全桥驱动全桥整流变换器的高频变压器设计2
- 格式:doc
- 大小:89.50 KB
- 文档页数:4
LLC谐振全桥DC/DC变换器设计摘要:电力电子变压器(PET)作为一种新型变压器除了拥有传统变压器的功能外,还具备解决传统变压器价格高、体积庞大、空载损耗严重、控制不灵活等问题的能力,值得深入研究。
PET的DC-DC变换器是影响工作效率和装置体积重量的重要部分,本文以PET中DC-DC变换器为主要研究对象,根据给出的指标,对全桥LLC谐振变换器的主电路进行了详细的设计,主要有谐振参数的设计,利用磁集成思想,设计磁集成变压器,可以大大减小变换器的体积和重量,并在参数设计的基础上完成器件的选型。
此外,根据给出的参数,计算出各部分损耗,进而计算出效率,结果满足设计效率的要求。
利用PEmag和Maxwell仿真软件设计磁集成变压器,验证磁集成变压器参数。
运用Matlab/simulink对PET中的DC-DC变换器模型进行仿真分析,并在实验样机上进行实验研究,实验结果验证了DC-DC变换器的理论研究和设计方法的正确性及有效性。
关键词:电力电子变压器;LLC谐振变换器;损耗分析;磁集成变压器中图分类号:TD62 文献标识码:A 文章编号:Design of LLC resonant full bridge DC / DC converterAbstract: The Power Electronic Transformer (PET) as a new power transformer,not only has the functions of traditional transformers, but also has the ability to solve the problems of traditional power transformers that the high price, huge volume, prodigious no-load loss and inflexible control, and it is worth in-depth study.The DC-DC converter of PET is an important part of affecting work efficiency, volume and weight of the device. This paper studies the DC-DC converter mainly, then,according to given indexes, main circuit of full-bridge LLC resonant converter is designed in detail, including the design of resonant parameters. And the magnetic integrated transformer is designed with the idea of magnetic integration, which greatly reduces the converter volume, and the selection of devices is completed on the basis of parameters design.In addition, according to the given parameters, losses of each part and the efficiency are calculated. The results meet the efficiency requirements of design. PEmag and Maxwell simulation software are used to design magnetic integrated transformer, and verified the magnetic integrated transformer parameters.Matlab/simulink is used to simulate and analyze the DC-DC converter performance of PET. A prototype of full-bridge LLC resonant converter is developed and system test platform is built according to the theoretical research and simulation results. The correctness and effectiveness of theoretical research and design methods of the DC-DC converter are verified by analyzing the waveforms of the test.Key words:power electronic transformer; LLC resonant converter; loss analysis; magnetic integrated transformer煤矿井下存在着各种电压等级的电源以及电气设备,供电系统十分复杂。
