影响屈服强度的因素 ppt课件
- 格式:ppt
- 大小:184.50 KB
- 文档页数:11
1.影响屈服强度的因素:金属本质及晶格类型;晶格大小和亚结构;溶质元素;第二相2.影响屈服强度的外部因素:温度;应变速率;应变状态3.影响断裂韧性的因素:外部因素:板厚或构件截面尺寸;温度;应变速率。
内部因素:化学成分;基本相结构和晶粒大小;显微组织;亚温淬火。
4.影响韧脆转变温度的因素:成分;晶粒尺寸;显微组织。
5.断裂韧性与冲击韧性的关系:相同点:a.以能量表示,两者有能量人韧性的共性b.大多数情况下,两者变化一致,影响因素一致c.在平行区域可建立两者的对应关系。
不同点:a.式样条件和速率不同,KIC为静载荷,AKV为冲击载荷。
B.做实验AK时要缺口,AK是夏比V或U形缺口,而是KIC裂纹,因此曲率半径不同,断裂韧性的曲率半径小c.应力状态不同KIC在平面应变下的断裂韧性,属于脆性断裂,而冲击韧性没有应力要求平面应力变状态属于脆性断裂。
d.消耗能量不同,断裂韧性裂纹已经存在,反映裂纹试问扩展的过程所消耗的能量,而冲击韧性反映裂纹形成和扩展整个过程所消耗的能量6.屈服强度:工程上通常以产生0.2%的残留变形时的应力记为屈服强度。
7.韧性断裂和脆性断裂的异同:相同点:都是工程材料的失效形式。
不同点:A.韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂有一个缓慢的撕裂过程,在裂纹扩展中不断消耗能量,宏观断口纤维状,在暗色由纤维区放射区剪切唇构成,断口比较粗糙,微观上断口有典型的韧容。
断面一般平行于最大切应力,并与主应力是45°。
B.脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
纤维区很小剪切唇几乎没有,断口中有人字纹华业囊。
微观上,其断口为准解理,解理断口的花样特征。
C.一般规定光滑拉伸式样的断面收缩率小鱼5%为脆性断裂,繁殖,大于5%为韧性断裂。
8.断裂韧性与强度塑性的关系:A.韧性是强度和塑性的综合性能指标,根据材料的断裂类型选用相应的关系式,即可有常规强度和塑性大致推得的材料的断裂韧性。
影响屈服强度的因素1.影响屈服强度的因素:金属本质及晶格类型;晶格大小和亚结构;溶质元素;第二相2.影响屈服强度的外部因素:温度;应变速率;应变状态3.影响断裂韧性的因素:外部因素:板厚或构件截面尺寸;温度;应变速率。
内部因素:化学成分;基本相结构和晶粒大小;显微组织;亚温淬火。
4.影响韧脆转变温度的因素:成分;晶粒尺寸;显微组织。
5.断裂韧性与冲击韧性的关系:相同点:a.以能量表示,两者有能量人韧性的共性b.大多数情况下,两者变化一致,影响因素一致c.在平行区域可建立两者的对应关系。
不同点:a.式样条件和速率不同,KIC为静载荷,AKV为冲击载荷。
B.做实验AK时要缺口,AK是夏比V或U形缺口,而是KIC裂纹,因此曲率半径不同,断裂韧性的曲率半径小c.应力状态不同KIC在平面应变下的断裂韧性,属于脆性断裂,而冲击韧性没有应力要求平面应力变状态属于脆性断裂。
d.消耗能量不同,断裂韧性裂纹已经存在,反映裂纹试问扩展的过程所消耗的能量,而冲击韧性反映裂纹形成和扩展整个过程所消耗的能量6.屈服强度:工程上通常以产生0.2%的残留变形时的应力记为屈服强度。
7.韧性断裂和脆性断裂的异同:相同点:都是工程材料的失效形式。
不同点:A.韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂有一个缓慢的撕裂过程,在裂纹扩展中不断消耗能量,宏观断口纤维状,在暗色由纤维区放射区剪切唇构成,断口比较粗糙,微观上断口有典型的韧容。
断面一般平行于最大切应力,并与主应力是45°。
B.脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
