平衡电抗器设计计算
- 格式:doc
- 大小:84.50 KB
- 文档页数:19
双反星带平衡电抗器整流电路的整流变压器参数说明1、根据基本技术要求:(1)、输入功率1.1主要部分1.1.1电压6KV ± 5%,必须能承受10%的电压波动(电压跌落)。
1.1.2 频率50HZ ± 2%1.1.3 相数 31.1.4 额定功率额定功率851KVA2、整流后输出的直流为161VDC,4030ADC,根据直流数据核算的变压器数据和要求为:变比:6KV/240V联接方式:DY11Y11冷却方式:ANAF分接头:原边绕组要求为±2.5%和±5%绝缘与温升:H级绝缘B级温升限制(备注:根据其直流侧和交流侧的关系计算出变压器二次侧容量为P2=960.9KVA,一次侧容为:P1=679.3KVA,平均容量为:(P1+P2)/2=820KVA,而要求的是851KVA,可能是对容量进行了放大,取了一定的裕量,若有疑问继续沟通,谢谢)3、与这台变压器相配的还有一台平衡电抗器。
平衡电抗器的数据如下:端电压:183V;电流:2015A;容量:368.74KVA,取370KVA.(调压深度(%)∆取Ud的是100%,而且不考虑重叠现象)第二部分:1、基本要求(1)、输入功率1.1主要部分1.1.1电压0.4KV ± 10%,必须能承受10%的电压波动(电压跌落)。
1.1.2 频率50HZ ± 5%1.1.3 相数 31.1.4 额定功率根据要求自己确定。
2、整流后的输出的直流为DC17V,DC603A,根据直流数据核算的变压器数据和要求为:变比:0.4KV/26V二次侧容量:18KV A(根据其整流后的质量数据计算的整流变二次容量为15.776KV A,取18KV A是取一定的裕量)联接方式:DY11Y11冷却方式:ANAF分接头:原边绕组要求为±5%和±10%绝缘与温升:H级绝缘B级温升限制3、与变压器相配的还有平衡电抗器。
电抗器基本知识介绍应用一、干式电抗器的种类与用途电抗器是重要的的电力设备,在电力系统中起补偿杂散容性电流、限制合闸涌流、限制短路电流、滤波、平波、启动、防雷、阻波等作用。
根据电抗器的结构型式可分为空心电抗器、铁心电抗器与半心电抗器。
补偿杂散容性电流的电抗器主要有并联电抗器与消弧线圈。
并联电抗器的作用是限制电力传输系统的工频电压升高现象,工频电压升高的原因在于空载长线的电容效应、不对称对地短路故障与突然甩负荷。
消弧线圈通常应用在配电系统,它的作用是使得单相对地短路电流不能持续燃烧,导致电弧熄灭。
消弧线圈通常具有调谐功能,可根据电力系统的杂散电容与脱谐度改变其电感值。
串联电抗器或称阻尼电抗器的作用是限制合闸涌流。
串联电抗器与电力电容器串联使用,用于限制对电容器组合闸时的浪涌电流,通常选取电容器组容量的6%。
限流电抗器是串联于电力系统之中,多用于发电机出线端或配电系统的出线端,起限制短路电流的作用。
为了与其他电力设备配合,其实际阻抗不能小于额定值。
滤波电抗器与电容器配合使用,构成LC谐振支路。
针对特定次数的谐波达到谐振,滤除电力系统中的有害次谐波。
平波电抗器应用在直流系统中,起限制直流电流的脉动幅值作用。
在设计平波电抗器时须注意线圈中的电流是按电阻分布的,设计时最好采用微分方程组计算。
若按交流阻抗设计可能造成线圈出现过热现象,且阻抗值未必准确。
启动电抗器用于交流电动机启动时刻,限制电动机的启动电流,保护电动机正常运行。
防雷线圈通常用于变电站进出线阻波器与防雷线圈的应用场合相户外空心干式电抗器是20世纪年代出现的新一代电抗器产品,如图1.1所示。
它是利用环氧绕包技术将绕组完全密封,导线相互粘接大大的增加了绕组的机械强度。
同时利用新的耐候材料喷吐于包封的表面,使得产品能够满足在户外的苛刻条件下运行。
包封间由撑条形成气道,包封间与包封内绕组多采用并联连接以便满足容量与散热的要求。