技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾一、正激式开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 详细公式 Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5)1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5 是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感 LsotonLso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax /(2*f*Po)21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Lso]}dt = Po 2、Ton=θon/f 4 实际工作占空比θon 如果输出电感 Ls≥Lso:θon=θonmax 否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}ton1、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls]}dt = Po 2、Ton=θon/f 5 6 导通时间 Ton 最小副边电流 IsmintonTon =θon /f Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon /(2*f*Ls)]/[(Vs-0.5)*θon]21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po 2、Ton=θon/f 7 8 9 副边电流增量 ΔIs 副边电流峰值 Ismax 副边有效电流 IstonΔIs = (Vs-0.5-Vo)* Ton/ Ls Ismax = Ismin+ΔIs Is = √[(Ismin + Ismin*ΔIs+ΔIs /3)*θon]2 2 21、Is=√[(1/T)*∫0 (Ismin+ΔIs*t/Ton) dt] 2、θon= Ton/T 10 11 12 副边电流直流分量 Isdc 副边电流交流分量 Isac 副边绕组需用线径 Ds 电流密度取 5A/mm 13 14 15 原边励磁电流 Ic 最小原边电流 Ipmin 原边电流增量 ΔIp2Isdc = (Ismin+ΔIs/2) *θon Isac = √(Is - Isdc ) Ds = 0.5*√Is2 2Ic = Vp*Ton / Lp Ipmin = Ismin*Ns/Np ΔIp = (ΔIs* Ns/Np+Ic)/η第1页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾16 17原边电流峰值 Ipmax 原边有效电流 IptonIpmax = Ipmin+ΔIp Ip = √[(Ipmin + Ipmin*ΔIp+ΔIp /3)*θon]2 2 21、Ip=√[(1/T)*∫0 (Ipmin+ΔIp*t/Ton) dt] 2、θon= Ton/T 18 19 20 原边电流直流分量 Ipdc 原边电流交流分量 Ipac 原边绕组需用线径 Dp 电流密度取 4.2A/mm 21 22 23 24 25 262Ipdc = (Ipmin+ΔIp/2) *θon Ipac = √(Ip - Ipdc ) Dp = 0.55*√Ip2 2最大励磁释放圈数 Np′ 磁感应强度增量 ΔB 剩磁 Br 最大磁感应强度 Bm 标称磁芯材质损耗 PFe (100KHz 100℃ KW/m3) 选用磁芯的损耗系数ω 1.08 为调节系数Np′=η*Np*(1-θon) /θon ΔB = Vp*θon / (Np*f*Sc) Br = 0.1T Bm = ΔB+Br 磁芯材质 PC30:PFe = 600 磁芯材质 PC40:PFe = 450 ω= 1.08* PFe / (0.2 *100 )2.4 1.227 28 29磁芯损耗 Pc 气隙导磁截面积 Sg 有效磁芯气隙δ′ 1、根据磁路欧姆定律:H*l = I*Np 又有:H = B/μPc = ω*Vc*(ΔB/2) *f2.41.2方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 2 2 圆形中心柱:Sg= {π*(d/2+δ′/2) /[π*(d/2) ]} *Sc δ′=μo*(Np *Sc/Lp-Sc/AL) 有空气隙时:Hc*lc + Ho*lo = Ip*Np2Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp式中:lc 为磁路长度,δ为空气隙长度,Np 为初级圈数,Lp 为初级电感量,ΔB 为工作磁感应强度增量; μo 为空气中的磁导率,其值为 4π×10 H/m; 2、ΔB=Vp*Ton/Np*Sc 3、μc 为磁芯的磁导率,μc=μe*μo 4、μe 为闭合磁路(无气隙)的有效磁导率,μe 的推导过程如下: 由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo2 -7又根据:Bc=Vp*Ton/Np*Sc代入上式化简 得:μe = Lpo*lc/μo*Np *Sc第2页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导2刃禾5、Lpo 为对应 Np 下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤 5 代入 4,4 代入 3,3、2 代入 1 得:Lp =Np *Sc/(Sc/AL +δ/μo) 如果δ′/lc≤0.005: δ=δ′ 2 如果δ′/lc>0.03: δ=μo*Np *Sc/Lp 否则 δ=δ′*Sg/Sc ΔD = 132.2/√f Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′ Ud = Vo+√2 *Vinmax*Ns/Np′ Ud′=√2 *Vinmax*Ns/Np30实际磁芯气隙 δ31 32 33 34穿透直径 ΔD 开关管反压 Uceo 输出整流管反压 Ud 副边续流二极管反压 Ud′第3页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾二、双端开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5) 详细公式1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