纤维区很小剪切唇几乎没有,断口中有人字纹华业囊。
微观上,其断口为准解理,解理断口的花样特征。
C.一般规定光滑拉伸式样的断面收缩率小鱼5%为脆性断裂,繁殖,大于5%为韧性断裂。
8.断裂韧性与强度塑性的关系:A.韧性是强度和塑性的综合性能指标,根据材料的断裂类型选用相应的关系式,即可有常规强度和塑性大致推得的材料的断裂韧性。
屈服强度及其影响因素屈服强度是材料在受到外力作用下发生塑性变形的临界点,即材料开始失去弹性,并开始发生塑性变形的应力值。
屈服强度是材料力学性能的重要指标之一,对材料的使用和设计起着重要的作用。
本文将对屈服强度及其影响因素进行探讨。
一、屈服强度的定义和意义屈服强度指的是在材料发生塑性变形之前,所能承受的最大应力。
在工程领域中,屈服强度常用于衡量材料的抗压、抗拉等能力。
屈服强度是材料设计、选择以及预测其破坏行为的重要参数。
屈服强度的研究对于优化材料的性能、提高产品的寿命有着重要意义。
了解屈服强度的影响因素和调控方法,可以为材料的设计、加工、应用提供指导,更好地满足工程实际需求。
二、影响屈服强度的因素1.晶粒尺寸:晶粒尺寸是屈服强度的一个重要因素。
在晶粒尺寸相同的情况下,晶粒越小,晶界数量越多,晶界强化效应越显著,屈服强度也会提高。
2.织构和取向:材料的织构和取向会影响屈服强度。
一般来说,晶粒取向均匀的材料具有较高的屈服强度,而取向不均匀的织构会降低屈服强度。
3.合金元素:添加合金元素可以显著影响屈服强度。
合金元素对晶界的强化效应可以提高材料的屈服强度。
此外,合金元素还可以改变材料的晶体结构和相变行为,从而影响屈服强度。
4.冷变形:冷变形是一种常用的提高材料强度的方法。
通过冷变形可以引入晶体缺陷,增加位错密度,从而提高屈服强度。
5.环境因素:环境因素也会对屈服强度产生影响。
例如高温环境下,材料容易发生软化现象,屈服强度会下降;而在低温环境下,材料的塑性会降低,屈服强度会增加。
三、调控屈服强度的方法1.改变晶粒尺寸:通过调控材料的加工过程,可以控制晶粒的尺寸。
例如通过细化晶粒可以提高材料的屈服强度。
2.合金化:通过添加合金元素,可以改变材料的组织结构,提高晶体的强化效应,从而提高屈服强度。
3.热处理:通过热处理可以改变材料的结构和性能,进而调控屈服强度。
例如通过时效处理可以提高材料的屈服强度。
4.控制环境条件:通过控制材料的使用环境可以调控屈服强度。
金属屈服强度的因素
金属的屈服强度受到多种因素的影响,包括以下几个方面:
1. 金属的晶粒结构:金属的晶粒结构对其屈服强度有很大影响。
晶粒尺寸越小,金属材料的屈服强度通常越高。
此外,金属的晶粒定向、晶界的存在以及晶粒的结构缺陷也会影响屈服强度。
2. 合金元素:添加合金元素可以显著改善金属的屈服强度。
合金元素的添加可以改变金属的晶粒结构、形成固溶体或生成强化相,从而提高金属的强度和硬度。
3. 温度:温度对金属的屈服强度也有很大影响。
一般来说,金属在高温下往往具有较低的屈服强度。
这是因为高温会导致晶体结构变松散和晶粒长大,从而导致金属的屈服强度降低。
4. 加工工艺:金属的加工工艺也会影响其屈服强度。
通过热变形、冷变形等不同的加工方式,可以改变金属的晶粒结构和纯度,进而影响其屈服强度。
5. 杂质和缺陷:金属中存在的杂质和缺陷也会对其屈服强度产生影响。
一些杂质元素会影响金属的强度和塑性,而缺陷,如孔洞、裂纹等,会降低金属的屈服强度。
总之,金属的屈服强度是一个复杂的参数,受到多种因素的综合影响。
不同的金
属材料、合金元素、工艺等都会对其屈服强度产生显著影响。
影响屈服强度的因素
1.材料的性质:材料的组成和结构决定了其屈服强度。
比如,金属晶
体的晶体结构和晶体缺陷,如晶界、位错和固溶体等对屈服强度有重要影响。
另外,晶体内的晶粒尺寸、晶界角、晶体生长方向等也会影响屈服强度。
2.温度:温度是影响材料屈服强度的重要因素。
一般情况下,随着温
