2020年中考数学热点冲刺4 实际应用问题(江苏版)
- 格式:docx
- 大小:182.46 KB
- 文档页数:15
必刷卷04-中考数学必刷试卷一、选择题(本大题共6小题,每小题2分,共12分)1.计算|−6−2|的结果是()A. −8B. 8C. −4D. 4【答案】B【解析】解:|−6−2|=|−8|=8故选:B.2.下列运算中,正确的是()A. 3x3⋅2x2=6x6B. (−x2x)2=x4xC. (2x2)3=6x6D. x5÷1x=2x42【答案】D【解析】解:A、3x3⋅2x2=6x5,故选项错误;B、(−x2x)2=x4x2,故选项错误;C、(2x2)3=8x6,故选项错误;x=2x4,故选项正确.D、x5÷12故选:D.3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A. 8×1012B. 8×1013C. 8×1014D. 0.8×1013【答案】B【解析】80万亿=80000000000000, 80000000000000用科学记数法表示为8×1013,∴80万亿用科学记数法表示为故选B.4.−√17+1的小数部分是()A. −√17+5B. −√17+4C. −√17−3D. √17−4【答案】A【解析】∵4<√17<5,∴−√17的整数部分是−5,∴−√17+1的整数是−5+1=−4,∴小数部分是−√17+1+4=−√17+5故选A.5.如图所示的工件的主视图是()A. B.C. D.【答案】B【解析】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.6.如图,将线段AB绕点O顺时针旋转90°得到线段x′x′,那么x(−2,5)的对应点x′的坐标是()A. (2,5)B. (5,2)C. (2,−5)D. (5,−2)【答案】B【解析】解:∵线段AB绕点O顺时针旋转90°得到线段x′x′,∴△xxx≌△x′x′x′,∠xxx′=90°,∴xx=x′x.作xx⊥x轴于C,x′x′⊥x轴于x′,∴∠xxx=∠x′x′x=90°.∵∠xxx′=90°,∴∠xxx′−∠xxx′=∠xxx′−∠xxx′,∴∠xxx=∠x′xx′.在△xxx和△x′x′x中,{∠xxx=∠x′x′x ∠xxx=∠x′xx′xx=x′x,∴△xxx≌△x′x′x(xxx),∴xx=x′x′,xx=x′x.∵x(−2,5),∴xx=2,xx=5,∴x′x′=2,xx′=5,∴x′(5,2).故选:B.二、填空题(本大题共10小题,每小题2分,共20分)7.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是______次.【答案】2【解析】解:这组数据按顺序排列后中位数为:2.故答案为:2.8.若式子√x+2在实数范围内有意义,则x的取值范围是______ .【答案】x>−2【解析】解:由题意得,x+2>0,解得,x>−2,故答案为x>−2.9.计算:√27⋅√83÷√12=______.【答案】12【解析】解:√27⋅√83÷√12=3√3×√83÷√12=3√3×83×2=12.故答案为:12.10.分解因式:x3−16x=______.【答案】x(x+4)(x−4)【解析】解:x3−16x=x(x2−16)=x(x+4)(x−4).11.若实数m、n满足|x−2|+√x−4=0,且m,n恰好是等腰△xxx的两条边的边长,则△xxx的周长是______.【答案】10【解析】解:∵|x−2|+√x−4=0,∴x−2=0,x−4=0,解得x=2,x=4,当x=2作腰时,三边为2,2,4,不符合三边关系定理;当x=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故答案为:10.12.设x1,x2是一元二次方程x2−3x+2=0的两个实数根,则1x1+1x2的值是______ .【答案】32.【解析】解:∵一元二次方程x2−3x+2=0的两个实数根是x1、x2,∴x1+x2=3,x1⋅x2=2,∴1x1+1x2=x1+x2x1x2=32.故答案为:32.13.若关于x的一元二次方程(x−1)x2+2x−1=0有两个不相等的实数根,则k的取值范围是______.【答案】x>0且x≠1【解析】解:∵原方程是关于x得一元二次方程,∴x−1≠0解得:x≠1,又∵原方程有两个不相等的实数根,∴△=4+4(x−1)>0,解得:x>0,即k得取值范围是:x>0且x≠1,故答案为:x>0且x≠1.14.若直线x =−3x +x 与双曲线x =2x 在1≤x ≤4范围内有公共点,则b 的取值范围是______. 【答案】5≤x ≤252【解析】解:把x =1和x =4分别代入x =2x 得,x =2和x =12,把当x =1,x =2和当x =4,x =12代入x =−3x +x 得到x =5和x =252所以直线x =−3x +x 与双曲线x =2x 在1≤x ≤4范围内有公共点,则b 的取值范围是:5≤x ≤252, 故答案为5≤x ≤252.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则xx ⏜的长为______. 【答案】815x【解析】解:连接CF ,DF ,则△xxx 是等边三角形,∴∠xxx =60°,∵在正五边形ABCDE 中,∠xxx =108°, ∴∠xxx =48°, ∴xx ⏜的长=48⋅x ×2180=815x ,故答案为:815x .16.如图,边长为1的正方形ABCD 在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了______°,点A 在滚动过程中到出发点的最大距离是______. 【答案】150 √3+√2【解析】解:如图,点A 的运动轨迹是图中红线.延长AE 交红线于H ,线段AH 的长,即为点A 在滚动过程中到出发点的最大距离.易知xx =xx 2=√12+12=√2,在△xxx 中,∵xx =xx =1,∠xxx =120°,∴xx =√3,∴xx =xx +xx =√3+√2.∴点A 在滚动过程中到出发点的最大距离为√3+√2. 故答案为:150,√3+√2三、解答题(本大题共11小题,共88分)17.(1)解方程:4xx2−4−2x−2=1−1x+2.【答案】解:去分母得:4x−2x−4=x2−4−x+2,即x2−3x+2=0,解得:x=1或x=2,经检验x=2是增根,分式方程的解为x=1.(2)解不等式组{3(x−2)+4<5x 1−x4+x≥2x−1.【答案】解:{3(x−2)+4<5x ①1−x4+x≥2x−1 ②,由①得:x>−1;由②得:x≤1;∴不等式组的解集是−1<x≤1.18.已知x2+x−6=0,求(x−1x2−4x+4+2+x2x−x2)÷4−x2x−12−x的值【答案】解:x=2或x=−3;原式=(x(x−1)x(2−x)2+(2−x)(2+x)x(2−x)2)÷4−x2x−12−x=4−xx(2−x)2⋅2x4−x−12−x=2(2−x)2−2−x(2−x)2=x(x−2)2;当x=2时,原式中分母为零,所以x=2舍去;当x=−3时,原式=−325.19.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.【答案】(1)100;108°;(2)喜欢用短信的人数为:100×5%=5人,喜欢用微信的人数为:100−20−5−30−5=40,补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:40100×100%=40%,∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人,(4)列出树状图,如图所示:所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,甲、乙两名同学恰好选中同一种沟通方式的概率为:39=13.20.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?【答案】解:设甲请了x天假,由题意知,6(115+120)+6−x10=1.解得x=3.答:甲请了3天假.21.从不同角度谈谈你对等式x(x+4)=5的理解.【答案】解:①方程:一元二次方程x2+4x−5=0,两根分别为x1=1,x2=−5;或分式方程x+4−5x=0,两根分别为x1=1,x2=−5;②函数:二次函数x=x2+4x与直线x=5的交点,或一次函数x=x+4与反比例函数x=5的交点;x③图形:边长为x和x+4,面积为5的矩形.22.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 771.2乙7 b 8 c(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?=7(环),【答案】解:(1)甲的平均成绩x=5×1+6×2+7×4+8×2+9×11+2+4+2+1∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,=7.5(环),∴乙射击成绩的中位数x=7+82×[(3−7)2+(4−7)2+(6−7)2+2×(7−7)2+3×(8−7)2+(9−7)2+(10−其方差x=110×(16+9+1+3+4+9)=4.2;7)2]=110(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.23.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:xx=xx;(2)若xx=2xx,∠xxx=110°,求∠xxx的度数.【答案】(1)证明:∵四边形ABCD是平行四边形,∴xx=xx,xx//xx,∴∠xxx=∠x,∠xxx+∠xxx=180°,∵x为AD的中点,∴xx=xx.在△xxx 和△xxx 中,{∠xxx =∠x∠xxx =∠xxx xx =xx,∴△xxx ≌△xxx (xxx ).∴xx =xx .∴xx =xx ;(2)解:由(1)可知xx =2xx ,xx =xx , ∵∠xxx =110°,∴∠xxx =180°−110°=70°, ∵xx =2xx , ∴xx =xx ,∴xx 平分∠xxx ,∴∠xxx =12∠xxx =12×70°=35°.24.如图,一幢居民楼OC 临近山坡AP ,山坡AP 的坡度为x =1:√3,小亮在距山坡坡脚A 处测得楼顶C 的仰角为60°,当从A 处沿坡面行走10米到达P 处时,测得楼顶C 的仰角刚好为45°,点O ,A ,B 在同一直线上,求该居民楼的高度.(结果保留整数,√3≈1.73)【答案】解:如图,过点P 作xx ⊥xx 于点E ,xx ⊥xx 于点F ,∵山坡AP 的坡度为x =1:√3,xx =10, ∴可设xx =x ,则xx =√3x .在xx △xxx 中,x 2+(√3x )2=102, 解得x =5或x =−5(舍去), ∴xx =5,则xx =5√3. ∵∠xxx =∠xxx =45°, ∴xx =xx .设xx =xx =x 米,则xx =(x +5)米,xx =(x −5√3)米. 在xx △xxx 中,xxx60°=xxxx =x −5√3, 即x −5√3=√3,解得x =10(√3+1),∴xx =10(√3+1)+5≈32(米). 答:该居民楼的高度约为32米.25.已知,AB 是⊙x 的直径,点C 在⊙x 上,点P 是AB 延长线上一点,连接CP .(1)如图1,若∠xxx =∠x . ①求证:直线PC 是⊙x 的切线;②若xx =xx ,xx =2,求CP 的长;(2)如图2,若点M 是弧AB 的中点,CM 交AB 于点N ,xx ⋅xx =9,求BM 的值.【答案】(1)①证明:如图1中,∵xx=xx,∴∠x=∠xxx,∵∠xxx=∠x,∴∠xxx=∠xxx,∵xx是⊙x的直径,∴∠xxx+∠xxx=90°,∴∠xxx+∠xxx=90°,即xx⊥xx,∵xx是⊙x的半径,∴xx是⊙x的切线.②∵xx=xx,∴∠x=∠x,∴∠xxx=2∠x=2∠x,∵∠xxx=90°,∴∠x=30°,∵xx=xx=2,∴xx=2xx=4,∴xx=√42−22=2√3.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴xx⏜=xx⏜,∴∠xxx=∠xxx,∵∠xxx=∠xxx,∴△xxx∽△xxx,∴xxxx =xxxx,∴xx2=xx⋅xx,∵xx⋅xx=9,∴xx=3,∴xx=xx=3.26.