整流变压器原理
- 格式:doc
- 大小:18.50 KB
- 文档页数:4
110kV整流变压器的工作原理及应用发布时间:2023-01-30T08:25:56.304Z 来源:《中国电业与能源》2022年8月16期作者:张龙[导读] 本文针对110kV整流变压器的工作原理及其应用进行了分析。
张龙云锡文山锌铟冶炼有限公司云南文山 663700摘要:本文针对110kV整流变压器的工作原理及其应用进行了分析。
在社会经济高速发展的新时期背景下,各领域对直流电能的需求量逐渐增加,为了促进社会经济的长效发展,保证电能供应的稳定性,可合理选用整流变压器,利用整流变压器结构的运行特点提高整流机组的稳定性,减少设备故障问题,确保电能供应的安全性。
关键词:110kV整流变压器;工作原理;应用分析;冶金前言:110kV整流变压器即为整流设备的电源变压器。
其在运行过程中主要通过原边输入交流,副边则依托整流原件输出直流。
整流机组是整流、逆流和变频三种工作模式的总称,其中整流是应用较为广泛的工作模式。
而整流变压器是向整流机组提供电源的变压器,通常情况下,工业用的直流大电流大多来自电网输向整流变压器和整流设备而得到。
基于此,在实际应用过程中应充分掌握110kV整流变的工作原理,依照不同领域的用电需求选择合适的工作模式,确保整流变压器能稳定运行。
一、110kV整流变压器的原理及构成110kV整流机组通常是由整流变压器、整流柜、控制柜和水风冷却系统四部分构成,其中整流变压器是整个机组中的核心器件,负责将电网高压交流电变换成低压交流电供给整流柜从而最终获得直流电流的特殊变压器。
通常网侧指的是整流变压器的原边接交流电力电网,副边接整流柜和谐波治理系统,它的结构原理同普通变压器大致相同,只是其短路阻抗要高于普通变压器,耐受短路电流能力也会更强。
110kV整流变压器由箱体、油枕、高低压引出线套管、油循环散热系统和有载调压开关等组成。
箱体内一般装有高中低压三个绕组,高压绕组接入110kV电网电压,中压输出绕组一般为10kV电压等级,主要接入无功补偿和谐波治理系统(SVG+FC),低压绕组电压为几百伏且与整流柜相连接,作为主要负载输出端。
变压器原理§变压器基本工作原理、结构与额定数据一、理想变压器的运行原理:{2111eeiu→→→φ·变压器电动势:匝数为N的线圈环链φ,当φ变化时,线圈两端感生电动势e的大小与N及dd tφ成正比,方向由楞次定律决定。
·楞次定律:在变化磁场中线圈感应电动势的方向总是使它推动的电流产生另一个磁场,阻止原有磁场的变化。
U2+-变压器的基本结构U1高U1+ e1=0一次侧等效电路(假定一次侧线圈电阻值为零)e22U2-e2=0二次侧等效电路·假设:1、一二次侧完全耦合无漏磁,忽略一二次侧线圈电阻;2、忽略铁心损耗;3、忽略铁心磁阻;4、1U为正弦电压。
·假定正向:电动势是箭头指向为高,电压是箭头指向为低。
·主磁通方向由一次侧励磁电流和绕组缠绕方向通过右手螺旋法则确定。
·一次侧感应电动势的符号:由它推动的电流应当与励磁电流方向相反,所以它的实际方向应当高电位在上,图中的假定正向与实际方向相反,故有dtd e 1Φ-=N 1 ·二次侧感应电动势的符号:由它推动的电流应当阻止主磁通的变化,即按右手螺旋法则应当产生与主磁通方向相反的磁通,按图中副方绕组的缠绕方向,它的实际方向也应当高电位在上,图中的假定正向与实际方向也相反,所以有dtd Ne 2Φ-=2,一二次侧感应电动势同相位。
而按照电路理论,有u e u e 1122=-=·变压器的电压变比21212121e U U E E N N e e K ====·因为假定铁心损耗为零,故有变压器一二次侧视在功率相等:2I =U I U 211,故e K I I 121= ·L e L LZ K I U Z , I U Z 21122===∧ ·变压器的功能是在实现对电压有效值变换的同时, 还实现了对电流有效值和阻抗大小的变换。
二、基本结构〖阅读〗 三、额定数据·S N :额定工况下输出视在功率保证值。
变压器原理
变压器是一种电力传输和变换装置,可用来改变交流电压的大小。