度的升高,材料的屈服强度会下降。
这是因为高温下原子或分子热运动增强,材料内部形成的位错容易滑动,从而导致屈服强度的下降。
3.应力速率:应力速率也会影响材料的屈服强度。
应力速率是指材料
在受力的过程中应力的增长速率。
通常情况下,应力速率越大,材料的屈
服强度越高。
这是因为应力速率的增大会限制材料内部位错的活动,从而
增加了屈服强度。
4.微观结构:材料的微观结构如晶粒尺寸、晶界、相含量等也是影响
屈服强度的重要因素。
细晶粒材料通常具有较高的屈服强度,这是因为细
小的晶粒会限制位错的移动。
同时,晶界也会阻碍位错的运动,因此晶界
的密度和角度也会影响材料的屈服强度。
材料中的相含量也会影响材料的
屈服强度,比如固溶体的形成会提高材料的强度。
总之,材料的屈服强度受多个因素共同影响,包括材料的性质、温度、应力速率和微观结构等。
了解这些因素对屈服强度的影响可以帮助人们更
好地设计和选择材料,以满足不同应用需求。
材料屈服强度及其影响因素1. 屈服强度:(yield strength :材料屈服的临界应力值)材料拉伸的应力-应变曲线(1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。
通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。
因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。
当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)2. 屈服标准工程上常用的屈服标准有三种:(1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。
(2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
国际上通常以σel表示。
应力超过σel时即认为材料开始屈服。
(3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。
3. 影响屈服强度的因素【1】影响屈服强度的内在因素有:结合键、组织、结构、原子本性。
如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。
从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。
屈服强度不合格原因屈服强度是材料力学性能的一个重要指标,一般指在受压、受拉或受弯等载荷作用下,材料所能承受的最大应力。
如果材料的屈服强度不合格,即无法满足设计要求或使用需求,会导致材料在使用过程中出现失效、崩溃等情况。
以下是屈服强度不合格的原因:1.材料本身缺陷:材料的制造、处理过程中可能出现内在缺陷,如夹杂物、气孔、裂纹等。
这些缺陷会导致材料的断裂强度降低,从而使屈服强度下降。
2.脆性材料应力集中:脆性材料如陶瓷、玻璃等在受力时容易产生应力集中现象,即应力在局部区域集中,导致该区域应力超过了屈服强度,引起材料的破裂。
3.热处理不当:热处理是一种改变材料晶粒结构和性能的方法。
若热处理温度、时间不当或工艺参数控制不准确,可能导致材料中的非均质组织、析出物或偏析等现象,降低材料的屈服强度。
4.粘结界面强度不足:材料在多组分、多层结构中,粘结界面的强度对整体结构的性能起着重要作用。
若粘结界面的强度不足,可能导致载荷传递不均匀,产生应力集中现象,从而使材料的屈服强度下降。
5.金属晶界强化不足:金属材料中的晶界强化是一种提高材料强度的重要手段。
如果材料中晶界的结构、取向或杂质控制不当,可能导致晶界强化效果不佳,使材料的屈服强度降低。
6.加工工艺不当:材料的加工工艺对于材料强度的影响非常重要。
