3000L 立式搅拌反应釜设计
- 格式:pdf
- 大小:1.02 MB
- 文档页数:43
课程设计说明书专业:班级:姓名:学号:指导教师:设计时间:要求与说明一、学生采用本报告完成课程设计总结。
二、要求文字(一律用计算机)填写,工整、清晰。
所附设备安装用计算机绘图画出。
三、本报告填写完成后,交指导老师批阅,并由学院统一存档。
目录一、设计任务书 (5)二、设计方案简介 (6)1.1罐体几何尺寸计算 (7)1.1.1确定筒体内径 (7)1.1.2确定封头尺寸 (8)1.1.3确定筒体高度 (9)1.2夹套几何计算 (10)1.2.1夹套内径 (10)1.2.2夹套高度计算 (10)1.2.3传热面积的计算 (10)1.3夹套反应釜的强度计算 (11)1.3.1强度计算的原则及依据 (11)1.3.2按内压对筒体和封头进行强度计算 (12)1.3.2.1压力计算 (12)1.3.2.2罐体及夹套厚度计算 (12)1.3.3按外压对筒体和封头进行稳定性校核 (14)1.3.4水压试验校核 (16)(二)、搅拌传动系统 (16)2.1进行传动系统方案设计 (17)2.2作带传动设计计算 (17)2.2.1计算设计功率Pc (17)2.2.2选择V形带型号 (17)2.2.3选取小带轮及大带轮 (17)2.2.4验算带速V (18)2.2.5确定中心距 (18) (18)2.2.6 验算小带轮包角12.2.7确定带的根数Z (18)2.2.8确定初拉力Q (19)2.3搅拌器设计 (19)2.4搅拌轴的设计及强度校核 (19)2.5选择轴承 (20)2.6选择联轴器 (20)2.7选择轴封型式 (21)(三)、设计机架结构 (21)(四)、凸缘法兰及安装底盖 (22)4.1凸缘法兰 (22)4.2安装底盖 (23)(五)、支座形式 (23)5.1 支座的选型 (23)5.2支座载荷的校核计算 (25)(六)、容器附件 (26)6.1手孔和人孔 (26)6.2设备接口 (27)6.2.1接管与管法兰 (27)6.3视镜 (28)四、设计结果汇总 (31)五、参考资料 (33)六、后记 (35)七、设计说明书评定 (36)八、答辩过程评定 (36)一、设计任务书设计题目:夹套反应釜的设计设计条件:设计参数及要求设计参数及要求简图容器内夹套内工作压力/MPa 0.18 0.25设计压力/MPa 0.2 0.3工作温度/℃100 130设计温度/℃<120 <150介质染料及有机溶剂水蒸气全容积/m3 2.5操作容积/ m3 2.0传热面积/ m2>3腐蚀情况微弱推荐材料Q345R或Q245R搅拌器型式浆式200搅拌轴转速/(r/min)轴功率/kW 4工艺接管表符号公称尺寸连接面形式A 25 PL/RF 蒸汽入口B 65 PL/RF 进料口C1,2100 - 视镜D 25 PL/RF 温度计管口E 25 PL/RF 压缩空气入口F 40 PL/RF 放料口G 25 PL/RF 冷凝水出口设备安装场合室内二、设计方案简介三、工艺计算及主要设备计算(一)、罐体和夹套的结构设计夹套式反应釜是由罐体和夹套两大部分组成的。
立式搅拌反应釜工艺设计1. 推荐的设计程序1.1 工艺设计1、做出流程简图;2、计算反应器体积;3、确定反应器直径和高度;4、选择搅拌器型式和规格;5、按生产任务计算换热量;6、选定载热体并计算K 值;7、计算传热面积;8、计算传热装置的工艺尺寸; 9、计算搅拌轴功率;1.2 绘制反应釜工艺尺寸图 1.3 编写设计说明书2. 釜式反应器的工艺设计 2.1 反应釜体积的计算2.1.1 间歇釜式反应器V a =V R /φ (2-1) V D =F v (t+t 0) (2-2)式中 V a —反应器的体积,m 3; V R —反应器的有效体积,m 3。
V D —每天需要处理物料的体积,m 3。