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本x1(单位:元)、销售价x2(单位:元)与产量x(单位:xx)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的x1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】解:(1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的x 1与x 之间的函数关系式为x 1=x 1x +x 1, ∵x 1=x 1x +x 1的图象过点(0,60)与(90,42), ∴{x 1=6090x 1+x 1=42,∴{x 1=−0.2x 1=60,∴这个一次函数的表达式为;x 1=−0.2x +60(0≤x ≤90);(3)设x 2与x 之间的函数关系式为x =x 2x +x 2, ∵经过点(0,120)与(130,42), ∴{x 2=120130x 2+x 2=42,解得:{x 2=−0.6x 2=120,∴这个一次函数的表达式为x 2=−0.6x +120(0≤x ≤130), 设产量为xkg 时,获得的利润为W 元,当0≤x ≤90时,x =x [(−0.6x +120)−(−0.2x +60)]=−0.4(x −75)2+2250, ∴当x =75时,W 的值最大,最大值为2250;当90≤x ≤130时,x =x [(−0.6x +120)−42]=−0.6(x −65)2+2535,由−0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,x ≤2160, ∴当x =90时,x =−0.6(90−65)2+2535=2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.27.如图,已知矩形ABCD 中,xx =4,动点P 从点A 出发,沿AD 方向以每秒1个单位的速度运动,连接BP ,作点A 关于直线BP 的对称点E ,设点P 的运动时间为x (x ).(1)若xx =6,P 仅在边AD 运动,求当P ,E ,C 三点在同一直线上时对应的t 的值.(2)在动点P 在射线AD 上运动的过程中,求使点E 到直线BC 的距离等于3时对应的t 的值.【答案】解:(1)设xx=x,则xx=6−x,如图1所示:∵点A、E关于直线BP对称,∴∠xxx=∠xxx,∵xx//xx,∴∠xxx=∠xxx,∵x、E、C共线,∴∠xxx=∠xxx,∴xx=xx=xx=6,在xx△xxx中,xx2+xx2=xx2,即:42+(6−x)2=62,解得:x=6−2√5或6+2√5(不合题意舍去),∴x=(6−2√5)x时,P、E、C共线;(2)①当点E在BC的上方,点E到BC的距离为3,作xx⊥xx于M,延长ME交AD于N,连接PE、BE,如图2所示:则xx=3,xx=1,xx=xx=4,四边形ABMN是矩形,在xx△xxx中,xx=xx=√xx2−xx2=√42−32=√7,∵点A、E关于直线BP对称,∴∠xxx=∠xxx=90°,∵∠xxx=∠xxx=∠xxx=90°,∴∠xxx=∠xxx,∴△xxx∽△xxx,∴xxxx =xxxx,即√71=3xx,∴xx=3√77,∴x=xx=xx−xx=√7−3√77=4√77;②当点E在BC的下方,点E到BC的距离为3,作xx⊥xx的延长线于H,如图3所示:则xx=3,xx=xx=4,xx=xx+xx=7,在xx△xxx中,xx=√xx2−xx2=√42−32=√7,∵∠xxx=∠xxx=90°,xx⊥xx,∴∠xxx+∠xxx=∠xxx+∠xxx=90°,∴∠xxx=∠xxx,∴△xxx∽△xxx,∴xxxx =xxxx,即7xx=√74,解得:x=xx=4√7,综上所述,x=4√7或4√7.7。
三轮冲刺:《三角形综合》(四)1.已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CE;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.2.在等边△ABC中,点E,F分别在边AB,BC上.(1)如图1,若AE=BF,以AC为边作等边△ACD,AF交CE于点O,连接OD.求证:①AF=CE;②OD平分∠AOC;(2)如图2,若AE=2CF,作∠BCP=∠AEC,CP交AF的延长线于点P,求证:CE=CP.3.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG =90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.4.△ABC中,AB=AC,∠BAC=120°,AD,BE分别为△ABC的高与中线.(1)如图1,求证:AE=AD;(2)如图2,点F在AD的延长线上,连接BF,CF,若BE=CF,求证:∠AEB=∠AFB;(3)在(2)的条件下,如图3,过点A作BF的平行线交CF于点G,若FG=6,求BE 的长.5.如图1,在直角三角形ABC中,∠BAC=90°,AD为斜边BC上的高线.(1)求证:AD2=BD⋅CD;(2)如图2,过A分别作∠BAD,∠DAC的角平分线,交BC于E,M两点,过E作AE的垂线,交AM于F.①当tan C=时,求的值;②如图3,过C作AF的垂线CG,过G点作GN∥AD交AC于M点,连接MN.若∠EAD=15°,AB=1,直接写出MN的长度.6.已知等边△ABC和等腰△CDE,CD=DE,∠CDE=120°.(1)如图1,点D在BC上,点E在AB上,P是BE的中点,连接AD,PD,则线段AD与PD之间的数量关系为;(2)如图2,点D在△ABC内部,点E在△ABC外部,P是BE的中点,连接AD,PD,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若点D在△ABC内部,点E和点B重合,点P在BC下方,且PB+PC为定值,当PD最大时,∠BPC的度数为.7.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.动点P从点A出发,沿AB以每秒5个单位长度的速度向终点B运动.当点P不与点A重合时,过点P作PD⊥AC于点D、PE ∥AC,过点D作DE∥AB,DE与PE交于点E.设点P的运动时间为t秒.(1)线段AD的长为.(用含t的代数式表示).(2)当点E落在BC边上时,求t的值.(3)设△DPE与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)若线段PE的中点为Q,当点Q落在△ABC一边垂直平分线上时,直接写出t的值.8.在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB 于点E,DF∥AB交边AC于点F.(1)如图1,试判断四边形AEDF的形状,并说明理由;(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.(i)求EN•EG的值;(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上9.已知:△ABC与△ABD中,∠CAB=∠DBA=β,且∠ADB+∠ACB=180°.提出问题:如图1,当∠ADB=∠ACB=90°时,求证:AD=BC;类比探究:如图2,当∠ADB≠∠ACB时,AD=BC是否还成立?并说明理由.综合运用:如图3,当β=18°,BC=1,且AB⊥BC时,求AC的长.10.如图1,△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC于D.(1)点E、F分别在DA、DC的延长线上,且AE=CF,连接BE、AF,猜想线段BE和AF 的数量关系和位置关系,并证明你的结论;(2)如图2,连接EF,将△DEF绕点D顺时针旋转角α(0°<α<90°),连接AE、CE,若四边形ABCE恰为平行四边形,求DA与DE的数量关系;(3)如图3,连接EF,将△DEF绕点D逆时针旋转,当点A落在线段EF上时,设DE与AB交于点G,若AE:AF=3:4,求的值.参考答案1.(1)证明:如图1中,∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴EC=BD.(2)解:如图2中,连接BD.∵AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠DEA=∠CDE=60°,∵EF⊥AD,∴∠FEA=∠DEA=30°∵∠DAE=∠BAC,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△EAC≌△DAB(SAS),∴∠BDA=∠AEC=30°,EC=BD,∴∠EDB=90°,∵AE=4,AF=2,AC=,∠EFA=∠AFC=90°,∴EF===2,CF===,∴EC=BD=3,∴BE===.(3)解:如图3中,作CM⊥CA,使得CM=CA,连接AM,BM.∵CA=CM,∠ACM=90°,∴∠CAM=45°,∵∠CAB=45°,∴∠MAB=45°+45°=90°,设AB=AC=m,则AM=m,BM==m,∵∠ACM=∠BCD=90°,∴∠BCM=∠ACD,∵CA=CM,CB=CD,∴△ACD≌△MCB(SAS),∴AD=BM=m,∴==.2.(1)证明:①如图1中,∵△ABC是等边三角形,∴AB=BC,∠B=∠BAC=60°,∵AE=BF,∴△ABF≌△CAE(SAS),∴AF=EC.②如图1中,∵△ABF≌△CAE,∴∠BAF=∠ACE,∵∠AOE=∠OAC+∠ACO=∠OCA+∠BAF=∠BAC=60°,又∵△ACD是等边三角形,∴∠ADC=∠DAC=∠DCA=60°,∴∠AOE=∠ADC,∵∠AOE+∠AOC=180°,∴∠ADC+∠AOC=180°,∴A,D,C,O四点共圆,∴∠AOD=∠ACD=60°,∠COD=∠CAD=60°,∴∠AOD=∠COD,∴OD平分∠AOC.(2)证明:如图2中,取AE的中点M,连接CM.∵AE=2CF,AM=ME,∴AM=CF,∵∠CAM=∠ACF=60°,AC=CA,∴△ACM≌△CAF(SAS),∴∠ACM=∠CAF,∵∠CME=∠CAM+∠ACM=60°+∠ACM,∠CFP=∠ACF+∠CAF=60°+∠CAF,∴∠CME=∠CFP,∵EM=CF,∠PCF=∠CEM,∴△CME≌△PFC(ASA),∴CE=PC.3.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.4.(1)证明:如图1中,∵AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BD=CD,∴AD⊥BC,∴AD=AC,∵BE是△ABC的中线,∴AE=EC=AC,∴AD=AE.(2)证明:如图2中,作BP⊥CA交CA的延长线于P.∵∠P=90°,∠BCP=30°,∴BP=BC=CD,∵∠FDC=∠P=90°,BE=CF,BP=CD,∴Rt△BPE≌Rt△CDF(HL),∴∠BEP=∠CFD,∵DF⊥BC,CD=DB,∴FB=FC,∴∠BFD=∠CFD,∴∠AEB=∠AFB.(3)解:如图3中,设AG交BE于H,交BC于M,作CN∥AD交AM的延长线于G.∵AG∥BF,∴∠GAF=∠AFB,∵∠FAB=∠AFC,∴∠GAF=∠AFG,∴GA=GF=6,∵CN∥AF,∴∠N=∠FAG,∠GCN=∠AFG,∴∠N=∠GCN,∴CG=GN,∴CF=AN=BE,∵∠ACB=30°,∠DCN=90°,∴∠BAE=∠ACN=120°,∵∠AEB=∠AFC=∠N,∴△BAE≌△ACN(AAS),∴AE=CN=AD,∵∠ADM=∠MCN=90°,AMD=∠CMN,∴△ADM≌△NCM(AAS),∴AM=MN,∵∠N+∠NMG=90∠NCG+∠MCG=90°,∴∠GMC=∠GCM,∴CG=GM=GN,∴AG=3GN=6,∴CG=GN=2,∴BE=CF=FG+CG=6+2=8.5.(1)证明:如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAC=90°,∴∠B+∠C=90°,∵∠B+∠BAD=90°,∴∠BAD=∠C,∴△BAD∽△ACD,∴=,∴AD2=BD•CD.(2)①解:如图2中,作EH⊥AB于H,MG⊥AC于G.∵AD⊥BC,∴∠tan C==,∴可以假设AD=3k,CD=4k,则AC=5k,BD=k,AB=k,∵MA平分∠CAD,MD⊥AD,MG⊥AC,∴DM=MG,∵∠ADM=∠AGM=90°,AM=AM,∴Rt△MAD≌Rt△MAG(HL)∴AD=AG=3k,设MD=MG=x,则CG=2k,CM=4k﹣x,在Rt△CMG中,∵CM2=MG2+CG2,∴(4k﹣x)2=x2+(2k)2,∴x=k,∴DM=k,同法可得DE=k,∴==.②如图3中,∵AE平分∠BAD,∠EAD=15°,∴∠BAD=30°,∵AD⊥BC,∠BAC=90°,∴∠B=∠DAC=60°,∠C=30°,∵MA平分∠CAD,∴∠MAC=∠MAD=30°,∴∠MAC=∠MCA=30°,∴∠AMB=∠MAC+∠MCA=60°=∠B=∠BAM,∴MA=MC,△ABM是等边三角形,∴AM=BM,∵GN∥AD,∴∠GNC=∠DAC=60°,∵CG⊥AG,∴∠AGC=90°,∴∠ACG=60°=∠CNG,∴△CGN是等边三角形,∴NC=CG,∵AC=2CG,∴AN=CN,∵BM=MC,∴MN=AB=.6.