它主要由两个线圈——主线圈和副线圈组成。
主线圈通常被称为高压线圈,而副线圈被称为低压线圈。
当交流电通过主线圈时,会在主线圈中产生变化的磁场。
这个磁场会切割副线圈,从而在副线圈中也产生电动势。
根据法拉第电磁感应定律,副线圈中的电动势与主线圈中的电动势成正比。
变压器的工作原理基于互感现象。
互感是指当两个线圈靠近时,它们之间会相互影响,从而导致一种电磁耦合。
在变压器中,通过改变主线圈和副线圈的匝数比,可以实现输入电压和输出电压之间的变换。
根据互感现象的原理,当主线圈的匝数比副线圈的匝数大时,输出电压将比输入电压小。
这被称为降压变压器。
相反,当主线圈的匝数比副线圈的匝数小时,输出电压将比输入电压大。
这被称为升压变压器。
为了减少能量损失和提高效率,变压器通常采用铁芯。
铁芯的存在可以集中和引导磁场,从而提高互感的效果。
除了用于改变电压,变压器还可以用于隔离电路和传送电能。
由于变压器没有机械部件,因此没有摩擦损耗,工作稳定可靠。
在实际应用中,变压器广泛用于电力系统、电子设备、通信系统等领域,为不同电器设备提供适合的电压供应。
整流变压器原理整流变压器是一种将交流电压转换为直流电压的电力变压器。
它主要由铁芯、初级线圈、次级线圈和整流器等部分组成。
整流变压器的原理是利用铁芯和线圈的电磁感应作用,将交流电转换为直流电,从而实现电能的有效利用。
首先,整流变压器的铁芯起着电磁感应和传导磁场的作用。
当通过初级线圈的交流电流流过铁芯时,铁芯内部会产生交变磁场,这个交变磁场会感应到次级线圈中,从而在次级线圈中产生感应电动势。
其次,初级线圈和次级线圈的匝数比决定了整流变压器的变压比。
变压比是指初级线圈匝数与次级线圈匝数的比值,通过变压比的选择,可以实现对输入电压的调节和变换。
当变压比大于1时,可以实现升压变压;当变压比小于1时,可以实现降压变压。
接着,整流变压器的整流器起着将交流电转换为直流电的作用。
整流器一般采用二极管或者晶闸管,通过控制整流器的导通和截止,可以实现对交流电的整流,将其转换为直流电。
这样,整流变压器就可以将交流电转换为直流电,从而满足不同电路对电源的需求。
最后,整流变压器的输出电压稳定性和负载适应性是其重要特点之一。
通过合理设计变压器的铁芯和线圈参数,可以实现输出电压的稳定性。
同时,整流变压器还可以根据负载的变化,自动调节输出电压,从而满足不同负载对电源的需求。
总的来说,整流变压器通过铁芯和线圈的电磁感应作用,利用变压比和整流器的控制,将交流电转换为直流电,实现了电能的有效利用。
它在工业生产和电力系统中有着广泛的应用,为电力传输和电子设备提供了稳定可靠的电源。
整流变压器的原理和工作机制,对于电气工程师和电子技术人员来说,是非常重要的基础知识,对于深入理解电力系统和电子设备的工作原理具有重要意义。
变压器的工作原理简述变压器是一种基础电气设备,用于改变交流电的电压。
它通过电磁感应原理将输入线圈的电能传输到输出线圈上,在输入线圈和输出线圈之间建立电磁耦合。
工作原理概述变压器主要由两个线圈组成:输入线圈(也称为初级线圈)和输出线圈(也称为次级线圈)。
这两个线圈都被绝缘地包裹在磁性材料(通常是铁芯)中,以确保磁场的传导。
变压器工作时,输入线圈和输出线圈之间不相连。
当输入线圈通过交流电源供电时,会在输入线圈中产生一个交变电流。
这个交变电流会产生一个交变磁场,进而激发磁铁芯中的磁场变化。
由于磁场的变化,输出线圈中会感应出一个新的电压,由此完成了电能的传输。
变压器的工作原理可以用下面的公式表示:V1/N1 = V2/N2其中,V1和V2分别表示输入线圈和输出线圈的电压,N1和N2分别表示输入线圈和输出线圈的匝数。
变压器的应用变压器被广泛应用于电力系统、电子设备、通信系统等领域。
它们的主要用途包括以下几个方面:1. 电力传输:变压器用于将大电压的电能传输到远距离的地方,在传输过程中减小能量损耗。
2. 调节电压:变压器可以通过改变输入线圈和输出线圈的匝数比例,来调整输出电压的大小。
3. 隔离和保护:变压器可以隔离输入和输出电路,并提供电气保护功能,防止电流过载和短路等故障。