F v —平均每小时需处理的物料体积,m 3/h ; t 0 —非反应时间,h ; t —反应时间,h ;⎰=Ax RA AA V r dx n t 0(2-3) 等温等容情况下⎰=Ax AAA r dx C t 00 (2-4)对于零级反应A A x kC t 0=(2-5) 对一级反应Ax k t -=11ln 1 (2-6) 对二级反应 2A →P ;A+B →P (C A0=C B0)()A A A x kC x t -=100(2-7)对二级反应 A+B →P()ABA B x x C C k t ---=11ln 100 (2-8)φ—装料系数,一般为0.4~0.85,具体数值可按下列情况确定: 不带搅拌或搅拌缓慢的反应釜 0.8~0.85; 带搅拌的反应釜 0.7~0.8; 易起泡沫和在沸腾下操作的设备 0.4~0.6。
2.2反应器直径和高度的计算在已知搅拌器的操作容积后,首先要选择罐体适宜的长径比(H/D),以确定罐体直径和高度。
长径比的确定通常采用经验值,即2-1表2-1 罐体长径比经验表在确定了长径比和装料系数之后,先忽略罐底容积,此时⎪⎪⎭⎫⎝⎛≈≈i i i D H D H D V 3244ππ(2-9) 选择合适的高径比,将上式计算结果圆整成标准直径。
反应釜设计步骤反应釜是一种常见的化工设备,用于进行化学反应或物理变化。
在设计反应釜时,需要考虑多种因素,如反应条件、反应物质的性质、釜体材料等。
下面将详细介绍反应釜设计步骤。
一、确定反应条件在设计反应釜之前,需要先确定所需的反应条件,包括温度、压力、搅拌速度等。
这些条件将直接影响到釜体的尺寸和材料选择。
二、选择合适的材料根据所需的反应条件和物质性质,选择适合的材料作为釜体和搅拌器材料。
常见的釜体材料包括不锈钢、玻璃钢、碳钢等;搅拌器材料包括不锈钢、陶瓷等。
三、计算容积和尺寸根据所需的反应量和物质密度计算出所需容积,并据此确定釜体尺寸。
同时还需要考虑搅拌器的直径和长度。
四、设计加热方式根据所需温度和加热方式选择适当的加热方式,并进行相关设计。
常见的加热方式包括电加热、蒸汽加热、导热油加热等。
五、设计搅拌方式根据所需的搅拌速度和物质性质选择适当的搅拌方式,并进行相关设计。
常见的搅拌方式包括框式搅拌器、锚式搅拌器、涡轮式搅拌器等。
六、考虑安全性在设计反应釜时,需要考虑到安全因素。
例如,需要设置安全阀和压力表以确保釜体内部压力不会超过承受能力,还需要考虑到釜体内部可能产生的气体或蒸汽排放问题。
七、进行实验验证在完成反应釜设计后,需要进行实验验证。
通过实验可以检测出设计是否合理,是否存在问题,并及时进行改进和调整。
八、制定操作规程针对所设计的反应釜制定相应的操作规程,包括开机前检查事项、操作流程、安全措施等。
同时还需要对操作人员进行培训和指导,确保其能够正确地操作反应釜并遵守相关规程。
总之,在设计反应釜时,需要综合考虑多种因素,并根据具体情况进行相应的选择和设计。
同时还需要注重安全性和实用性,确保反应釜能够稳定、安全地运行。
立式底搅拌反应釜的结构设计发表时间:2017-07-10T15:56:55.867Z 来源:《基层建设》2017年第8期作者:陈飞强[导读] 摘要:立式底搅拌反应釜是一种常见的化工设备,本文针对生产过程中需加热且有固体结晶颗粒产生时,设备结构设计应该注意的问题,采取的措施,介绍了一种方法。
佛山市金银河智能装备股份有限公司 528100 摘要:立式底搅拌反应釜是一种常见的化工设备,本文针对生产过程中需加热且有固体结晶颗粒产生时,设备结构设计应该注意的问题,采取的措施,介绍了一种方法。
关键词:底搅拌;反应釜;结构设计引言立式底搅拌釜的作用是:物料(包括原料、溶剂、催化剂等)加入反应釜内,反应釜内充氮气加压保护;在盘管内通蒸汽预热,启动搅拌装置,锚式搅拌器将固体物料与溶剂混合均匀;螺带式搅拌器将物料从反应釜底向上提升,以利于聚合反应的进行。
启动远红外加热装置加热至300℃。
原料发生聚合反应,生成产品。
此时在盘管内通入冷却水,将反应釜内温度降至8O℃左右,打开反应釜底的放料阀,将物料放出,完成一次产品的聚合作业。
1主要设计参数该设备的主要设计参数见表1。
2设备关键难点(1)本设备因生产过程的需要,壳体外(下部)需安装远红外加热夹套;设备所需要的物料、溶剂、催化剂等进口。
以及压力表、温度计、安全阀等仪表接口只能布置在顶盖上。
只有物料出口布置在壳体下部。
因此,搅拌轴及轴密封装置必须布置在设备底部;而设备内物料进行聚合反应,反应过程中有副产物氯化钠结晶颗粒产生。
因此,搅拌轴密封装置应考虑对固体颗粒的密封。