解:(1)结论:AD=2PD.理由:如图1中,∵△ABC是等边三角形,∴∠B=60°,∵∠EDC=120°,∴∠EDB=180°﹣120°=60°,∴∠B=∠EDB=∠BED=60°,∴△BDE是等边三角形,∵BP=PE,∴DP⊥AB,∴∠APD=90°,∵DE=DC,DE=DB,∵AB=AC,∠BAC=60°,∴∠PAD=∠BAC=30°,∴AD=2PD.(2)结论成立.理由:延长DP到N,使得PN=PD,连接BN,EN,延长ED到M,使得DM=DE,连接BD,BM,CM.∵DE=DC=DM,∠MDC=180°﹣∠EDC=60°,∴△DCM是等边三角形,∵CA=CB,CM=CD,∠DCM=∠ACB=60°,∴∠BCM=∠ACD,∴△BCM≌△ACD(SAS),∴AD=BM,∵PB=PE,PD=PN,∴四边形BNED是平行四边形,∴BN∥DE,BN=DE,∵DE=DM,∴BN=DM,BN∥DM,∴四边形BNDM是平行四边形,∴BM=DN=2PD,∴AD=2PD.(3)如图3中,作∠PDK=∠BDC=120°,且PD=PK,连接PK,CK.∵DB=DC,DP=DK,∠BDC=∠PDK,∴∠BDP=∠CDK,∴△PDB≌△KDC(SAS),∴PB=CK,∵PB+PC=PC+CK=定值,∴P,C,K共线时,PK定值最大,此时PD的值最大,此时,∠DPB=∠DKP=∠DPK=30°,∠BPC=∠DPB+∠DPK=60°.故答案为60°.7.解:(1)如图1中,在Rt△ACB中,∵∠C=90°,AC=8,BC=6,∴AB===10,∵PD⊥AC,∴cos A==,∴=,∴AD=4t,故答案为4t.(2)如图2中,当点E落在BC上时,∵DE∥AB,PE∥AD,∴四边形APED是平行四边形,∴DE=AP=5t,AD=PE=4t,∴=,∴=,解得t=1,∴当点E落在BC边上时,t的值为1.(3)①如图1中,当0<t≤1时,重叠部分是△PDE,∵PE∥AD,∴∠DPE=∠ADP=90°,∵DE=5t,PE=4t,∴PD=3t,∴S=•PD•PE=×3t×4t=6t2.②如图3中,当1<t≤2时,S=•(MN+PD)•PN=[3t+3t﹣(10﹣5t)]•(10﹣5t)=﹣18t2+48t﹣24.综上所述,S=.(4)①如图4﹣1中,当点Q落在线段AC的垂直平分线MN上时,由题意:=,可得=,解得t=.②如图4﹣2中,当点Q落在线段AB的垂直平分线MN上时,由题意:=,可得=,解得t=③如图4﹣3中,当点Q落在线段BC的垂直平分线上时,AP=PB,此时t=1,综上所述,满足条件的t的值为或或1.8.(1)解:四边形AEDF的形状是菱形;理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵DE∥AC,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴四边形AEDF是菱形;(2)(i)解:连接EF交AD于点Q,如图2所示:∵∠BAC=60°,四边形AEDF是菱形,∴∠EAD=30°,AD、EF相互垂直平分,△AEF是等边三角形,∴∠EAF=∠AEF=∠AFE=60°,∵AD=4,∴AQ=2,在Rt△AQE中,cos∠EAQ=,即cos30°=,∴AE===4,∴AE=AF=EF=4,在△AEG和△EFH中,,∴△AEG≌△EFH(SAS),∴∠AEG=∠EFH,∴∠ENH=∠EFH+∠GEF=∠AEG+∠GEF=60°,∴∠ENH=∠EAG,∵∠AEG=∠NEH,∴△AEG∽△NEH,∴=,∴EN•EG=EH•AE=3×4=12;(ii)证明:如图3,连接FM',∵DE∥AC,∴∠AED=180°﹣∠BAC=120°,由(1)得:△EDF是等边三角形,∴DE=DF,∠EDF=∠FED=∠EFD=60°,由旋转的性质得:∠MDM'=60°,DM=DM',∴∠EDM=∠FDM',在△EDM和△FDM'中,,∴△EDM≌△FDM'(SAS),∴∠MED=∠DFM',由(i)知,∠AEG=∠EFH,∴∠DFM'+∠EFH=∠MED+∠AEG=∠AED=120°,∴∠HFM'=∠DFM'+∠HFE+∠EFD=120°+60°=180°,∴H,F,M′三点在同一条直线上.9.提出问题:解:在△DBA和△CAB中,∵.∴△DBA≌△CAB(AAS),∴AD=BC;类比探究:结论仍然成立.理由:作∠BEC=∠BCE,BE交AC于E.∵∠ADB+∠ACB=∠AEB+∠BEC=180°,∴∠ADB=∠AEB.∵∠CAB=∠DBA,AB=BA,∴△DBA≌△EAB(AAS),∴BE=AD,∵∠BEC=∠BCE,∴BC=BE,∴AD=BC.综合运用:作∠BEC=∠BCE,BE交AC于E.由(2)得,AD=BC=BE=1.在Rt△ACB中,∠CAB=18°,∴∠C=72°,∠BEC=∠C=72°.由∠CFB=∠CAB+∠DBA=36°,∴∠EBF=∠CEB﹣∠CFB=36°,∴EF=BE=1.在△BCF中,∠FBC=180°﹣∠BFC﹣∠C=72°,∴∠FBC=∠BEC,∠C=∠C,∴△CBE∽△CFB.∴=,令CE=x,∴1=x(x+1).解得,x=,∴CF=.由∠FBC=∠C,∴BF=CF.又AF=BF,∴AC=2CF=+1.10.解:(1)BE=AF,BE⊥AF,理由如下:延长FA交BE于H,∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴∠BAD=∠ACD=45°,AB=AC,∴∠BAE=∠ACF=135°,又∵AB=AC,AE=CF,∴△ABE≌△CAF(SAS),∴AF=BE,∠EBA=∠FAC,∵∠BAF=∠ABE+∠BHA=∠BAC+∠CAF,∴∠BAC=∠BHA=90°,∴BE⊥AF;(2)∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BC,∵四边形ABCE恰为平行四边形,∴AE=BC=2AD,AE∥BC,∴∠EAD=∠ADB=90°,∴DE===AD;(3)如图3,连接BE,过点E作EH⊥AB于H,DN⊥AB于N,由图1可得:∵△ABC为等腰直角三角形,∠BAC=90°,AD⊥BC,∴AD=BD=CD,AD⊥CD,又∵AE=CF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DFE=∠DEF=45°由图3可得:∠EDF=∠BDA=90°,∴∠ADF=∠BDE,又∵AD=BD,DE=DF,∴△ADF ≌△BDE (SAS ), ∴BE =AF ,∠DFE =∠BED =45°, ∴∠AEB =90°, ∵AE :AF =3:4,∴设AE =3a ,AF =BE =4a , ∴AB ===5a ,∵AD =BD ,∠ADB =90°,DN ⊥AB , ∴DN =BN =AN =a ,∵S △ABE =AE ×BE =AB ×EH , ∴EH ==a ,∴AH ==a ,∵∠BED =∠AED =45°, ∴, ∴BG =,AG =,∴GH =a ,GN =a ,∴EG ==a ,DG ==a ,∴==.1、在最软入的时候,你会想起谁。
2020年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净 后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 23的倒数是 A. 32 B. 32- C. 23 D. 23- 2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为()A. 30.710-⨯B. 3710-⨯C. 4710-⨯D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅=D. 2332()()a b a b b -÷=- 4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)k y k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y =D.无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20201月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们用水量(吨)15 20 25 30 35 户数 3 6 7 9 5则这30户家庭该月应水量的众数和中位数分别是A.25 ,27.5B.25,25C.30 ,27.5D. 30 ,258.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为 A. 23m B. 26m C. (232)m - D. (262)m -9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为A. (3,1)B. 4(3,)3 C. 5(3,)3D. (3,2)10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为A.2B. 94C. 52D.3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上.......... 12.分解因式:21x -=_________13.当x =________时,分式225x x -+的值为0. 13.要从甲、乙两名运动员中选出一鸣参加“2020里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2020年中考数学必考经典题(江苏版)专题05 不等式(组)的解法与应用问题【方法指导】1.不等式性质:不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.2. 用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.4. 一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.5.不等式(组)的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.6.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【题型剖析】【类型1】不等式的性质【例1】(2019•昆山市二模)若x y<,则下列结论正确的是()A.1133x y->-B.22x y>C.11x y->-D.22x y<【变式1-1】(2019•滨湖区一模)若m n>,则下列各式中一定成立的是()A.22m n->-B.55m n-<-C.22m n->-D.44m n<【变式1-2】(2019•无锡模拟)下列不等式变形正确的是()A.由a b>,得22a b-<-B.由a b>,得||||a b>C.由a b>,得22a b-<-D.由a b>,得22a b>【变式1-3】(2018•无锡模拟)已知实数a、b,若a b>,则下列结论正确的是() A.55a b-<-B.22a b+<+C.33a b->-D.33a b>【类型2】解一元一次不等式(组)【例2】(2019•建湖县二模)解不等式221123x x+-+,并把它的解集在数轴上表示出来:【变式2-1】(2019•扬州一模)解不等式:122123x x-+-.【变式2-2】(2019•姑苏区校级二模)解不等式组3811223x xx x-<⎧⎪++⎨⎪⎩【变式2-3】(2019•玄武区二模)如图,在数轴上点A、B、C分别表示1-、23x-+、1x+,且点A在点B的左侧,点C在点B的右侧.(1)求x的取值范围;(2)当2AB BC=时,x的值为.【类型3】:不等式(组)的整数解【例3】(2019•天宁区校级二模)已知关于x的不等式组521xx a--⎧⎨->⎩有3个整数解,则a的取值范围是.【变式3-1】(2019•建邺区校级二模)若关于x的不等式组21312xx m+⎧+>-⎪⎨⎪<⎩的所有整数解的和是7-,则m的取值范围是.【变式3-2】(2019•南召县二模)已知关于x的不等式组321x ax-⎧⎨--⎩的整数解共有5个,则a的取值范围是.【变式3-3】(2018•海门市模拟)关于x的不等式组10x mx-<⎧⎨+>⎩恰有3个整数解,则实数m的取值范围为【类型4】:不等式的应用【例4】(2019•姑苏区校级二模)某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,若要保证获利不低于1000元,则甲商品最多能购进多少件?【变式4-1】(2019•高邮市二模)某校举办园博会知识竞赛,打算购买A、B两种奖品.如果购买A奖品10件、B奖品5件,共需120元;如果购买A奖品5件、B奖品10件,共需90元.(1)A,B两种奖品每件各多少元?