为了满足各个并联支路电流合理分配的需要,采用分数匝来减少支路间的环流问题。
三相桥平衡电抗器的作用引言:在电力系统中,三相电源是常见的电力供给方式。
然而,由于各相之间的不平衡负荷或其他因素,可能会导致电压和电流不平衡,从而影响电力系统的稳定性和效率。
为了解决这个问题,三相桥平衡电抗器被广泛应用于电力系统中,其作用是平衡电压和电流,提高系统的稳定性和效率。
一、三相桥平衡电抗器的基本原理三相桥平衡电抗器是由三个电抗器组成的,分别与三相电源相连。
它的基本原理是通过调节电抗器的阻抗值来平衡电压和电流。
当电源电压或电流不平衡时,三相桥平衡电抗器会自动调整各相之间的阻抗值,使得三相电压和电流保持平衡。
二、三相桥平衡电抗器的作用1. 平衡电压三相桥平衡电抗器能够通过调节各相之间的阻抗值,使得三相电压保持平衡。
当某一相电压过高或过低时,电抗器会自动调整相应的阻抗值,将电压调整到合适的范围内,从而实现电压的平衡。
2. 平衡电流三相桥平衡电抗器还能够平衡三相电流。
当负载不平衡或其他因素导致某一相电流过大或过小时,电抗器会自动调整相应的阻抗值,使得三相电流保持平衡。
这样可以避免负载过载或负载不足,提高系统的稳定性和效率。
3. 提高系统的稳定性三相桥平衡电抗器可以有效地平衡电压和电流,避免电力系统因为不平衡负荷而引起的电压跌落或电流过载。
通过保持系统的稳定运行,可以提高系统的可靠性和安全性。
4. 提高系统的效率三相桥平衡电抗器可以减少电力系统中的功率损耗。
当电压和电流平衡时,系统中的有功功率和无功功率也能够保持平衡,从而减少了电能的浪费。
这样可以提高电力系统的效率,降低电费用。
5. 减少电力设备的损坏不平衡的电压和电流可能会对电力设备造成损坏。
三相桥平衡电抗器的作用是平衡电压和电流,避免电力设备受到过高或过低的电压和电流的影响,从而延长了电力设备的使用寿命,减少了维修和更换的成本。
结论:三相桥平衡电抗器在电力系统中起着重要的作用。
通过平衡电压和电流,提高系统的稳定性和效率,减少电力设备的损坏,它为电力系统的正常运行和可靠供电提供了保障。
平衡电抗器设计计算平衡电抗器(Balanced Reactor)是一种用于电力系统中的电气设备,用于控制和平衡电力系统中出现的谐波问题。
在电力系统中,谐波问题是一个普遍存在的问题,而平衡电抗器可以有效地解决这个问题。
平衡电抗器通过在电力系统中引入一个等值的电抗,来抵消其中的谐波成分,从而实现对电力系统谐波问题的控制和平衡。
1.电抗器的容量计算:首先需要确定平衡电抗器的容量大小。
这个容量大小取决于电力系统中所存在的谐波电流的大小。
谐波电流与谐波电压之间的关系可以通过电力系统的模型进行计算得到。
根据计算结果,可以确定电抗器的容量大小。
2.电抗器的参数计算:平衡电抗器的参数主要包括电感和电阻。
电感的选择需要考虑到平衡电抗器的阻抗特性和频率特性。
一般来说,电感的值应该较大,以便实现对谐波电流的有效抑制。
而电阻的选择要保证平衡电抗器可以正常工作,并且不会对电力系统产生不良的影响。
3.电抗器的连接方式:平衡电抗器可以采用串联和并联两种方式进行连接。
串联连接方式适用于对特定谐波频率的抑制,而并联连接方式适用于对多个谐波频率的抑制。
根据实际的谐波频率情况,可以选择适合的连接方式。
4.电抗器的可调性设计:为了适应不同的谐波问题,平衡电抗器通常需要具备一定的可调性。
这样可以根据实际情况对电抗器进行调整,以实现对谐波问题的最佳控制效果。
平衡电抗器的设计计算需要结合电力系统的实际情况进行,其中包括电力系统的负载情况、谐波电流和谐波电压的特性等。
通过对这些参数进行综合分析和计算,可以确定平衡电抗器的合适容量和参数,从而实现对电力系统谐波问题的控制和平衡。
总之,平衡电抗器的设计计算是一个综合性的任务,需要考虑多方面的因素,并结合实际情况进行分析和计算。
通过科学合理地进行设计计算,可以实现对电力系统谐波问题的有效解决,从而提高电力系统的稳定性和可靠性。