全桥LLC谐振电源的与研究理论部分毕业设计(论文)题目:全桥LLC谐振电源的设计与研究理论部分专业年级2009级电气工程及其自动化学号姓名指导教师尹斌评阅人王仲夏2013年6月中国马鞍山本科毕业设计(论文)任务书Ⅰ、毕业设计(论文)题目:全桥LLC谐振电源的设计与调试-理论部分Ⅱ、毕业设计(论文)工作内容(从专业知识的综合运用、论文框架的设计、文献资料的收集和应用、观点创新等方面详细说明):随着软开关技术和并联均流的发展,高性能的大功率高频开关电源的研究与开发已成为电力电子领域的重要研究方向,高频化,高效率,高功率密度和低损耗,低EMI噪声是DC/DC变换器的发展趋势,全桥LLC谐振变换器能够实现全负载范围下原边开关管ZVS,副边整流管ZCS,有效解决了移相全桥PWM ZVS DC/DC变换器存在的问题,使得LLC谐振拓扑结构成为电力电子技术领域研究的热点。
本课题以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较,总结二者优缺点,接着对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。
最后,搭建220V-40A 全桥LLC谐振变换器实验平台,验证理论分析的正确性和设计方法的合理性。
具体工作的步骤、内容、要求安排如下:1.绪论,介绍研究的背景。
2.以全桥LLC谐振变换器为研究内容,并与移相全桥PWM ZVS DC/DC变换器进行比较总结二者优缺点。
3.对变换器工作原理进行详细研究,建立数学模型,运用MATLAB仿真证明理论分析的正确性。
4.总结论文。
Ⅲ、进度安排:第1周~第2周(2周):根据毕业设计任务和要求,收集、查阅和研究学习相关的信息和资料:确定相应的技术方案和实施过程及规划;第3周~第5周(3周):撰写论文初稿,查阅相关资料进行修改;第6周~第9周(4周):设计电路图,调试硬件;第10周~第12周(3周):完成MATLAB软件设计;第13周~第14周(2周):充实论文,后期检查整改。
摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。
关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。
电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。
当温度超过一定值时,失效率呈指数规律增加。
有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。
所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。
而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。
完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。
最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。
2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。
针对每一种发热元器件均有不同的控制发热量的方法。
2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。
开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。
其中导通状态的损耗由开关管本身的通态电阻决定。
可以通过选择低通态电阻的开关管来减少这种损耗。
MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。
现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。
美国APT公司也有类似的产品。
电力电子变压器中高频变压器的设计方式陈永杰;赵奇;唐日强【摘要】电力系统在我国经济发展中起着重要的作用,保证电力系统的完善对其功能的发挥而言意义重大。
就目前的电力系统结构分析来看,变压器是其中不可缺少的重要组成部分,因为变压器在电力系统当中承担着功率传输、电压变换以及电气隔离等主要功能。
就目前的变压器利用分析来看,电力电子变压器在电力系统当中有着重要的应用,而高频变压器又是电力电子变压器的核心组成部分,所以说高频变压器的质量直接影响着电力电子变压器的运行效果。
为了保证电力电子变压器在具体应用中能够具有较高的价值,对高频变压器一定要有科学的设计。
本文就电力电子变压器中高频变压器的设计方式进行具体的讨论,目的是强化电力电子变压器的应用质量。
【期刊名称】《电气技术与经济》【年(卷),期】2018(000)001【总页数】3页(P34-36)【关键词】电力电子变压器;高频变压器;纳米晶【作者】陈永杰;赵奇;唐日强【作者单位】许继变压器有限公司;许继变压器有限公司;许继变压器有限公司【正文语种】中文【中图分类】TM410 引言电力电子变压器是在技术应用不断提升的基础上产生的一种新型的变压器,此变压器使用了大功率的电力电子元件,并采用相应的控制技术,所以电力系统当中的电压变换和能量传递等功能被轻松实现。
传统电力变压器在应用中能够实现的基本功能是电压的变换和电气隔离,而电力电子变压器能够灵活对输入的电流、输出电压以及功率因数进行调节,其在实际利用中更具灵活性,其应用价值也较为突出。
在电力电子变压器当中,高频变压器尤为重要,所以探讨其设计方式并对其进行调整优化,可以进一步提升电力电子变压器的利用价值。
1 高频变压器设计(1)高频变压器磁心选择在高频变压器的设计当中,磁心选择是一项重要的内容。
