插值例题
- 格式:doc
- 大小:27.50 KB
- 文档页数:1
题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。
二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
根据均差的定义,把x 看成[a,b]上的一点,可得f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x )……f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n )综合以上式子,把后一式代入前一式,可得到:f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+…+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+)(x n R 其中N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2))(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ])(x 1n +ω(3) )(x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。
插值法例题计算过程(实用版)目录一、插值法简介二、插值法例题计算过程1.公式变形2.计算过程3.结论正文一、插值法简介插值法是一种求解未知数值的方法,通常用于预测和推断。
在财务管理中,插值法常用于计算实际利率、股票价格和债券价格等。
插值法的核心思想是根据已知的数据点,通过数学模型估算出未知数据点的值。
二、插值法例题计算过程假设有一个财务问题,需要计算一个项目的净现值(NPV)。
已知该项目在不同折现率下的净现值如下:- 当折现率为 12% 时,净现值为 116530- 当折现率为 i 时,净现值为 120000- 当折现率为 10% 时,净现值为 121765为了计算项目的实际利率,我们可以使用插值法。
首先,我们需要将公式进行变形,以便于理解和计算。
变形后的公式如下:(i-12%) / (10%-12%) = (120000-116530) / (121765-116530)接下来,我们可以按照以下步骤进行计算:1.将已知的数值代入公式中,得到:(i-12%) / (10%-12%) = 3470 / 52352.对公式进行化简,得到:(i-12%) / (10%-12%) = 0.66023.解方程,得到:i = 12% + 0.6602 * (10%-12%)i = 12% + 0.6602 * (-2%)i = 12% - 1.3204%i = 10.68%因此,该项目的实际利率为 10.68%。
通过以上计算过程,我们可以看到插值法在计算实际利率方面的应用。
在实际应用中,插值法还可以用于计算其他财务指标,如股票价格、债券价格等。
财务管理插值法例题插值法在财务管理中有着广泛的应用,它可以帮助我们估计在某个特定区间内的未知数值。
插值法基于一个简单的理念:如果已知一个函数在几个点上的值,那么我们可以通过这些点之间的插值来估算该函数在其他点的值。
一、常见的插值方法1.线性插值:它是插值方法中最简单的一种,假设两个已知点之间的函数为直线,根据这个直线方程来估算未知点的值。
2.多项式插值:它假设函数在已知点之间存在一个多项式,通过这个多项式来估算未知点的值。
二、插值法在财务管理中的应用插值法在财务管理中有着广泛的应用,例如:1.估算违约风险:在债券或贷款的违约风险分析中,我们可以通过插值法来估算违约发生概率。
2.预测利率:在债券定价或货币时间价值计算中,我们可以通过插值法来预测未来的利率。
3.估算收益率:在投资项目的评估中,我们可以通过插值法来估算未来的收益率。
三、30道财务管理插值法例题与答案例题1:某公司发行了一笔面值为1000元的债券,票面利率为5%,债券期限为10年。
假设市场利率为4%,请问该债券的发行价格应该是多少?答案:首先,我们可以使用插值法来计算债券的发行价格。
假设债券的发行价格为P,根据债券定价公式:PV=C/(1+r)^t,其中C为每年的利息支付,r为市场利率,t为债券期限。
已知C=50(因为票面利率为5%),r=4%(即0.04),t=10年,代入公式可得:PV=50/(1+0.04)^10≈737.94元。
因此,该债券的发行价格应该是737.94元。
例题2:某公司预计未来三年的现金流分别为100万元、150万元和200万元,假设年利率为10%,请问未来三年的现金流现值分别是多少?答案:使用插值法计算现金流的现值。
已知现金流和利率,我们可以使用公式PV=C/(1+r)^t来计算每个现金流的现值。
对于第一年的现金流,我们有C=100万元,r=10%(即0.1),t=1年,代入公式可得:PV=100/(1+0.1)^1≈90.91万元;对于第二年的现金流,我们有C=150万元,r=10%,t=2年,代入公式可得:PV=150/(1+0.1)^2≈138.63万元;对于第三年的现金流,我们有C=200万元,r=10%,t=3年,代入公式可得:PV=200/(1+0.1)^3≈223.6万元。
插值法例题计算过程
【实用版】
目录
1.插值法的概念和应用
2.插值法例题的解题步骤
3.插值法在财务管理中的应用