电抗器基本知识介绍应用一、干式电抗器的种类与用途电抗器是重要的的电力设备,在电力系统中起补偿杂散容性电流、限制合闸涌流、限制短路电流、滤波、平波、启动、防雷、阻波等作用。
根据电抗器的结构型式可分为空心电抗器、铁心电抗器与半心电抗器。
补偿杂散容性电流的电抗器主要有并联电抗器与消弧线圈。
并联电抗器的作用是限制电力传输系统的工频电压升高现象,工频电压升高的原因在于空载长线的电容效应、不对称对地短路故障与突然甩负荷。
消弧线圈通常应用在配电系统,它的作用是使得单相对地短路电流不能持续燃烧,导致电弧熄灭。
消弧线圈通常具有调谐功能,可根据电力系统的杂散电容与脱谐度改变其电感值。
串联电抗器或称阻尼电抗器的作用是限制合闸涌流。
串联电抗器与电力电容器串联使用,用于限制对电容器组合闸时的浪涌电流,通常选取电容器组容量的6%。
限流电抗器是串联于电力系统之中,多用于发电机出线端或配电系统的出线端,起限制短路电流的作用。
为了与其他电力设备配合,其实际阻抗不能小于额定值。
滤波电抗器与电容器配合使用,构成LC谐振支路。
针对特定次数的谐波达到谐振,滤除电力系统中的有害次谐波。
平波电抗器应用在直流系统中,起限制直流电流的脉动幅值作用。
在设计平波电抗器时须注意线圈中的电流是按电阻分布的,设计时最好采用微分方程组计算。
若按交流阻抗设计可能造成线圈出现过热现象,且阻抗值未必准确。
启动电抗器用于交流电动机启动时刻,限制电动机的启动电流,保护电动机正常运行。
防雷线圈通常用于变电站进出线上,减低侵入雷电波的陡度与幅值。
阻波器与防雷线圈的应用场合相仿,线圈内装有避雷器与调协装置。
用于阻碍电力线路中特定的通讯载波,便于将通讯载波提取出来,实现电力载波的重要设备。
户外空心干式电抗器是20世纪80年代出现的新一代电抗器产品,如图1.1所示。
它是利用环氧绕包技术将绕组完全密封,导线相互粘接大大的增加了绕组的机械强度。
同时利用新的耐候材料喷吐于包封的表面,使得产品能够满足在户外的苛刻条件下运行。
带平衡电抗器的双反星形可控整流电路[指南] 带平衡电抗器的双反星形可控整流电路在电解电镀等工业中,常用到低电压大电流(例如几十伏,几千至几万安)可调直流电源。
图2-28 为带平衡电抗器的双反星形可控整流电路。
其变压器二次侧为两组匝数相同极性相反的绕阻,分别接成两组三相半波电路。
变压器二次侧两绕组的极性相反可消除图2-28 带平衡电抗器的双反星形可控整流电路图2-29 双反星形电路,a=0?时两组整流电压、电流波形铁芯的直流磁化,设置电感量为Lp的平衡电抗器是为保证两组三相半波整流电路能同时导电。
与三相桥式电路相比,在采用相同晶闸管的条件下,双反星形电路的输出电流可大一倍。
平衡电抗器的作用:两个直流电源并联时,只有当电压平均值和瞬时值均相等时,才能使负载均流,,双反星形电路中,两组整流电压平均值相等,但瞬时值不等,,两个星形的中点n1和n2间的电压等于ud1和ud2之差。
该电压加在Lp上,产生电流ip,它通过两组星形自成回路,不流到负载中去,称为环流或平衡电流,,考虑到ip后,每组三相半波承担的电流分别为,。
为了使两组电流尽可能平均分配,一般使Lp值足够大,以便限制环流在负载额定电流的1%,2%以内。
图2-30 平衡电抗器作用下输出电压的波形和平衡电抗器上电压的波形双反星形电路中如不接平衡电抗器,即成为六相半波整流电路,只能有一个晶闸管导电,其余五管均阻断,每管最大导通角60o ,平均电流Id/6。
当α=0时,Ud 为1.35U2,比三相半波时的1.17U2略大些。
六相半波整流电路因晶闸管导电时间短,变压器利用率低,极少采用。
双反星形电路与六相半波电路的区别就在于有无平衡电抗器,对平衡电抗器作用的理解是掌握双反星形电路原理的关键。