以减少对密封端面的磨损。
故轴封装置的设计是一个难点。
(2)设备由四个耳式支座支撑在楼板上,工作时温度达到300℃,设备的上、下部都需要一定的自由膨胀量。
上部可自由伸缩;下部由于设置搅拌轴减速器基础,限制了下部的自由膨胀。
必须采取其它措施加以解决。
3设备结构设备结构如图1所示。
3.1搅拌轴的机械密封装置是本设备设计的关键点之一机械密封装置具有功耗小、泄漏率低、密封性能可靠、使用寿命长的特点,是一种理想的旋转轴密封形式。
<<化工容器>>课程设计—搅拌反应釜设计:学号:专业:学院:指导老师:年月日目录一设计容概述1. 1 设计要求1. 2 设计步骤1. 3 设计参数二罐体和夹套的结构设计2. 1 几何尺寸2. 2 厚度计算2. 3 最小壁厚2. 4 应力校核三传动部分的部件选取3.1 搅拌器的设计3.2 电机选取3.3 减速器选取3.4 传动轴设计3.5 支撑与密封设计四参考文献一设计容概述(一)设计要求:压力容器的基本要安全性和经济性的统一。
安全是前提,经济是目标,在充分保证安全的前提下,尽可能做到经济。
经济性包括材料的节约,经济的制造过程,经济的安装维修。
搅拌容器常被称为搅拌釜,当作反应器用时,称为搅拌釜式反应器,简称反应釜。
反应釜广泛应用于合成塑料、合成纤维、合成橡胶、农药、化肥等行业。
反应釜由搅拌器、搅拌装置、传动装置、轴封装置及支座、人孔、工艺接管等附件组成。
压力容器的设计,包括设计图样,技术条件,强度计算书,必要时还要包括设计或安装、使用说明书。
若按分析设计标准设计,还应提供应力分析报告。
强度计算书的容至少应包括:设计条件,所用规和标准、材料、腐蚀裕度、计算厚度、名义厚度、计算应力等。
设计图样包括总图和零部件图。
设计条件,应根据设计任务提供的原始数据和工艺要求进行设计,即首先满足工艺设计条件。
设计条件常用设计条件图表示,主要包括简图,设计要求,接管表等容。
简图示意性地画出了容器的主体,主要件的形状,部分结构尺寸,接管位置,支座形式及其它需要表达的容。
(二)设计步骤:1.进行罐体和夹套设计计算;2.搅拌器设计;3.传动系统设计;4.选择轴封;5.选择支座形式并计算;6.手孔校核计算;7.选择接管,管法兰,设备法兰。
(三)设计参数:设计一台夹套传热式配料罐设计参数及要求容器内夹套内工作压力,MPa 0.18 0.25设计压力,MPa 0.2 0.3工作温度,℃100 130设计温度,℃120 150介质染料及有机溶剂冷却水或蒸汽全容积, 3m 1.0 操作容积, 3m0.80 传热面积, 2m 3腐蚀情况微弱推荐材料Q235--A接管表符号公称尺寸DN连接面形式用途A 25 蒸汽入口B 25 加料口C 80 视镜D 65 温度计管口E 25 压缩空气入口F 40 放料口G 25 冷凝水出口H 100 手孔二、罐体和夹套的结构设计(一) 几何尺寸1-1全容积 V=1.0m 3 1-2 操作容积V 1=0.80 m 3 1-3 传热面积 F=3m 2 1-4 釜体形式:圆筒形 1-5 封头形式:椭圆形 1-6 长径比 i= H 1/ D 1=1.61-7 初算筒体径 1D ≈ 带入计算得:1D ≈0.9267m 1-8 圆整筒体径 1D =1000mm1-9 1米高的容积1m V 按附表D-1选取 1m V =0.785 m 3 1-10 釜体封头容积1V 封 按附表D-2选取 1V 封=0.1505 m 3 1-11 釜体高度1H =(V-1V 封)/ 1m V =1.08m 1-12圆整釜体高度1H =1100mm1-13 实际容积V=1m V *1H +1V 封=0.636*1.43m +0.11133m =1.0143m 1-14 夹套筒体径2D 按表4-3选取得:2D =1D +100=1100mm 1-15 装料系数η=V 操/V=0.8 1-16操作容积V 操=0.83m1-17 夹套筒体高度2H ≥(ηV-1V 封)/1m V =0.827 1-18 圆整夹套筒体高度2H =900mm1-19 罐体封头表面积1F 封 按附表D-2选取 F 1封=1.16252m 1-20 一米高筒体表面积 1m F 按附表D-1选取 F 1m =3.142m1-21 实总传热面积 按式4-5校核 F=F 1m *H 2+F 1封=3.14*0.9+1.1625=3.6252m >32m 。