如果加工工艺选择不当、参数控制不准确,如过热、过冷、过速等,可能导致材料中的组织变化、应力集中、能量积聚等问题,从而使材料的屈服强度不合格。
7.材料老化:材料在长期使用过程中,受到环境中的温度、湿度、辐射等因素影响,会发生老化现象。
老化会导致材料内部结构的变化,使其屈服强度下降。
总之,屈服强度不合格的原因不仅仅是材料本身的问题,还涉及到制造、处理、加工等多个环节。
为了保证材料的屈服强度符合要求,需要从材料的选取、处理工艺、加工参数等方面进行合理设计和严格控制。
屈服强度概述强度是指材料在受力下能够承受的最大应力。
在工程设计和材料选取中,强度是一个重要的参数,它直接影响着结构和材料的性能和可靠性。
而屈服强度是材料的一种特殊强度参数,它描述了材料在受力下开始产生塑性变形或发生断裂的临界点。
本文将对屈服强度及其影响因素进行概述。
1. 屈服强度定义屈服强度是指材料在持续加载或作用力逐渐增加的情况下,开始产生塑性变形或发生断裂的应力值。
通常使用拉伸试验来测定材料的屈服强度,即在拉伸试验机上施加力,逐渐增加应力直到发现材料开始发生塑性变形或断裂。
此时的应力值就是屈服强度。
2. 影响屈服强度的因素2.1 材料的化学成分不同材料的化学成分会影响其屈服强度。
例如,含碳量高的钢材具有较高的屈服强度,而含氧化物较多的铝合金则具有较低的屈服强度。
2.2 晶粒大小晶粒大小也会对材料的屈服强度产生影响。
晶粒尺寸越小,晶界的数量越多,能阻碍位错的移动,因此材料的屈服强度会增加。
2.3 加工硬化加工硬化是指通过冷变形等加工工艺来增加材料的屈服强度。
冷变形可以引入更多的位错和晶界,从而阻碍材料的位错移动和滑移,提高屈服强度。
2.4 温度温度对材料的屈服强度也有一定影响。
温度升高会降低材料的屈服强度,因为高温下原子和位错运动更加活跃,减少了材料的阻力。
3. 应用和意义屈服强度对于材料的应用和选择具有重要意义。
在工程设计中,了解材料的屈服强度可以帮助工程师选择合适的材料来满足设计要求。
例如,在桥梁工程中,需要选择具有足够屈服强度的材料来承受桥梁上的荷载。
此外,屈服强度也与材料的可靠性和安全性密切相关。
在材料的设计和使用过程中,必须确保材料的屈服强度具备足够的安全储备,以应对未知的外界荷载和环境变化。
因此,精确的屈服强度测试和控制可以提高结构和材料的可靠性。
4. 总结屈服强度是描述材料在受力下开始产生塑性变形或发生断裂的临界点的重要参数。
它受到材料的化学成分、晶粒大小、加工硬化和温度等因素的影响。
屈服强度不合格原因屈服强度是指材料在受到外部力作用下开始发生塑性变形的阈值。
当材料的屈服强度不合格时,意味着材料在受力时无法达到预期的强度要求,可能导致材料在使用过程中发生劣化、损坏甚至事故等问题。
屈服强度不合格的原因有很多,主要可以归结为以下几个方面:1.材料成分不合理:材料的成分直接决定了其力学性能。
如果材料成分中掺入了过多的杂质或掺杂元素,会导致晶粒的生长不均匀、分布不均匀,从而影响材料的力学性能,包括屈服强度。
此外,材料合金化的过程中,如果合金配比不合理或加工工艺不当,也会导致材料的屈服强度不合格。
2.材料的制造工艺不当:材料的制造工艺包括熔炼、铸造、锻造、挤压、淬火等环节,每个环节的工艺参数都会对材料的屈服强度产生直接或间接的影响。
如果在制造过程中温度控制不当、冷却速率不合适、变形温度超过材料的承受能力等,都会导致材料的屈服强度下降。
3.热处理不当:热处理是提高材料性能的一种重要工艺,常见的热处理工艺包括退火、正火、淬火等。
热处理的目的是通过改变材料的晶体结构和组织状态,提高材料的机械性能。
如果热处理的温度、时间不合适,或者热处理工艺参数控制不当,都会导致材料的屈服强度下降。
4.材料的缺陷和损伤:材料在制造、加工、使用过程中可能会产生各种各样的缺陷和损伤,如内部气孔、夹杂物、裂纹等。
这些缺陷和损伤会对材料的力学性能产生负面影响,降低其屈服强度。