(2)若购买A、B奖品共100件,总费用不超过600元,则A奖品最多购买多少件?【变式4-2】(2019•镇江一模)某旗舰网店用8000元购进甲、乙两种口罩,全部销售完后一共获利2800元,进价和售价如下表:品名价格甲种口罩乙种口罩进价(元/袋)2025售价(元/袋)2635(1)该店购进甲、乙两种口罩各多少袋?(2)该店再次以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若这次购进的两种口罩均销售完毕,且本次销售一共获利不少于3680元,那么乙种口罩每袋最多让利多少元?【类型5】:不等式组的应用【例5】(2019•昆山市二模)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,用于此次购球的总资金不低于5400元,且不超过5500元,求本次购球方案.【变式5-1】(2019•常熟市二模)为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?【变式5-2】(2019•太仓市模拟)某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?【变式5-3】(2018•海州区一模)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a270500元a 70餐椅110已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?【达标检测】一.选择题(共8小题)1.(2019•镇江)下列各数轴上表示的x的取值范围可以是不等式组的解集的是()2.(2019•宿迁)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个3.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.74.(2018•无锡)若关于x的不等式3x+m≥0有且仅有两个负整数解,则m的取值范围是()A.6≤m≤9 B.6<m<9 C.6<m≤9 D.6≤m<95.(2018•宿迁)若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.D.a2<b26.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a的取值范围为()A.1<a≤2 B.1<a<2 C.1≤a<2 D.1≤a≤27.(2019•西藏)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.()A.27本,7人B.24本,6人C.21本,5人D.18本,4人8.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.4二.填空题(共6小题)9.(2019•淮安)不等式组的解集是.10.(2019•泰州)不等式组的解集为.11.(2018•扬州)不等式组的解集为.12.(2019•丹东)关于x的不等式组的解集是2<x<4,则a的值为.13.(2019•莱芜区)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)14.(2019•玉林)设01,则m,则m的取值范围是.三.解答题(共8小题)15.(2019•南通)解不等式x>1,并在数轴上表示解集.16.(2019•常州)解不等式组并把解集在数轴上表示出来.17.(2019•扬州)解不等式组,并写出它的所有负整数解.18.(2019•盐城)解不等式组:19.(2018•无锡)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?20.(2018•南通)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次 2 1 55第二次 1 3 65 根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.21.(2019•抚顺)为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉2m2,乙种花卉3m2,共需430元;种植甲种花卉1m2,乙种花卉2m2,共需260元.(1)求:该社区种植甲种花卉1m2和种植乙种花卉1m2各需多少元?(2)该社区准备种植两种花卉共75m2且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?22.(2019•莱芜区)某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大概的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?。
中考数学冲刺全真模拟卷及答题解析(江苏苏州专用)试卷满分:130分考试时间:120分钟一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•香坊区期末)下列实数中是无理数的是()A.2B.√2C.3.1D.03【解答】解:A、2是分数,属于有理数,故本选项不合题意;3B、√2是无理数,故本选项符合题意;C、3.1是有限小数,属于有理数,故本选项不合题意;D、0是整数,属于有理数,故本选项不合题意.故选:B.2.(2019•温州二模)下列运算正确的是()A.a6÷a2=a3B.a•a=2a C.3a﹣2a=1D.a+a=2a【解答】解:A、a6÷a2=a4,故原题计算错误;B、a•a=a2,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、a+a=2a,故原题计算正确;故选:D.3.(2020秋•五常市期末)如图所示左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图形是()A.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面一层有2个正方形.故选:D.4.(2020秋•河东区期末)将0.000617用科学记数法表示,正确的是()A .6.17×10﹣6B .6.17×10﹣4C .6.17×10﹣5D .6.17×10﹣2【解答】解:0.000617=6.17×10﹣4. 故选:B .5.(2020秋•柳州期末)“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是( ) A .必然事件B .不可能事件C .随机事件D .确定事件【解答】解:“任意掷一枚质地均匀的骰子,掷出的点数可能是偶数,有可能是奇数”, ∴“任意掷一枚质地均匀的骰子,掷出的点数是偶数”是随机事件; 故选:C .6.(2020•高台县一模)不解方程,判别方程2x 2﹣3√2x =3的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有一个实数根D .无实数根【解答】解:方程整理得2x 2﹣3√2x ﹣3=0, ∵△=(﹣3√2)2﹣4×2×(﹣3)=18+24>0, ∴方程有两个不相等的实数根. 故选:B .7.(2020•黄石)如图,在Rt △ABC 中,∠ACB =90°,点H 、E 、F 分别是边AB 、BC 、CA 的中点,若EF +CH =8,则CH 的值为( )A .3B .4C .5D .6【解答】解:∵在Rt △ABC 中,∠ACB =90°,点H ,E ,F 分别是边AB ,BC ,CA 的中点, ∴EF =12AB ,CH =12AB ,∴EF =CH , ∵EF +CH =8, ∴CH =EF =12×8=4, 故选:B .8.(2020•卧龙区模拟)如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点F ,若BE =6,AB =5,则AF 的长为( )A.4B.6C.8D.10【解答】解:∵AF平分∠BAD,AD∥BC,∴∠BAF=∠DAF=∠AFB,∴AB=BF,∵AE=AB,AH=AH,∴△ABH≌△AEH,∴∠AHB=∠AHE=90°,∠ABH=∠AEH=∠FBH,BH=HE=3,∴Rt△ABH中,AH=2−BH2=4,∴AF=2AH=8,故选:C.9.(2019•安徽模拟)如图,二次函数y=ax2+bx+c与反比例函数y=b的图象交于点P,点P的纵坐x−b)x+c的图象可能是()标为2,则一次函数y=(−2baA.B.C.D.【解答】解:如图可知,a<0,b<0,c>0,∵点P的纵坐标为2,∴c<2,设P点横坐标m,∴2m=b,2=am2+bm+c,∴8﹣4c=(a+2)b2,∴a>﹣2,∴−2ba −b=−2b+aba=−b(a+2)a<0,∴y=(−2ba−b)x+c的图象经过第一、二、四象限;故选:C.10.(2019秋•花都区期末)如图,已知△ABC中,∠C=90°,AC=BC,把△ABC绕点A逆时针旋转60°得到△AB'C',连接C'B,则∠ABC'的度数是()A.45°B.30°C.20°D.15°【解答】解:如图,连接BB′,延长BC′交AB′于点M;由题意得:∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B;在△ABC ′与△B ′BC ′中, {AC ′=B ′C ′AB =B′B BC′=BC′, ∴△ABC ′≌△B ′BC ′(SSS ), ∴∠MBB ′=∠MBA =30°, 即∠ABC '=30°; 故选:B .二、填空题:本大题共8小题,每小题3分,共24分.11.(2020春•江夏区校级月考)若一组数据1,2,x ,4,5,6的唯一众数是2,则这组数据的中位数为 3 .【解答】解:∵一组数据1,2,x ,4,5,6的唯一众数是2, ∴x =2,∴这组数据的中位数是(2+4)÷2=3; 故答案为:3.12.(2020•徐州)若√x −3在实数范围内有意义,则x 的取值范围是 x ≥3 . 【解答】解:根据题意得x ﹣3≥0, 解得x ≥3. 故答案为:x ≥3.13.(2020秋•河东区期末)已知一个正多边形的每个内角都是150°,则这个正多边形是正 十二 边形.【解答】解:外角是:180°﹣150°=30°, 360°÷30°=12.则这个正多边形是正十二边形. 故答案为:十二.14.(2020•唐山二模)若a +b =﹣1,ab =﹣6,则代数式a 3b +2a 2b 2+ab 3的值为 ﹣6 . 【解答】解:∵a +b =﹣1,ab =﹣6, ∴a 3b +2a 2b 2+ab 3 =ab (a 2+2ab +b 2) =ab (a +b )2 =(﹣6)×(﹣1)2 =(﹣6)×1=﹣6, 故答案为:﹣6.15.(2020•徐州一模)如图,小明在地上画了两个半径分别为2m 和3m 的同心圆.然后在一定距离外向圆内投掷小石子.若未投掷入大圆内则需重新投掷.则小明掷中白色部分的概率为 49 .【解答】解:∵同心圆的两个半径分别为2m 和3m , ∵小明掷中白色部分的概率=π×22π×32=49. 故答案为49,16.(2020•吴忠一模)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为 45 .【解答】解:如图,过点C 作CD ⊥AB 于点D ,则∠ADC =90°,由勾股定理得: AC =√32+42=5, ∴sin ∠BAC =CD AC=45.故答案为:45.17.(2020•盐城模拟)如图,P A 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是优弧AB 上一点,连接AC 、BC ,如果∠P =∠C ,⊙O 的半径为1,则劣弧AB 的长为 π3 .【解答】解:∵P A切⊙O于点A,∴P A⊥OA,∴∠OAP=90°,∵∠AOP=2∠C,∠P=∠C,∴∠AOP=2∠P,∵∠AOP+∠P=90°,∴∠P=30°,∠AOP=60°,∴劣弧AB的长为60π×1180=π3;故答案为:π3.18.如图,矩形ABCD中,AD=2,AB=4,EF⊥AC,交AB、CD于E、F,则AF+CE的最小值是5.【解答】解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG═EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG ∥EF ,且CG ═EF , ∴四边形CEFG 是平行四边形; ∴EC ∥FG ,EC ═FG , 又∵点A 、F 、G 三点共线, ∴AF ∥EC ,又∵四边形ABCD 是矩形, ∴AE ∥DC ,∠D =90°, ∴四边形AECF 是平行四边形, ∴OA =OC ,OE =OF , 又∵EF ⊥AC , AF =CF =4﹣x ,在Rt △ADF 中,由勾股定理得: AD 2+DF 2=AF 2,又∵AD =2,DF =x ,则FC =4﹣x , ∴22+x 2=(4﹣x )2, 解得:x =32,∴AF =52,在Rt △ADC 中,由勾股定理得: AD 2+DC 2=AC 2, ∴AC =2√5, ∴AO =√5, 又∵OF ∥CG , ∴△AOF ∽△ACG , ∴AO AC =AFAG , ∴AG =5,又∵AG =AF +FG ,FG =EC , ∴AF +EC =5, 故答案为5.