4.结论
正文
一、插值法的概念和应用
插值法是一种数学方法,通过已知的数据点来预测或计算未知数据点的值。
在财务管理中,插值法常用于计算资金时间价值、债券收益率和股票期权价格等。
插值法的主要优点是能够提高计算精度,弥补单纯使用线性插值法的不足。
二、插值法例题的解题步骤
以下是一个关于插值法计算的例题:
已知某项目的投资额为 100,000 元,预期收益分别为:当利率为 10% 时,收益为 12,176.5 元;当利率为 12% 时,收益为 116,530 元。
假设利率为 i 时,收益为 120,000 元,求 i 的值。
解:我们可以使用插值法来解决这个问题。
首先,根据题意列出方程:(i-12%)/(10%-12%) = (120,000-116,530)/(121,765-116,530)化简得:
(i-12%)/(-2%) = 3,465/4,930
解这个方程,得到 i 的值为 11.76%。
三、插值法在财务管理中的应用
在财务管理中,插值法常用于计算资金的时间价值、债券的收益率和股票期权的价格等。
例如,在计算债券的收益率时,我们可以通过已知的债券价格和到期收益来预测债券的收益率。
四、结论
总之,插值法是一种重要的数学方法,它在财务管理中有广泛的应用。
内含收益率插值法例题
收益率插值法是一种用于估计缺失数据的方法,特别适用于金融领域中的收益率数据。
下面我将通过一个例题来说明收益率插值法的应用。
假设我们有一份包含一年期国债的收益率数据,但其中有一个月的数据缺失。
我们希望使用收益率插值法来估计这个缺失的月份的收益率。
首先,我们可以考虑使用线性插值法。
线性插值法假设收益率在缺失月份的变化趋势与相邻月份的变化趋势相似。
具体而言,我们可以假设收益率在缺失月份的变化量等于相邻两个月份的变化量的平均值。
假设我们已知缺失月份前一个月的收益率为2%(0.02),后一个月的收益率为3%(0.03)。
那么我们可以计算出缺失月份的收益率估计值如下:
缺失月份的收益率 = 前一个月收益率 + (后一个月收益率前一个月收益率)/ 2。
= 0.02 + (0.03 0.02) / 2。
= 0.025。
因此,我们估计出缺失月份的收益率为2.5%(0.025)。
除了线性插值法,还有其他插值方法可以用于估计收益率数据,例如二次插值法或三次样条插值法。
这些方法在某些情况下可能更
精确地估计缺失数据,但也更复杂。
需要注意的是,收益率插值法只是一种估计缺失数据的方法,
估计结果并不一定准确。
在实际应用中,我们需要根据具体情况和
数据的可靠性来选择合适的插值方法,并在使用插值结果时谨慎对待。
以上是关于收益率插值法的一个例题解答。
希望能对你有所帮助。
如果你还有其他问题,欢迎继续提问。
例1 机床加工
待加工零件的外形根据工艺要求由一组数据(x, y)给出(在平面情况下),用程控
铣床加工时每一刀只能沿x 方向和y 方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的(x, y)坐标。
表1 中给出的x, y数据位于机翼断面的下轮廓线上,假设需要得到x坐标每改变
0.1 时的y坐标。
试完成加工所需数据,画出曲线,并求出x = 0处的曲线斜率和
13 ≤x ≤15范围内y的最小值。
表 1
x 0 3 5 7 9 11 12 13 14 15
y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6
要求用Lagrange、分段线性和三次样条三种插值方法计算。
解编写以下程序:
clc,clear
x0=[0 3 5 7 9 11 12 13 14 15];
x=0:0.1:15;
y1=lagrange(x0,y0,x); %调用前面编写的Lagrange插值函数
y2=interp1(x0,y0,x);
y3=interp1(x0,y0,x,'spline');
pp1=csape(x0,y0); y4=ppval(pp1,x);
pp2=csape(x0,y0,'second'); y5=ppval(pp2,x);
fprintf('比较一下不同插值方法和边界条件的结果:\n')
fprintf('x y1 y2 y3 y4 y5\n')
xianshi=[x',y1',y2',y3',y4',y5'];
fprintf('%f\t%f\t%f\t%f\t%f\t%f\n',xianshi')
subplot(2,2,1), plot(x0,y0,'+',x,y1), title('Lagrange')
subplot(2,2,2), plot(x0,y0,'+',x,y2), title('Piecewise linear') subplot(2,2,3), plot(x0,y0,'+',x,y3), title('Spline1')
subplot(2,2,4), plot(x0,y0,'+',x,y4), title('Spline2')
dyx0=ppval(fnder(pp1),x0(1)) %求x=0处的导数
ytemp=y3(131:151);
index=find(ytemp==min(ytemp));
xymin=[x(130+index),ytemp(index)]
计算结果略。
可以看出,拉格朗日插值的结果根本不能应用,分段线性插值的光滑性较差(特别
是在x = 14附近弯曲处),建议选用三次样条插值的结果。