此外,材料在使用过程中经受的外部力和环境因素,如高温、腐蚀等也会导致材料的损伤,进而降低其屈服强度。
5.材料的微观结构不合理:材料的微观结构决定了其宏观性能,包括屈服强度。
如果材料的晶粒尺寸不均匀、晶界存在缺陷或松散等问题,都会导致材料的屈服强度下降。
此外,如果材料的孪晶含量过高,也会影响材料的屈服强度。
综上所述,材料的屈服强度不合格可能是由材料成分不合理、制造工艺不当、热处理不当、缺陷和损伤、微观结构问题等多种因素共同造成的。
为了确保材料的屈服强度能够满足使用要求,对材料进行合理成分设计、改进制造工艺、优化热处理工艺、提高材料的缺陷检测和修复能力,以及调整微观结构等方面的研究和工作都是必要的。
影响屈服强度的因素1.材料的性质:材料的强度与其物理、化学性质密切相关。
例如,金属材料的屈服强度受其晶体结构、晶粒大小、非金属夹杂物含量等因素的影响。
不同的材料具有不同的强度特点,例如钢材具有较高的屈服强度,而铝材具有较低的屈服强度。
2.温度:温度对材料的屈服强度有显著影响。
通常情况下,材料的屈服强度随着温度的升高而降低。
这是由于高温会导致材料中原子的热运动增加,原子结构的稳定性降低,从而降低了材料的强度。
3.应变速率:材料的屈服强度还与外加应变速率有关。
在快速加载的情况下,材料的屈服强度通常会提高。
这是由于快速加载导致材料变形速率快,使得材料中的位错运动和塑性形变受到限制,从而提高了材料的抗变形能力。
4.加载方向:材料在不同加载方向上的屈服强度可能会有所差异。
这是由于材料的结晶方向、晶界特征以及材料内部的应力传递机制等因素的影响。
5.加工工艺:加工工艺可以显著影响材料的强度。
例如,冷变形处理可以通过形成位错和晶界的运动来增强材料的屈服强度。
热处理也可以通过调整材料的微观结构以及晶粒尺寸来改善材料的强度。
6.加载速率:加载速率对材料的屈服强度有影响。
在快速加载下,材料的屈服强度通常会提高。
这是由于快速加载导致材料变形速率快,使得材料中的位错运动和塑性形变受到限制,从而提高了材料的抗变形能力。
7.材料缺陷:材料中的缺陷如裂纹、夹杂物等对屈服强度有重要影响。
这些缺陷会导致材料的应力集中,从而降低材料的强度。
总结起来,影响材料的屈服强度的主要因素包括材料的性质、温度、应变速率、加载方向、加工工艺、加载速率以及材料中的缺陷等。
在进行材料设计和工程应用时,需要综合考虑上述因素,并通过合适的处理和控制手段来优化材料的屈服强度。
热轧型钢屈服强度的影响因素分析
(1)由于某种因素的影响而使钢材强度提高,塑性、韧性下降,增加脆性的现象称之为硬化现象。
一般为重复荷载作用下弹性极限提高(进入塑性阶段后发生)。
(2)冷加工时(常温进行弯折、冲孔剪切等),钢材发生塑性变形从而使钢材变硬的现象称之为冷作硬化。
(3)钢材中的C、N,随着时间的增长和温度的变化,而形成碳化物和氮化物,使钢材变脆的“老化”现象称之为时效硬化。
2、温度的影响
(1)正温影响
总体影响规律为温度上升,钢材的强度降低,塑性、韧性提高,温度达450-600℃左右时,钢材的强度几乎降至为零,而塑性、韧性极大,易于进行热加工,此温度称之为热煅温度。
需要说明:钢材在250℃左右时,强度提高,塑性、韧性下降,钢材表面呈蓝色,这一现象称之为蓝脆现象。
钢材在200℃以上时应采取隔热措施。
(2)负温影响
随着温度的降低钢材的强度提高,塑性、韧性降低,脆性增大,称之为低温冷脆,当温度降至某一特定温度时钢材的脆性急剧增大,称此温度点为转脆温度。
3、生产工艺的影响
(1)冶炼过程主要控制化学成分。
(2)浇铸的影响主要为脱氧方法:沸腾钢用Mn为脱氧剂,时间快,价格低,质量差;镇
静钢用Si为脱氧剂,时间慢,价格高,质量好。
(3)反复的轧制可使得钢材规格变小,改善钢材的塑性,同时可以使钢材中的气孔、裂纹、疏松等缺陷焊合,使金属晶体组织密实,晶粒细化,消除纤维组织缺陷,使钢材的力学性能提高。
同一牌号的钢材,厚度或直径越小,强度越高。