三、解答题:本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明. 19.(2020•达州)计算:﹣22+(13)﹣2+(π−√5)0+√−1253.【解答】解:原式=﹣4+9+1﹣5 =1.20.(2020•漳州模拟)解不等式组:{4(x +1)≤7x +13①x−83>x −4②,并把解集在数轴上表示出来,并写出它的所有负整数解.【解答】解:解⊙得:x ≥﹣3, 解⊙得:x <2,不等式组的解集为:﹣3≤x <2, 则它的所有负整数解为﹣3,﹣2,﹣1. 在数轴上表示:.21.(2020秋•朝阳县期末)先化简,再求值:x x −1÷(1+1x−1),其中x =−23.【解答】解:原式=x (x+1)(x−1)÷x x−1=x(x+1)(x−1)•x−1x=1x+1,当x =−23时,原式=3.22.(2020秋•新宾县期末)已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°. (1)求证:△ADE ≌△ABC ; (2)求证:AE =CE .【解答】(1)证明:∵∠1=∠2, ∴∠1+∠BAE =∠2+∠BAE , 即∠DAE =∠BAC , 在△ABC 和△ADE 中, {∠BAC =∠DAEAB =AD∠B =∠D,∴△ABC ≌△ADE (ASA );(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.23.(2020•海南模拟)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩达到良好及以上等级的有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?【解答】解:(1)调查的总人数为16÷40%=40(人),所以合格等级的人数为40﹣12﹣16﹣2=10(人),合格等级人数所占的百分比=1040×100%=25%;优秀等级人数所占的百分比=1240×100%=30%;统计图为:(2)600×(30%+40%)=420,所以估计成绩达到良好及以上等级的有420名;(3)画树状图为:共有9种等可能的结果数,其中甲、乙两人恰好分在同一组的结果数为3,=所以甲、乙两人恰好分在同一组的概率=39=13.24.(2020秋•南岗区期末)某商店想购进A、B两种商品,已知每件B种商品的进价比每件A种商品的进价多5元,且用300元购进A种商品的数量是用100元购进B种商品数量的4倍.(1)求每件A种商品和每件B种商品的进价分别是多少元?(2)商店决定购进A、B两种商品共50件,A种商品加价5元出售,B种商品比进价提高20%后出售,要使所有商品全部出售后利润不少于210元,求A种商品至少购进多少件?【解答】解:(1)设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,由题意得:300x =100x+5×4,解得:x=15,经检验,x=15是原分式方程的解,且符合题意,则x+5=20,答:每件A商品的进价为15元,每件B商品的进价为20元;(2)设购进A商品a件,由题意得:5a+20×20%(50﹣a)≥210,解得:a≥10,答:A种商品至少购进10件.25.(2019秋•薛城区期末)已知在平面直角坐标系中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=kx的图象经过点A,(1)当点B的坐标为(4,0)时(如图),求这个反比例函数的解析式;(2)当点B在反比例函数y=kx的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求nm的值.【解答】解:(1)过A 作AC ⊥OB ,交x 轴于点C ,∵OA =AB ,∠OAB =90°, ∴△AOB 为等腰直角三角形, ∴AC =OC =BC =12OB =2,∴A (2,2),将x =2,y =2代入反比例解析式得:2=k2,即k =4, 则反比例解析式为y =4x ;(2)过A 作AE ⊥x 轴,过B 作BD ⊥AE , ∵∠OAB =90°, ∴∠OAE +∠BAD =90°, ∵∠AOE +∠OAE =90°, ∴∠BAD =∠AOE , 在△AOE 和△BAD 中, {∠AOE =∠BAD∠AEO =∠BDA =90°AO =BA, ∴△AOE ≌△BAD (AAS ), ∴AE =BD =n ,OE =AD =m ,∴DE =AE ﹣AD =n ﹣m ,OE +BD =m +n , 则B (m +n ,n ﹣m );(3)由A 与B 都在反比例图象上,得到mn =(m +n )(n ﹣m ), 整理得:n 2﹣m 2=mn ,即(mn )2+mn −1=0, 这里a =1,b =1,c =﹣1, ∵△=1+4=5,∴mn =−1±√52,∵A(m,n)在第一象限,∴m>0,n>0,则mn =−1+√52,∴nm =√5+12.26.(2020秋•南京期末)如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵AD̂=AD̂,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴DÊ=BÊ,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴EDEG =EAED,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴OFOA =EFDE,∵BO=BF=OA,DE=32,∴21=EF32,∴EF=3.27.(2020•河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,可求出BB′CE的值为√2;(2)当0°<α<360°且α≠90°时,⊙(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;⊙当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D=180°−30°2=75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴BDDC=√2,同理B′DDE=√2,∴BDDC =B′DDE,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴BB′CE =BDDC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)⊙两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°−α2,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°−α2,∴∠EB'D=∠AB'D﹣∠AB'B=135°−α2−(90°−α2)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴DB′DE=√2,∵四边形ABCD是正方形,∴BDCD=√2,∠BDC=45°,∴BDCD =DB′DE,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴BB′CE =BDCD=√2.⊙BEB′E=3或1.如图3,若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=√2B'E,由(2)⊙可知△BDB'∽△CDE,且BB'=√2CE.∴BEB′E =B′B+B′EB′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD为平行四边形的一边,如图4,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E=3或1.28.(2020秋•沈阳期末)在平面直角坐标系中,抛物线y=x2﹣kx﹣2k(k为常数)的顶点为N.(1)如图,若此抛物线过点A (3,﹣1),求抛物线的函数表达式; (2)在(1)的条件下,抛物线与y 轴交于点B , ⊙求∠ABO 的度数;⊙连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作CD ∥x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当△BPN ∽△BNA 时,线段CD 的长为 1+2√33.(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为(2,0),当∠MHN =90°时,请直接写出k 的值.【解答】解:(1)将点A 的坐标代入y =x 2﹣kx ﹣2k 并解得k =2, 故抛物线的表达式为y =x 2﹣2x ﹣4;(2)⊙对于y =x 2﹣2x ﹣4,令x =0,则y =﹣4,故点B (0,﹣4), 而点A (3,﹣1),点A 、B 横坐标的差和纵坐标的差相等,AB 与x 轴的夹角为45°, 故∠ABO =45°;⊙由抛物线的表达式知,点N (1,﹣5),由点A 、B 、N 的坐标知,BN 2=12+(﹣5+4)2=2,AB =3√2, ∵△BPN ∽△BNA , ∴BN BA=BP BN,即BP =BN 2AB=3√2=√23, 由⊙知,∠ABO =45°,故△BPD 为等腰直角三角形, 故BD =√22BP =√22×√23=13,故点D (0,−113),当y =−113时,即x 2﹣2x ﹣4=−113, 解得x =1±2√33(舍去负值), 故CD 的长为x =1+2√33,故答案为1+2√33;(3)y =x 2﹣kx ﹣2k =x 2﹣k (x +2),当x =﹣2时,y =x 2﹣kx ﹣2k =4,即点H (﹣2,4),如图,过点H 作y 轴的平行线交过点N 与x 轴的平行线于点G ,HG 交x 轴于点K ,由抛物线的表达式知,点N (12k ,−k 24−2k ),∵∠NHG +∠MHG =90°,∠MHG +∠HMO =90°, ∴∠NHG =∠HMO , ∴tan ∠NHG =tan ∠HMO ,即GN HG=HK KM,∴−2−12k4+k 24+2k=42+2,解得k =﹣4或﹣6,当k =﹣4时,点N 的坐标为(﹣2,4)和点H 重合,故舍去k =﹣4, 故k =﹣6.。
冲刺提分训练:《方程类应用题》1.巴南区认真落实“精准扶贫”.某“建卡贫困户”在党和政府的关怀和帮助下投资了一个鱼塘,经过一年多的精心养殖,今年10月份从鱼塘里捕捞了草鱼和花鲢共2500千克,在市场上草鱼以每千克16元的价格出售,花鲢以每千克24元的价格出售,这样该贫困户10月份收入52000元,(1)今年10月份从鱼塘里捕捞草鱼和花鲢各多少千克?(2)该贫困户今年12月份再次从鱼塘里捕捞.捕捞数量和销售价格上,草鱼数量比10月份减少了2a千克,销售价格不变;花鲢数量比10月份减少了a%,销售价格比10月份减少了,该贫困户在10月份和12月份两次捕捞中共收入了94040元,真正达到了脱贫致富,求a的值.2.春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.(1)求第一批箱装饮料每箱的进价是多少元;(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?3.李老师准备购买一套小户型商品房,他去售楼处了解情况得知.该户型商品房的单价是5000元/m2,面积如图所示(单位:m,卫生间的宽未定,设宽为xm),售房部为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元/m2,其中厨房可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x的代数式表示该户型商品房的面积及方案一、方案二中购买一套该户型商品房的总金额;(2)当x=2时,通过计算说明哪种方案更优惠?优惠多少元?(3)李老师因现金不够,于2019年10月在建行借了18万元住房贷款,贷款期限为10年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月应还的贷款本金数额为1500元(每月还款数额=每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率),假设贷款月利率不变,请求出李老师在借款后第n(1≤n≤120,n 是正整数)个月的还款数额.