搅拌反应釜的釜体设计及夹套设计2.1概述夹套式反应釜的釜体是由封头、筒体和夹套三部分组成。
封头有椭圆形封头和锥形封头等形式。
上、下封头与筒体常为焊接。
2.2釜体材料的选择根据工艺参数及操作条件(见附录2)确定封头、筒体及夹套的材料。
此设计的釜体材料选用0Cr18Ni9与夹套材料选用Q235-B,热轧钢板,其性能与用途见表2-1 0由工艺参数及操作条件和表2-1可知,0Cr18Ni9和Q235 —B材料能够满足任务书中的设计温度、设计压力°在操作条件下,Q235 —B能使设备安全运转,并且不会因腐蚀而对介质产生污染,而且相对与其他钢号价格便宜,所以本设计釜体材料选用0Cr18Ni9与夹套材料采用Q235-B,热轧钢板。
2.3封头的选择搅拌反应釜顶盖在受压状态下操作常选用椭圆形封头,本设计采用椭圆形标准封头,直边高度h •二45mm,其内径取与筒体内径相同的尺寸。
. 专业.专注椭圆形封头是由半个椭圆球体和一个圆柱体组成,由于椭圆部分径线曲率平滑连续,封头中的应力分布不均匀。
对于a^2得标准形封头,封头与直边的连接处的不连续应力较小,可不予考虑。
椭圆形封头的结构特性比较好。
2.4釜体几何尺寸的确定釜体的几何尺寸是指筒体的内径D i和高度H。
釜体的几何尺寸首先要满足化工工艺的要求。
对于带搅拌器的反应釜来说,容积V为主要决定参数。
2.4.1确定筒体的内径由于搅拌功率与搅拌器直径的五次方成正比,而搅拌器直径往往需随釜体直径的增加而增大。
因此,在同样的容积下筒体的直径太大是不适宜的。
对于发酵类物料的反应釜,为使通入的空气能与发酵液充分接触,需要有一定的液位高度,筒体的高度不宜太矮。
因此,要选择适宜的长泾比(H D)。
根据釜体长径比对搅拌功率、传热的影响以及物料特性对筒体长径比的要求,又由实践经验,针对一般反应釜,液一液相物料,H D.取值在1.7-2.3之间,并且考虑还要在封头上端布置机座和传动装置,因此,取H厂=2.3 o 由<< 搅拌设备设计>> 可知:(2-1 )有:操作容积=全容积0.8=6.4式中:V——操作容积,m3; H筒体高度,m ;D i --------------- 筒体内径;i ——装料系数,取值为0.8则: 4 6.4.二0.8 2.3=1.638 m2.4.2确定筒体的高度将D i值圆整到标准直径,取筒体内径D i=1600 mm由搅拌设备设计》可知:=3.689 m把H ,的值圆整到H =3700 mm ,则:2.5夹套的结构和尺寸设计常用的夹套结构形式有以下几种:(1)仅圆筒部分有夹套,用于需加热面 积不大的场合;(2)圆筒一部分和下封头包有夹套,是最常用的典型结构;(3)在圆筒部分的夹套中间设置支撑或加强环,以提高内筒的稳定性,在夹套 中介质压力较大时,由于这种结构减小了内筒的计算长度,从而减小了筒体的 壁厚;(4)为全包式夹套,与前三种相比,传热面积最大。
3000l反应釜液位体积
摘要:
1.3000L 反应釜液位体积的概念
2.3000L 反应釜液位体积的计算方法
3.3000L 反应釜液位体积在实际应用中的重要性
4.3000L 反应釜液位体积的测量设备
5.3000L 反应釜液位体积的控制策略
正文:
一、3000L 反应釜液位体积的概念
在化工行业中,反应釜是一种常见的设备,用于进行物质的混合、反应等过程。
液位体积,顾名思义,是指反应釜中液体的体积。
3000L 反应釜液位体积,就是指一个容量为3000 升的反应釜中液体的体积。
二、3000L 反应釜液位体积的计算方法
计算3000L 反应釜液位体积的方法非常简单,只需要将反应釜的容量(3000 升)乘以液位高度即可。
例如,如果液位高度为1 米,那么液位体积就是3000 升。
三、3000L 反应釜液位体积在实际应用中的重要性
准确的液位体积测量和控制对于化工反应过程至关重要。
液位体积的控制,可以保证反应釜中液体的稳定性,避免因为液位过高或过低而引发的安全事故。
同时,准确的液位体积也可以保证反应釜中进行的化学反应的精度和效率。
四、3000L 反应釜液位体积的测量设备