4. 电子设备:变压器广泛用于电子设备中,如电视、收音机和计算机等,以提供适当的电压供应。
需要注意的是,变压器的工作原理基于交流电,而非直流电。
这是由于在直流电中,由于电流的稳定性,变压器无法产生足够的磁场变化,从而无法传递电能。
总结变压器是一个重要的电气设备,利用电磁感应原理将输入线圈的电能传输到输出线圈上,实现电压的变换。
它在电力系统、电子设备和通信系统中扮演着关键的角色,用于电能传输、电压调节、电路隔离和电气保护等方面。
了解变压器的工作原理,有助于我们更好地理解电气设备的工作原理和应用。
整流变压器作用及原理
整流变压器是一种常用的电力变压器,主要用于将高压交流电转换为低压直流电。
它在各种电力系统中发挥着重要的作用,本文将介绍整流变压器的作用及原理。
作用
整流变压器的主要作用是实现电压的变换和电流的整流。
在电力系统中,它通
常被用于将高压交流电转换为低压直流电,以满足不同设备的电压要求。
整流变压器还可以起到电流平滑和过载保护的功能,确保电力系统的稳定运行。
原理
整流变压器的原理主要基于电磁感应和电磁感应定律。
当高压交流电通过变压
器的初级线圈时,会在次级线圈中感应出低压电流。
通过合适的绕组设计和铁芯材料选择,可以实现从高压交流电到低压直流电的转换。
整流变压器中通常还包含整流电路,用于将交流电转换为直流电。
这些整流电
路可以采用不同的拓扑结构,如单相半波整流、单相全波整流、三相全波整流等,以满足不同功率和效率要求。
在实际应用中,整流变压器还常常与滤波器和稳压器等电路结合使用,以提高
输出电压的稳定性和纯度。
通过合理设计和配置整流变压器及其周边电路,可以实现高效、稳定的电力转换和输送。
结论
整流变压器作为电力系统中的重要组成部分,承担着电压变换和电流整流的重
要任务。
通过合理的设计和优化,可以实现对电力系统的有效控制和保护,确保电力设备的正常运行。
通过深入了解整流变压器的作用和原理,可以更好地应用于各种电力系统中,提高系统的可靠性和效率。
整流变压器的工作原理
整流变压器的工作原理:
①整流变压器专为配合整流电路而设计用以将交流电转换为直流电源适用于各种工业场合;
②典型结构包括铁芯绕组冷却系统以及保护装置等部分共同协作完成变压任务;
③铁芯一般采用硅钢片叠压而成具有较高磁导率利于磁场集中减少损耗;
④绕组分成初级次级两部分前者连接电网后者与整流桥相连承担电压变换职责;
⑤根据应用需求可以选择单相三相星形三角形连接方式灵活调整输出特性;
⑥整流桥由多个二极管组成利用其单向导电特性将交流波形变为单向脉动电流;
⑦为抑制谐波改善电能质量现代整流变压器常配备滤波器平波电抗器等附件;
⑧冷却系统旨在维持设备温升在安全范围内常用方式有自然风冷强迫油循环等;
⑨在冶金化工等行业中整流变压器发挥着不可或缺的作用如电解铝生产中提供稳定直流供给;
⑩设计时需充分考虑负载性质电网波动等因素合理选型确保长期可靠运行;
⑪定期维护检查电气连接紧固件状况及时更换老化部件是保证设备性能的关键;
⑫随着技术进步未来可能出现效率更高体积更小的新型整流变压器满足市场需求。
整流变压器工作原理及特点介绍整流变压器的原理
整流变压器和普通变压器的原理相同。
变压器是根据电磁感应原理制成的一种变换交流电压的设备。
变压器一般有初线和次级两个互相独立绕组,这两个绕组共用一个铁芯.变压器初级绕组接通交流电源,在绕组内流过交变电流产生磁势,于是在闭合铁芯中就有交变磁通。
初、次级绕组切割磁力线,在次级就能感应出相同频率的交流电。
变压器的初,次级绕组的匝数比等于电压比。
如一个变压器的初级绕组是440匝,次级是220匝。
初级输入电压为220V,在变压器的次就能得到110V的输出电压。
有的变压器可以有多个次级绕组和抽头,这样就可以获得多个输出电压了。
整流变压器的特点
与整流器组成整流设备以便从交流电源取得直流电能的变压器。
整流设备是现代工业企业最常用的直流电源,广泛用于直流输电、电力牵引、轧钢、电镀、电解等领域。
整流变压器的原边接交流电力系统,称网侧;副边接整流器,称阀侧。
整流变压器的结构原理和普通变压器相同,但因其负载整流器与一般负载不同而有以下特点:
(1)整流器各臂在一个周期内轮流导通,导通时间只占一个周期一部分,所以,流经整流臂的电流波形不是正弦波,而是接近于断续的矩形波;原、副绕组中的电流波形也均为非正弦波。
图中所示为三相桥式Y/Y接法时的电流波形。
用晶闸管整流时,滞后角越大,电流起
伏的陡度也越大,电流中谐波成分也越多,这将使涡流损耗增大。
由于副绕组的导电时间只占一个周期的一部分,故整流变压器利用率降低。
与普通变压器相比,在相同条件下,整流变压器的体积和重量都较大。
(2)普通变压器原、副边功率相等(忽略损耗),变压器的容量就是原绕组(或副绕组)的容量。
但对于整流变压器,其原、副绕组的功率有可能相等,也可能不等(当原、副边电流波形不同时,例如半波整流),故整流变压器的容量是原、副边视在功率的平均值,称为等值容量,即式中S1为原边视在功率,S2为副边视在功率。
(3)与普通变压器相比,整流变压器的耐受短路电动力的能力必须严格符合要求。
因此,如何使产品具有短路动稳定性,是设计、制造中的重要课题。
电化学工业----这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。
牵引用直流电源----用于矿山或城市电力机车的直流电网。
由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。
为此这类变压器的温升限值和电流密度均取得较低。
阻抗比相应的电力变压器大30%左右。
传动用直流电源----主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。
直流输电用----这类整流变压器的电压一般在110kV以上,容量在数万千伏安。
需特别注意对地绝缘的交、直流叠加问题。
此外还有电镀用或电加工用直流电源,励磁用直流电源,充电用及静电除尘用直流电源等。
整流变压器的使用原因
应用整流变最多的化学行业中,大功率整流装置也是二次电压低,电流很大,因此很大,因此它们在很多方面与电炉变是类似的,即前所述的结构特征点,整流变压器也同样具备。
整流变压器最大的特点是二次电流不是正弦交流了,由于后续整流元件的单向导通特征,各相线不再同时,流有负载电流而是软流导电,单方向的脉动电流经滤波装置变为直流电,整流变压器的二次电压,电流不仅与容量连接组有关,如常用的三相桥式整流线路,双反量带平衡电抗器的整流线路,对于同样的直流输出电压、电流所需的整流变压器的二次电压和电流却不相同,因此整流变压器的参数计算是以整流线路为前提的,一般参数计算都是从二次侧开始向一次侧推算的。
由于整流变绕组电流是非正弦的含有很多高次谐波,为了减小对电网的谐波污染,为了提高功率因数,必须提高整流设备的脉波数,这可以通过移相的方法来解决。
移相的目的是使整流变压器二次绕组的同名端线电压之间有一个相位移。
整流变压器的移相方法
最简单的移相方法就是二次侧采用量、角联结的两个绕组,可以使整流电炉的脉波数提高一倍。
对于大功率整流设备,需要脉波数也较多,脉波数为18、24、36等应用的日益增多,这就必须在整流变压器一次侧设置移相绕组来进行移相。
移相绕组与主绕组联结方式有三种,即曲折线、六边形和延边三角形。
用于电化学行业的整流变压器的调压范围比电炉变压器要大的多,对于化工食盐电解,调压范围通常是55%--105%,对于铝电解来说,调压范围通常是5%--105%。
常用的调压方式如电炉变压器一样有变磁通调压,串联变压器调压和自耦调压器调压。
另外,由于整流元件的特性,可以在整流电炉的阀侧直接控制硅整流元件导通的相位角度,可以平滑的调整整流电压的平均值,这种调压方式称为相控调压。
实现相控调压,一是采用晶阀管,二是采用自饱和电抗器,自饱和电抗器基本上是由一个铁心和两个绕组组成的,一个是工作绕组,它串联联结在整流变压器二次绕组与整流器之间,流过负载电流;另一个是直流控制绕组,是由另外的直流电源提供直流电流,其主要原理就是利用铁磁材料的非线性变化,使工作绕组电抗值有很大的变化。
调节直流控制电流,即可调节相控角α,从而调节整流电压平均值。