(用n的代数式表示)4.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).5.列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的.求乘坐甲巴士从香港口岸人工岛出发到珠海洪湾需要多长时间.6.甲、乙两家体有用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元,现两家商店搞促销活动.甲店的优惠办法是:每买一副乒乓球拍赠盒乒乓球:乙店的优惠办法是:按定价的9折出售某班需购买兵乓球拍4副,乒乓球若干(不少于4盒).(1)用代数式表示(所填代数式需化简):当购买兵乓球的盒数为x盒时,在甲店购买需付款元,在乙店购买需付款元:(2)若只能选择到一家商店购买,当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由:(3)若只能选择到一家商店购买,当购买乒乓球多少盒时,到两家商店所花费用一样多?(4)若只能选择到一家商店购买,结合(2)(3)的结论,请你回答当购买兵乓球的盒数在什么范围时,到乙商店购买合算.7.某通讯公司推出了移动电话的两种计费方式(详情见表).月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:t≤150 150<t<350 t=350 t>350方式一计费/元58108方式二计费/元88 88 88(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.8.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?9.某校学生会为积极响应武汉市文明创建活动,组织有关方面的知识竞赛,共设有20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.(1)设答对一题记a分,答错一题记b分,则a=b=;(2)参赛者E说他得了80分,你认为可能吗,为什么?参赛者答对题数答错题数得分A20 0 100B19 1 94C18 2 8810.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?11.在“元旦”期间,七(1)班小明,小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票省钱?请说明理由.(3)正要购票时,小明发现七(2)班的小张等10名同学和他们的7名家长共17人也来购票,为了节省费用,经协商,他们决定一起购票,请你为他们设计最省钱的购票方案,并求出此时的费用.12.目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60 (1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?13.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?14.某市正在进行“打造宜居靓城,建设幸福之都”活动.在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?15.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.16.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案1.解:(1)设今年10月份从鱼塘里捕捞草鱼x千克,则捕捞的花鲢是(2500﹣x)千克,由题意,得16x+(2500﹣x)×24=52000解得x=1000所以2500﹣1000=1500(千克)答:今年10月份从鱼塘里捕捞草鱼1000千克,则捕捞的花鲢是1500千克;(2)由题意,得16(1000﹣2a)+1500(1﹣a%)×24×(1﹣)=94040﹣52000 解得a=30.答:a的值是30.2.解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,根据题意,得解得:x=200(2)设每箱饮料的标价为y元,根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)解得:y≥296答:至少标价296元.3.解:(1)该户型商品房的面积为:4×7+3×4+2×4+2x=48+2x(平方米).方案一购买一套该户型商品房的总金额为:(4×7+3×4+×2×4+2x)×5000=220000+10000x(元).方案二购买一套该户型商品房的总金额为:(4×7+3×4+2×4+2x)×5000×95%=228000+9500x(元).(2)当x=2时,方案一总金额为:220000+10000x=240000(元)方案二总金额为:228000+9500x=247000(元)方案一比方案二优惠7000元.(3)根据题意得:李老师在借款后第n(1≤n≤120,n是正整数)个月的还款数额为:1500+[180000﹣1500(n﹣1)]×0.5%=2407.5﹣7.5n(元).4.解:(1)设甲商品的出厂单价是x元/件,则乙商品的出厂单价是x元/件,根据题意得:3x﹣2×x=150,解得:x=90,∴x=60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:,解得:a1=0(舍去),a2=15.答:a的值为15.5.解:设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x小时,则乙巴士的行驶时间需要小时,根据题意得:解得:经检验,是原分式方程的解且符合题意答:甲巴士从香港口岸人工岛出发到珠海洪湾需要小时.6.解:(1)甲:20×4+5(x﹣4)=60+5x(x≥4);乙:4.5x+72(x≥4).故答案是:(60+5x)(x≥4);(4.5x+72)(x≥4);(2)当x=10时,甲:60+5x=60+50=110(元)乙:4.5x+72=4.5×10+72=117(元)由于110<117,所以,在甲店合适;(3)由题意知,60+5x=4.5x+72,解得x=24,即当x=24时,到两店一样合算;(4)由题意知,60+5x>4.5x+72,解得x>24,即当x>24时,到乙店合算.7.解:(Ⅰ)①当150<t<350时,方式一收费:58+0.25(t﹣150)=0.25t+20.5;②当t>350时,方式一收费:108+0.25(t﹣350)=0.25t+20.5;③方式二当t>350时收费:88+0.19(t﹣350)=0.19t+21.5.故答案是:0.25t+20.5;0.25t+20.5;0.19t+21.5;(Ⅱ)∵当t>350时,(0.25t+20.5)﹣(0.19t+21.5)=0.06t﹣1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)当t<270时,选择方式一省钱;当t=270时,两种方式收费一样多;当t>270时,选择方式二省钱.8.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.9.解:(1)由题意,得,答对一题的得分是:100÷20=5分,答错一题的扣分为:19×5﹣94=1分,故答案为:5,﹣1;(2)假设他得80分可能,设答对了y道题,答错了(20﹣y)道题,由题意,得,5y﹣(20﹣y)=80,解得:y=,∵y为整数,∴参赛者说他得80分,是不可能的.10.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.11.解:(1)设小明他们一共去了x个成人,则去了(12﹣x)个学生,根据题意得:40x+40×0.5(12﹣x)=400,解得:x=8,∴12﹣x=4.答:小明他们一共去了8个成人,4个学生.(2)40×0.6×16=384(元),384元<400元.答:购买16张团体票省钱.(3)①(8+7)×40+(4+10)×20=880(元),②(17+12)×40×0.6=696(元),③(8+7+1)×40×0.6+(4+10﹣1)×40×0.5=644(元).答:15个大人加上一个学生购买16张团体票,剩下的13名学生购买13张学生票,此时共需644元.12.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.13.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.14.解:(1)设:甲队单独完成这项工程需要x天.由题意可列:解得:x =40经检验,x =40是原方程的解.答:甲队单独完成这项工程需要40天;(2)因为:全程用甲、乙两队合做需要:(3.5+2)×24=132万元单独用甲队完成这项工程需要:40×3.5=140万元单独用乙队完成这项工程需要:60×2=120万元,但60>50.所以,全程用甲、乙两队合做该工程最省钱.15.解:(1)建筑区的面积是500×400×(1﹣19%)=162000(平方米). 设建筑区的长度为5x 米,则宽为4x 米.根据题意得:5x •4x =162000,整理得 x 2=8100,解得 x 1=90,x 2=﹣90(不合题意),则东西两侧道宽:(500﹣5x )÷2=25(米),南北两侧道宽:(400﹣4x )÷2=20(米).答:小区的东西两侧道宽为25米,南北两侧道宽为20米;(2)设小区道路的宽度为z 米,则(20﹣z )×300+2×(25﹣z )×200=5500,解得z =15.答:小区道路的宽度是15米.16.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +6)元, 由题意得:30x +20(x +6)=1070,解得:x =19,则x +6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y 支,则单价为25元的毛笔为(60﹣y )支, 根据题意得:19y +25(60﹣y )=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.。
江苏省镇江市九年级中考模拟测试数学冲刺卷(考试时间:120分钟 试卷满分:120分)第Ⅰ卷(选择题 共12分)一、选择题(共6小题,每小题2分,计12分,每小题只有一个选项是符合题意的)1.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .46×10﹣7 B .4.6×10﹣7C .4.6×10﹣6D .0.46×10﹣5【答案】C【解析】0.0000046=4.6×10﹣6. 故选:C .2.下列运算正确的是( ) A .2325a a a += B .232a a a -= C .325()()a a a --=-gD .324222(24)(2)2a b ab ab b a -÷-=- 【答案】D【解析】 A 、325a a a +=,故此选项错误; B 、232a a -,无法计算,故此选项错误;C 、325()()a a a --=g ,故此选项错误;D 、324222(24)(2)2a b ab ab b a -÷-=-,正确.故选:D .3.有理数8-的立方根为( ) A .2- B .2C .2±D .4±【答案】A【解析】 有理数8-2=-.故选:A . 4. 下列各数中,小于﹣2的数是( ) A .﹣B .﹣C .﹣D .﹣1【答案】A【解析】 比﹣2小的数是应该是负数,且绝对值大于2的数, 分析选项可得,﹣<﹣2<﹣<﹣<﹣1,只有A 符合.故选:A .5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A .a>b B .|a| < |b| C .a+b>0 D .ba <0【答案】D【解析】 a 是负数,b 是正数,异号两数相乘或相除都得负.故选:D6.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A.B.C.D.【答案】A【解析】过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF =.故选:A .第Ⅱ卷(非选择题 共108分)二、填空题(共10小题,每小题2分,计20分)7. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是 .【答案】1【解析】 根据勾股定理可得2213a b +=,四个直角三角形的面积是:14131122ab ⨯=-=,即:212ab =,则222()213121a b a ab b -=-+=-=. 故答案为:1.8.数轴上表示﹣3的点到原点的距离是 . 【答案】3【解析】在数轴上表示﹣3的点与原点的距离是|﹣3|=3.故答案为:3.9.分解因式:ax2﹣ay2=.