目前,常用的3000L 反应釜液位体积测量设备有浮子式、差压式、雷达式、超声波式等。
这些设备各有优缺点,选择时应根据实际工况和使用需求进行。
五、3000L 反应釜液位体积的控制策略
对于3000L 反应釜液位体积的控制,可以采用自动控制和手动控制两种方式。
自动控制是通过设定一定的控制参数,自动调整液位体积;手动控制则是通过人工观察和调整,达到控制液位体积的目的。
1 绪论1.1 反应釜概况搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。
反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。
搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。
同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。
在大多数设备中,反映釜是作为反应器来应用的。
例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。
其它如染料、医药、农药、油漆等设备的使用亦很广泛。
有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。
搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。
搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。
例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。
化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。
因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。
由于物料操作条件的复杂性、多样性、对搅拌设备的要求也比较复杂。
如炼油厂的硅铝反应器、大浆罐、钡化反应釜、硫磷化反应釜、烃化反应釜、白土混合罐等都是装有各种不同型式搅拌器的搅拌设备。
第六章 主要设备的设计及选型6.1 搅拌反应釜6.1.1 反应釜体积由物料衡算结果可知:生产每釜成品需要废涤纶的质量为:=1m 584.53 kg ;废涤纶密度38.11=ρ3/cm g ,需要异辛醇的质量为:=2m 1187.32 kg ;异辛醇密度832.02=ρ3/cm g则废涤纶所占体积:=⨯==31111038.153.584ρm V 0.424 m 3, 异辛醇所占体积: =⨯==322210832.032.1187ρm V 1.427 m 3所以物料总体积为: =+=21'V V V 0.424 + 1.427 = 1.851 m 3 由于还有催化剂的加入,故取 V = 1.860 m 3考虑到废涤纶较松散且呈沸腾状态及釜内安装的附件,参照《化工设备设计基础》,根据标准投料系数范围,取反应釜投料系数为0.7,则所需反应釜体积为:657.27.0860.1==V m 36.1.2 反应釜直径和高度参照《化工设备设计基础》,取反应釜的长径比H/D i =1.2,反应釜的内径D i 由下式估算:3244ππ+=ii D HVD由1.1的所得数据及长径比,代入以上公式可求得内径为:=i D 1.353 m ,取圆整值1400mm 。
选取标准反应釜,具体参数如下:釜体容积 =V 2.689 m 3,封头容积 f V = 0.421 m 3,选取釜体壁厚s = 10 mm ,封头直边高度=0h 40 mm ,曲边高度=i h 350 mm ,内表面积F=2.306 m 2 。
则筒体高度为:474.14.14421.0689.2422=⨯-=-=ππi hD V V H m ,取圆整值1.5 m 。
所以釜的总高度:)(200i h h H H ++==28.2)35.004.0(25.1=+⨯+ m6.1.3 壁厚根据设计任务,反应釜工作时压力为0.3 MPa ,内径i D =1400 mm ,取设计压力p 为0.33 MPa 。