)线封密三峡大学试卷班级姓名学号七、(10分)试构造方程组⎩⎨⎧=+=+423322121x x x x 收敛的Jacobi 迭代格式和Seidel Gauss -迭代格式,并说明其收敛的理由. 解:将原方程组调整次序如下:⎩⎨⎧=+=+324232121x x x x 调整次序后的方程组为主对角线严格占优方程组,故可保证建立的J 迭代格式和GS 迭代格式一定收敛.收敛的J 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=++)3(21)24(31)(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (5分)收敛的GS 迭代格式为:⎪⎪⎩⎪⎪⎨⎧-=-=+++)3(21)24(31)1(1)1(2)(2)1(1k k k k x x x x .,1,0 =k (10分)八、(12分)已知43,21,41210===x x x 1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;2)指明求积公式所具有的代数精度.解:1)过这3个点的插值多项式)())(())(()())(())(()(121012002010212x f x x x x x x x x x f x x x x x x x x x p ----+----=+)())(())((2021201x f x x x x x x x x ----⎰⎰=∑=≈∴)()()(221010k k k x f A dx x p dx x f ,其中: ⎰⎰=----=----=32)4341)(2141()43)(21())(())((10201021100dx x x dx x x x x x x x x A ⎰⎰-=----=----=31)4321)(4121()43)(41())(())((10210120101dx x x dx x x x x x x x x A ⎰⎰=----=----=322143)(4143()21)(41())(())((10120210102dx x x dx x x x x x x x x A ∴所求的插值型求积公式为:⎰+-≈)]43(2)21()41(2[31)(10f f f dx x f (10分) 2)上述求积公式是由二次插值函数积分而来的,故至少具有2次代数精度,再将43,)(x x x f =代入上述求积公式,有:⎰+-==]43(2)21()41(2[3141333310dx x ⎰+-≠=])43(2)21(41(2[3151444410dx x 故上述求积公式具有3次代数精度. (12分)九、(10分)学完《数值分析》这门课程后,请你简述一下“插值、逼近、拟合”三者的区别和联系.。
期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。
n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。
( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。
( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。
5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。
数值分析考试卷及详细答案解答姓名班级学号一、选择题1.()2534F,,,-表示多少个机器数(C ).A 64B 129C 257D 2562. 以下误差公式不正确的是( D)A .()()()1212x *x *x *x *εεε-≈+B .()()()1212x *x *x *x *εεε+≈+C .()()()122112x *x *x *x *x x *εεε?≈+ D .()()()1212x */x *x *x *εεε≈-3. 设)61a =, 从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出a 较好的近似值?(D )A6)12(1+ B 27099- C 3)223(- D3)223(1+4. 一个30阶线性方程组, 若用Crammer 法则来求解, 则有多少次乘法? ( A )A 31×29×30!B 30×30×30!C 31×30×31!D 31×29×29!5. 用一把有毫米的刻度的米尺来测量桌子的长度, 读出的长度1235mm, 桌子的精确长度记为( D )A 1235mmB 1235-0.5mmC 1235+0.5mmD 1235±0.5mm二、填空1.构造数值算法的基本思想是近似替代、离散化、递推化。
2.十进制123.3转换成二进制为1111011.01001。
3.二进制110010.1001转换成十进制为 50.5625 。
4. 二进制0101.转换成十进制为57。
5.已知近似数x*有两位有效数字,则其相对误差限5% 。
6. ln2=0.69314718…,精确到310-的近似值是 0.693 。
7.31415926x .π==,则131416*x .=,23141*x .=的有效数位分别为5 和3 。
8.设200108030x*.,y*.==-是由精确值x y 和经四舍五入得到的近似值,则x*y*+的误差限0.55×10-3 。