【答案】a(x+y)(x﹣y)【解析】ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).10.若在实数范围内有意义,则x的取值范围为.【答案】x≥2【解析】由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.11.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=18°,则∠2的度数是.【答案】48°【解析】∵a∥b,∴∠2=∠1+∠CAB=18°+30°=48°,故答案为:48°12. 如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.【答案】3【解析】结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.14.a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【答案】8【解析】 ∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.15. 如图,AB 是O e 的弦,OC AB ⊥,垂足为点C ,将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则O e 的半径为 .【答案】【解析】 连接OA ,设半径为x ,Q 将劣弧¶AB 沿弦AB 折叠交于OC 的中点D ,23OC x ∴=,OC AB ⊥, 12AC AB ∴=, 222OA OC AC -=Q ,∴222()103x x -=,解得,x =故答案为:16.如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)【答案】①③④【解析】 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,OD =OB ,OA =OC , ∴∠DCB +∠ABC =180°, ∵∠ABC =60°, ∴∠DCB =120°, ∵EC 平分∠DCB , ∴∠ECB =∠DCB =60°,∴∠EBC =∠BCE =∠CEB =60°, ∴△ECB 是等边三角形, ∴EB =BC , ∵AB =2BC ,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴==,∴OF=OB,∴S△AOD=S△BOC=3S△OCF,故②错误,设BC=BE=EC=a,则AB=2a,AC=a,OD=OB==a,∴BD=a,∴AC:BD=a:a=:7,故③正确,∵OF=OB=a,∴BF=a,∴BF2=a2,OF•DF=a•(a+a)=a2,∴BF2=OF•DF,故④正确,故答案为①③④.三、解答题(共11小题,计88分.解答应写出过程) 17.(7分)化简:(12)2(1)(1)a a a a -++- 【解析】 原式2222(1)a a a =-+- 22222a a a =-+-2a =-18.(7分) 解方程:2121xx x +=+- 【解析】 ab (3a ﹣2b )+2ab 2 =3a 2b ﹣2ab 2+2ab 2 =3a 2b .19.(7分)如图,在矩形ABCD 中,点E ,F 在对角线BD .请添加一个条件,使得结论“AE =CF ”成立,并加以证明.【解析】添加的条件是BE =DF (答案不唯一). 证明:∵四边形ABCD 是矩形, ∴AB ∥CD ,AB =CD ,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.20.(8分)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.【解析】(1)这个班级的学生人数为15÷30%=50(人),选择C饮品的人数为50﹣(10+15+5)=20(人),补全图形如下:(2)=2.2(元),答:该班同学每天用于饮品的人均花费是2.2元;(3)画树状图如下:由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果,所以恰好抽到2名班长的概率为=.21.(7分)如图①,在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N(1)求证:MN=MC;(2)若DM:DB=2:5,求证:AN=4BN;(3)如图②,连接NC交BD于点G.若BG:MG=3:5,求NG•CG的值.【解析】(1)如图①,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;(2)由(1)得FM∥AD,EM∥CD,∴===,∴AF=2.4,CE=2.4,∵△MFN≌△MEC,∴FN=EC=2.4,∴AN=4.8,BN=6﹣4.8=1.2,∴AN=4BN;(3)如图②,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH,∠DCM=∠BCH=45°,∴∠MBH=90°,∠MCH=90°,∵MC=MN,MC⊥MN,∴△MNC是等腰直角三角形,∴∠MNC=45°,∴∠NCH=45°,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为6,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGC∽△NGB,∴=,∴CG•NG=BG•MG=.22.(8分)如图,在Rt ABC∠的平分线AD交BC于点D,点E在AC上,∆中,90B∠=︒,BAC以AE为直径的Oe经过点D.(1)求证:①BC是Oe的切线;②2=g;CD CE CA(2)若点F是劣弧AD的中点,且3CE=,试求阴影部分的面积.【解析】 (1)①连接OD ,AD Q 是BAC ∠的平分线,DAB DAO ∴∠=∠,OD OA =Q ,DAO ODA ∴∠=∠, DAO ADO ∴∠=∠, //DO AB ∴,而90B ∠=︒,90ODB ∴∠=︒, BC ∴是O e 的切线;②连接DE ,BC Q 是O e 的切线,CDE DAC ∴∠=∠,C C ∠=∠,CDE CAD ∴∆∆∽, 2CD CE CA ∴=g ;(2)连接DE 、OE ,设圆的半径为R ,Q 点F 是劣弧AD 的中点,∴是OF 是DA 中垂线,DF AF ∴=,FDA FAD ∴∠=∠,//DO AB Q ,PDA DAF ∴∠=∠, ADO DAO FDA FAD ∴∠=∠=∠=∠,AF DF OA OD ∴===,OFD ∴∆、OFA ∆是等边三角形,30C ∴∠=︒, 1()2OD OC OE EC ∴==+,而OE OD =,3CE OE R ∴===, 260333602DFO S S ππ==⨯⨯=阴影扇形. 23.(8分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣,0),(,1),连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【解析】 (1)如图,过点B 作BH ⊥x 轴 ∵点A 坐标为(﹣,0),点B 坐标为(,1)∴|AB |==2∵BH =1 ∴sin ∠BAH ==∴∠BAH =30° ∵△ABC 为等边三角形 ∴AB =AC =2∴∠CAB+∠BAH=90°∴点C的纵坐标为2∴点C的坐标为(,2)(2)由(1)知点C的坐标为(,2),点B的坐标为(,1),设直线BC的解析式为:y =kx+b则,解得故直线BC的函数解析式为y=x+24.(8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解析】作CE⊥AB于E,则四边形CDBE 为矩形, ∴CE =AB =20,CD =BE , 在Rt △ADB 中,∠ADB =45°, ∴AB =DB =20,在Rt △ACE 中,tan ∠ACE =,∴AE =CE •tan ∠ACE ≈20×0.70=14, ∴CD =BE =AB ﹣AE =6,答:起点拱门CD 的高度约为6米.25.(8分)现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A 的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A 的纵坐标,试用画树状图或列表的方法求出点A 在直线y=2x 上的概率. 【解析】(1)∵抽取的负数可能为-2,-1,∴抽取出数字为负数的概率为P=2142 (2)列表如下∵共有16种等可能结果,其中点A 在直线y=2x 上的结果有2种 ∴点A 在直线y=2x 上的概率为81162=='P 26.(9分)某农作物的生长率p 与温度t (℃)有如下关系:如图1,当10≤t ≤25时可近似用函数p =t ﹣刻画;当25≤t ≤37时可近似用函数p =﹣(t ﹣h )2+0.4刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t (℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【解析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]=40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.27.(11分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.【解析】(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即:﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。
江苏省中考数学黄金冲刺预测试题注意事项: 1.本卷满分130分.考试时间为120分钟.2.本测试分试卷和答题卷两部分,所有答案一律写在答题卷上.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,只需把相应的选项标号填写在答题卡上相应的位置.........) 1. -2的绝对值是 ……………………………………………………………………………… ( ▲ ) A .2 B .-2C .12D .-122. 计算(-x )2·x 3的结果是 ………………………………………………………………………( ▲ ) A .x 5 B .-x 5C . x 6D .-x 63. 下列图案不是轴对称图形的是…………………………………………………………………( ▲ )A .B .C .D .4.方程2x -1=3x +2的解为 ……………………………………………………………………( ▲ )A .x =1B .x =-1C .x =3D .x =-35.二次函数y =x 2+2x -5有 ………………………………………………………………………( ▲ ) A .最大值-5 B .最小值-5 C .最大值-6 D .最小值-66.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积为 ……………………………( ▲ ) A .12π B .21π C .24π D .42π7.如图是由6个相同的小正方体搭成的立体图形,若由图①变到图②,则………………… ( ▲ ) A .主视图改变,俯视图改变 B .主视图不变,俯视图改变 C .主视图不变,俯视图不变 D .主视图改变,俯视图不变8.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为 …………………………………………………………………………………… ( ▲ )A .(-3,3)B . (3,2)C . (0,3)D . (1,3)9. 对于每个正整数n ,抛物线1)12()(22++-+=x n x n n y 与x 轴交于n n B A ,两点,以n n B A 表示该两点间的距离,则201620162211......B A B A B A +++的值是 ····················································· ( ▲ )A .20162015B .20162017C .20172015D .2017201610. 如图,A 、B 、C 是反比例函数图象上三点,作直线l ,使A 、B 、C 到直线l 的距离之比为3:1:1,则满足条件的直线l 共有(▲ ) A . 4条 B . 3条 C . 2条D . 1条二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题卡相A A图① 图② 第7题图 第8题图第10题C AB DOH(第16题)应的位置上.)11. 分解因式: x 2-16= ▲ .12. 