由于平衡电抗器的作用使得两组三相半波整流电路同时导电的,平衡电抗器Lp 承担了n1、n2间的电位差,它补偿了ub`和ua的电动势差,使得两相的晶闸管能同时导电将图2-29中ud1和ud2的波形用傅氏级数展开,可得当a =0?时的ud1、ud2,即ud中的谐波分量比直流分量要小得多,且最低次谐波为六次谐波。
文章内容:刻搦嚏摘餮缛8.]995年3月第1期电子变压器技术交流平衡电抗器的原理与设计,市西城区职工大学电教处陈宁7-?//,摘要:表主提出在高可靠主流供电隶垃中使用主流平斯电抗器的方法,并详细诗逮正弦电源并机时对电托器一,平衡电抗器作用当一台电源的输出功率不能满足负载要求时,需要几台电源并联输出(即并机输出);或者为了高可靠性的要求,使几台电源并机输出,以提高系统的平均无故障时间().对于直流电源来说,并机工作比较简单,只需调整(手动调节或自动控制)几台电源输出电压一致,也可以加入均流控制.如果分别在每台电源的输出端串入二级管隔离,即便输出电压不一致也不会引起环流.但对于交流电源,除了输出电压和均流问题外.参与并机的几台电源还必须鞭率一致,相位一致,波形一致.否则.并机电源之间将产生环流,互为负载,使对方短路或部分短路.并机交流电源的频率完全一致是最重要的,也是最容易的.只需要由同一个振荡器控制即可.输出波形和输出电压基本一致也不难做到,并且在下面还可以看烈,输出电压的差异对并机的影响小于相位整的影响均流控制不是必须的.但最好有.本文论述的平衡电抗器属于一种外部均流控制.对并机影响最大的是各机的相位问题,尽管在电路技术上可以采用镁相同步等措撬.但由于中低顿正弦被电源(40以下)大多在输出端装备有滤波器(包括利用漏感的滤波器),而电容电感元件尤其是后者有较太的分散性和非线性.这种情况下.即便在输出电压,电流和功率因数三维空间中的某一点将各机的相位调得一致,也极难保证在其余各点都一致.为克服这个困难,选用平衡电抗器是最简便易行的措施=平衡电抗器工作原理分析下圈为两台电源并机使用平衡电抗器的连接原理囤.图中电抗器的两个绕组的和的异名端相连,.和:的独立电感量相等,即一:一设:为电流;.在绕组上产生的感生电动势;为电流在绕组:上产生的感生电动势;-2为电流:在绕组:上产生的感生电动势;为电流在绕组上产生的感生电动势.以1995年3月第1期电子变压器技术:--_(1)2:2(2在,,.,回路,根据回路电压定理,有:":一"2一将(2)式代入上式,得到:】"2一£】一(3)同理,在:,.,回路,可得到:2一一一】(4)由(3),(4),得到:】+"2=2(5)2一"=2(2一】)(6)根据电磁感应定律,有:一㈩2譬一五2(8)=(9)将(7),(8),(9)代入(5),(6),得到:】+"2=2(10):_1=2…)其中,【一+1显然,由(10),(11)两式不难解出,【和2.不过我们关心的并不是和:的具体表达式,而是当和在具有一定的幅值差异和相位差异时,如何适当选取平衡电抗器的参数值,使得参与并机的两台电源闻的不平衡保持在某一允许水平上.为此定义不平衡参数:8一其中,,,1分别为【,,的有效值.下面来推导平衡电抗器的主要参数:(113甲,6,)的具体表达式设】:/21,":一2【(+),则有2一【=,2(+8)(12)其中一4】+2:一2】20(13=19由(11)式可得:1!一一寺(--1)将(12)代入上式::—=.一(+)2考虑不平衡电流的有效值,,有:,)于是不平衡度参数8:一-](15)当参数确定后,平衡电抗器所需电感量为:一(16)当然,我们希望6尽量小些.胆在和:具有一定的差异使得按照(13)式算出的值不是很小的情况下,8的减小则要求平衡电抗器的电感量增大,而平衡电抗器酌体积和重量是近似与.成正比的.因而一般要求≤0.1就可以了在确定平衡电抗器参数时,负载电流应按最大允许值计算,即应取一21,其中1.