从目前的分析来看,高频变压器和普通的工频变压器存在着明显的不同,因为高频变压器需要长期在400Hz~100kHz的高频环境中进行工作,所以其磁心的选择十分重要。
Full-bridge converter变换器电气0810 赵玮08292053题目:设计一Full-bridge converter变换器。
输出电压48V,功率为100W。
其中:输入电压为直流48V~8V。
要求:1.通过计算选参数把输出电压纹波Vp-Vp控制在2%之内。
2.主电路元器件的选用、控制芯片的选用、各种为改善电源质量的电磁兼容措施等,任由各位同学自己决定,但要说明选用的理由。
3. 要有:过压和欠压保护;短路保护;过电流保护措施一、主电路工作原理及器件选择1、全桥变换工作原理全桥变换器的主电路如下图1所示,其主要工作波形如下图2所示。
仅需在全桥电路上增加一个谐振电感L或利用变压器漏感,便可通过L1与功率开关管输出电容Ci(i=1,2,3,4)的谐振,在电感储能释放过程中,使Ci上的电压u逐步下降到零,而使功率开关管体内的寄生二极管VDi(i=l,2,3,4)开通,使电路中4个开关器件实现零电压开通或零电流关断。
通过改变对角线上开关管驱动信号之间的相位差来改变占空比,以达到控制输出电压的目的。
变压器副边所接整流二极管VD5、VD6实现全波整流。
2、Full-bridge converter变换器结构图13、全桥变换器工作波形图24、参数计算和器件选择1)变压器的选择为了在规定的输入电压范围内能够输出所要求的电压,变压器的变比应按最低输入电压U 选择。
为了降低输出整流二极管的反向电压,为了提高高频变压器的利用率,减小开关管的电流,选择副边的最大占空比为0.85,则可计算出副边电压为:(max)sec(min)sec(max)o D LFV V V V D ++=其中:0(max)V 是最高输出电压,即均充电压;d V 是输出整流二极管的通态压降;LF V 是输出滤波电感上的直流压降。
取(max)48(12%)49o V V =⨯+≈,d LF V =0.7V,V 1V =,所以sec(min)490.7163.3750.8V V ++==,所以变压器原副边变比为560.8963.375K =≈,变比即为:K=0.89。
全桥驱动全桥整流变换器的高频变压器设计
1、根据电路形式、输出电压电流、变压器效率计算变压器的传送功率。
2、确定工作磁感应强度、电流密度系数、窗口占空系数(利用率)、工作频率、波形因数。
3、计算功率面积乘积并据此选择磁芯,根据所选磁芯参数计算电流密度。
4、根据伏秒积计算原边绕组匝数;根据电压比计算副边绕组匝数。
5、根据功率和波形因数计算各绕组电流幅值。
1、变压器传送功率计算
o o o P I U =⨯
o I P P η
=
11t o I o P P P P η⎛⎫ ⎪ ⎪⎝⎭
=+=+
2、功率面积乘积计算
对于全桥驱动,变压器的2m B B ∆=。
其中,0.15~0.25m B =,电流密度系数400J K =,窗口占空系数0.2~0.4Ko =,工作频率
20Z f KH =
,波形因数f K =。
1.16
411104o p J c m P A K A B f
η⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪
⎝⎭
⎪ ⎪ ⎪ ⎪ ⎪⎝
⎭
+⨯=⨯⨯⨯⨯
3、选择磁芯,计算电流密度
0.14()J p J K A -=⨯
4、原边和副边绕组匝数:
124p on p m c m c U t U D
N B A B A f
⨯⨯==⨯⨯⨯
21s p
U N N U =
5、原边和副边绕组电流幅值: 副边绕组电流幅值:2o I I D
=
o s s s s o o o s
o s o
s P U I U I D U I U U I I D
I I D
==⨯⨯=⨯=∴=⨯∴= 原边绕组电流幅值:o
p p P I U D
η=⨯⨯
全桥变换器输出电压与输入电压关系推导
伏秒积产生磁通链:
t t p p p c p p s s s c s s
U N B A L I U N B A L I ⨯∆=∆Φ=⨯∆⨯=⨯∆⨯∆=∆Φ=⨯∆⨯=⨯∆ 原边能量:()2
2
211222p on p on p p p p p U t U t L i L L L ⎛⎫
⎪ ⎪⎝⎭⨯⨯⨯⨯=⨯⨯=
副边能量:()22
2
11222s on s on s s s s s U t U t L i L L L ⎛⎫ ⎪ ⎪⎝⎭
⨯⨯⨯⨯=⨯⨯=
两边相等:()(
)22
22p on s on s s p p
p
s
U t U t U N U N L L ⨯⨯=
⇒==
结论:正激变换器输出与输入的电压比等于副边与原边的匝数比
全桥驱动全桥整流变换器的高频变压器A P 公式推导
伏秒积产生磁通链:
222p on p p p m c T D U t U D U N B A f
⨯=⨯⨯=⨯=⨯⨯
得原边匝数和副边匝数:
4p p m c U D
N B A f
⨯=
⨯⨯
由于
p s p s
U U N N =,故: 4s s m c U D N B A f
⨯=
⨯⨯
窗口中包含的总电流为:
(
)441(1)44p s p p s s
t w w p s m c m c o p p s s m c m c m c I I U D I U D I I A K N N J J J J
B A f B A f P U I U I D J B A f J B A f
η⨯⨯⨯⨯=⨯=+=+⨯⨯⨯⨯++⨯===
⨯⨯⨯⨯⨯⨯
得功率面积乘积计算式:
1(1)4o p w c m P A A A J Kw B f
η
+=⨯=
⨯⨯⨯
考虑电流密度计算式:()x J p J
K A =⨯,x 为结构系数。
代入上式得全桥驱动的高频变压器功率面积乘积计算式为:
1
11(1)
4x
p w c J w m Po A A A K K B f
η⎛⎫ ⎪ ⎪
⎪ ⎪ ⎪⎝
⎭
++=
⨯=⨯⨯⨯。