为单机额定输出电流有效值,于是(16)式变为:一—45(17)另外,由(5)式可以看到,接入平衡电抗器的并机系统,负载所得到的电压=1/2(+),因而在与:的差异不太大的情况下,正常工作是不成问题的.计算表明,甚至在一180,:=260,一30.的恶劣条件下,使用平衡电抗器后在负载上仍可得到212.8的工作电压.若不接平衡电抗器,则在两机之间将产生环流.::_】一(+),£^其中己为两机的串联内阻抗.由于.很小,所以几伏的幅值差和几度的相位差就能产生较太的环流.需要提及注意的是,在由参数的定义式和14)式推出(15)式时,用代替1,而这两者是有差剐的,前者是并机两电源不平衡电流:一的有效值,后者是两电源电流有效值?20?995年3月第1期电子变压器技术一…—之差.但是用向量法或代数法很容易证明≥一,因而在较苛刻的条件下得到的结果会有更好的均流效果三,并机不平衡电流的幅值因素和相位因素由(14)式可知,不平衡电流与不平衡电压成正比,而(13)式通过近似处理可化为:一√():+(2詈)(18)其中:—一,=(+2)/2.(18)式中第一项为两电源幅值差的贡献,第二项为相位差的贡献(18)式的精确程度是可信赖的,在30%的幅值差和5.的相位差以内一精确度优于0.5表一不平衡电压与,中的关系.25210200:225230240度501551.50()002022040440(垂)9.28.357.4923835749238.35742_639.658327.743.360844.455.470.0表一中数据为按(18)式计算的结果.从中可见,幅值差贡献()一与幅值差成正比,相位差贡献(中)=2(中/2)近似与相位差成正比,并且0.的相位差和40的幅值差贡献相等.根据笔者在设计研制正弦被逆变电源过程中的经验,()达到20内并不十分困难,但在输出电压,电流,功率固数三维空问中的任一点都将相位差中限制得很小却十分不易稍有疏忽,就达到0.这正是本文开始时提到的相位差是影响并机的主要问题.四,平衡电抗器绕组参数设计根据众所周知的普适公式:一?:垦*-"()19)其中:为铁芯的相对磁导率,为绕组匝数为铁芯截面,单位为.;为平均磁路长度,单位为设平衡电抗器铁芯窗口面积为(:);铜导线截面积为(),铜线占空系数为.电流密度为(/).于是有:ⅱ一(】一:).一2.≈2010/(20)上斌代入(19)式,得到:。
平波电抗器的计算方法发布时间:2010.08.12 新闻来源:电抗器|制动电阻-德州华宝机械电器有限公司浏览次数: 59平波电抗器的计算方法为了使电抗器直流负载得到平滑的直流电流,通常在整流输出回路串入带有气隙的铁心电抗器Ld,称为平波电抗器。
本节主要计算在保证电流连续和输出电流脉动系数达到一定要求时所需要的平波电抗器的电感值。
一、维持输出电流连续时电抗器的计算当控制角较大,负载电流很小或者平波电抗器Ld不够大时,负载电流id会出现断续。
电流断续使晶闸管导通角减小,机械特性明显变软,电机工作甚至不稳定,这是应该尽量避免的。
要使电流在整个工作区域保持连续,必须使临界电流Idk小于或等于最小负载电流Idmin(对应直流电机最小机械负载)。
对三相半波电路临界电流为Idk =0.462U2Φsinα/ωL1≤Idmin把满足电流连续的最小电感量称为临界电感,则临界电感L1=0.462U2Φsinα/ωIdmin=1.46 U2Φsinα/ Idmin(mH)因为α=90◦时,临界电流最大,要求的临界电感量最大,所以取α=90◦其它型式电路可以同样推算,因此临界电感的计算公式为L1= K1U2Φ/ Idmin(mH)K1—考虑不同电路时临界电感的计算系数见表表平波电抗器计算系数电路名称临界电感计算系数K1最大脉动时α值最大脉动时UdM/U2Φ(U2)输出最低频率fd整流变压器漏感计算系数KB单相全控桥 2.87 90 1.2 100 3.18 三相半波 1.46 90 0.88 150 6.75 三相全控桥0.693 90 0.46 300 3.9。