函数y =x -2中,自变量x 的取值范围是 ▲ .13.今年清明假期全国铁路发送旅客约41 000 000人次,将41 000 000用科学记数法表示为 ▲ . 14.一次函数y =-2x +3的图像与x 轴的交点坐标为 ▲ . 15.命题“对顶角相等”的逆命题...是 ▲ 命题.(填“真”或“假”) 16.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =8,则菱形ABCD 的周长等于 ▲ .17.某经销商销售一种产品,这种产品的成本价为10元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克,且1810≤≤x )之间的函数关系如图所示,该经销商想要每天获得150元的销售利润,销售价应定为多少?列出关于x 方程是 ▲ . (不需化简和解方程) 18.在平面直角坐标系中,点A (5-,0),以OA 为直径在第二象限内作半圆C ,点B 是该半圆周上一动点,连结OB 、AB ,作点A 关于点B 的对称点D ,过点D 作x 轴垂线,分别交直线OB 、x 轴于点E 、F ,点F 为垂足.当DF =4时,线段EF = ▲ . 三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上.)19.(本题8分)计算与化简:(1)tan 60º-(a 2+1)0 +|-9| (2)m −1m ÷m 2-1m 2+m20.(本题8分)解方程与不等式组:(1)解方程组⎩⎪⎨⎪⎧x +y =-1,x -2y =5. (2)解不等式组⎩⎪⎨⎪⎧3x +1<2(x +2),-x 3≤5x3+2.21.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,OE =OF .(1)求证:△BOE ≌△DOF ;(2)若BD =EF ,连接DE 、BF ,判断四边形EBFD 的形状,并说明理由.OCBAD FE(元每千A BCE O22.(本题8分)如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD =CB ,延长CD 交BA 的延长线于点E . (1)求证:CD 为⊙O 的切线.(2)若圆心O 到弦DB 的距离为1,∠ABD =30°,求图中阴影部分的面积.(结果保留π)23.(本题6分)国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优.秀.的人数做了以下分析:(1)写出本次随机抽取的七年级人数m = ▲ ; (2)补全条形统计图;(3)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.某地区七、八、九年级随机抽取学生 体质健康优秀率的折线统计图体质健康优秀率 某地区七、八、九年级随机抽取学生 体质健康优秀的人数的条形统计图体质健康优秀的人数 204060 80 024.(本题8分)甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. ⑴ 求乙盒中蓝球的个数;⑵ 从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.25.(本题8分)无锡某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y (台)与售价x (元/台)之间的函数关系式;并求出自变量x 的取值范围; (2)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?26.(本题10分)在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的密距,记为d (M ,N ).特别地,若图形M ,N 有公共点,规定d (M ,N )=0. (1) 如图1,⊙O 的半径为2,①点A (0,1),B (4,3),则d (A ,⊙O )= ,d (B ,⊙O )= . ②已知直线l : y =34x +b 与⊙O 的密距d (l ,⊙O )=65,求b 的值.(2) 如图2,C 为x 轴正半轴上一点,⊙C 的半径为1,直线y =-33x +433与x 轴交于点D ,与y 轴交于点E ,线段..DE 与⊙C 的密距d (DE ,⊙C )< 12.请直接写出圆心C 的横坐标m 的取值范围.27.(本题10分)如图,直线b x y +=()0>b 与x 、y 轴分别相交于A 、B 两点,点C (1,0),过点C 作垂直于x 轴的直线l .在直线l 上取一点P ,满足P A=PB .点A 关于直线l 的对称点为点D ,以D 为圆心,DP 为半径作⊙D .⑴ 直接写出点A 、D 的坐标;(用含b 的式子表示)⑵ 求点P 的坐标;⑶ 试说明:直线BP 与⊙D 相切. .图2图128.(本题10分)已知二次函数图象的顶点坐标为A (2,0),且与y 轴交于点(0,1),B 点坐标为(2,2).点C 为抛物线上一动点,以C 为圆心,CB 为半径的圆交x 轴于M ,N 两点(M 在N 的左侧).⑴ 求此二次函数的表达式;⑵ 当点C 在抛物线上运动时,弦MN 的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN 的长;⑶ 当△ABM 与△ABN 相似时,求出M 点的坐标.备用图备用图答案一、选择题:(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,只需把相应的选项标号填写在答题卡上相应的位置.........) 1.A 2.A 3.D 4.D 5.D 6.A 7.B 8.D 9.D 10.A二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题卡相应的位置上.)11.(x+4)(x −4) 12.x ≥2 13.4.1×107 14.(32 ,0) 15.假 16. 64 17. (x −10)(−2x+60) 18.32或6三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上.)19.(本题8分)计算与化简:(1)= 3 −1+9 ……3分 (2)=m −1m ·m (m +1)(m +1)(m −1) ……3分= 3 +8 ……4分 =1 ……4分 20.(本题8分)解方程与不等式组:(1)⎩⎨⎧x =1,y =−2…… 4分 (2)由(1)得 x <3 ……1分 ;由(2)得x ≥−1 ……3分∴ −1≤x <3……4分21. (本题8分)(1)证明正确……3分 (2)四边形EBFD 是矩形…4分 证明正确……8分 22. (本题8分)(1)证明正确…………… 4分;(2)43π- 3 …………… 8分23. (本题6分)(1)m =200.…………………………………… 2分(2)统计图正确. (抽测中九年级体质健康优秀人数56人)…………… 4分 (4)38+26+56500×10000=2400人.……………………………………… 5分答:估计该地区10000名初中学生体质健康状况优秀人数是2400人. …… 6分24.(本题8分)⑴ 列方程 -------------------------------------------------------------------------- 2分解出结果 3 -------------------------------------------------------------------------------------- 4分 ⑵ 乙甲白黄 黄 蓝 蓝 蓝 白 白白 白黄白黄 白蓝 白蓝 白蓝 白 白白 白黄 白黄 白蓝 白蓝 白蓝 黄 黄白 黄黄 黄黄 黄蓝 黄蓝 黄蓝 蓝 蓝白蓝黄蓝黄蓝蓝蓝蓝蓝蓝----- ---------------------------------------------------------------------------------------------------- 6分从两个盒子里各摸出一球共有24种情况,其中两个都是篮球的有3种,所以概率为81.……8分 25.(本题8分)(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y (台)与售价x (元/台)之间的函数关系式:y =200+50×400-x10, 化简得:y=﹣5x+2200;……………2分供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台, 则⎩⎨⎧x ≥300,−5x +2200≥450 ,解得:300≤x ≤350. ……………4分 ∴y 与x 之间的函数关系式为:y=﹣5x+2200(300≤x ≤350); (2)W=(x ﹣200)(﹣5x+2200),整理得:W=﹣5(x ﹣320)2+72000.……………6分 ∵x=320在300≤x≤350内,∴当x=320时,最大值为72000, ……………7分 即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w 最大,最大利润是72000元.…8分 26.(本题10分)解:(1) ①d (A ,⊙O )=1,d (B ,⊙O )=3. …………………………2分②如图,设直线l :y =34 x +b 与x 轴,y 轴分别交于点P∴P (-43 b ,0),Q (0,b ).过点O 作OH ⊥l 于点H ,OH 交⊙O 于点G , 当b >0时,OQ =b ,PQ =53b ,sin ∠OPQ =OQ PQ =35, ∴OH =OP •sin ∠OPQ =43 b ×35 =45 b .∵ d (l ,⊙O )=GH =65,∴OH =OG +GH =2+65 =165,即45 b =165, ∴b =4. ………………………5分 当0<b 时,同理可得4-=b .∴b =±4. ………………………7分 (3)2111<<m . ………………………10分 27.(本题10分)(1)A(−b,0) D(b+2,0) ………………………2分(2)P(1,−1) ………………………6分(3)略 ………………………10分 28.(本题10分)(1)y=14x 2−x +1………………………2分(2)MN=4 ………………………4分(3)M(0,0),M(2 2 ,0),M(−2 2 ,0) ………………………10分。
2020届中考数学冲刺同步练习题:二元一次方程组实际应用1.文峰超市花10000元购进了甲、乙两种商品,其中甲商品件数比乙商品件数的2倍少10,甲、乙两种商品的进价和售价如表:甲乙进价(元/件)120 80售价(元/件)160 130 (1)该超市购进甲、乙两种商品各多少件?(2)销售完该批商品的利润为多少元?2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.3.现有36卷相同的布料做工作服,每卷布料可制作成上衣25件,或者制作成裤子40件,一件上衣和两件裤子组成一套,问,用多少卷布料制作上衣,多少卷布料制作裤子可以使上衣和裤子正好配套?4.小李在某商场购买A,B两种商品若干次(每次A,B都买),其中前两次按标价购买,第三次购买时,A,B两种商品同时打折,三次购买A,B商品和费用如表所示:购买A商品的数量购买B商品的数量购买总费用第一次 6 5 960第二次 3 7 940第三次9 8 912 (1)求A,B商品的标价各多少元?(2)若小李第三次购买时,A,B商品的折扣相同,则商场是打几折出售这两种商品?(3)在(2)的条件下打折,若小李第四次购买A,B商品共花去960元,则小李购买方案可能有哪几种?5.据农业农村部消息,国内受猪瘟与猪周期叠加影响,生猪供应量大幅减少,从今年6月起猪肉价格连续上涨.一品生鲜超市在6月1日若售出3kg五花肉和5kg排骨,销售额为366元;若售出1kg五花肉和3kg排骨,销售额为186元.(1)6月1日每千克五花肉和排骨的价格各是多少元?(2)6月1日五花肉和排骨的销售量分别为410kg、240kg.由于猪肉价格持续上涨,11月1日五花肉的销售价格在6月1日的基础上增长了2m%,销售量减少了110kg;排骨的销售价格在6月1日的基础上增加了m元,销售量下降了25%,结果11月1日的销售额比6月1日的销售额多5100元,求m的值.6.根据小亮与小丽的一段对话,求一支笔与一本笔记本的单价分别是多少元.7.越来越多的人用微信聊天、转账、付款等.把微信账户里的钱转到银行卡叫做提现.每个微信账户有1000元的免费提现额度,当累计提现超过这个额度时,超出的部分需要付0.1%的手续费.(1)小明的妈妈从未提现过,此时想把微信零钱里的15000元提现,那么将收取手续费元;(2)小亮用自己的微信账户共提现3次,3次提现金额和手续费分别如下:第一次提现第二次提现第三次提现提现金额(元)a b3a+2b手续费(元)0 0.4 3.4①用二元一次方程组的相关知识求表中a、b的值;②小明3次提现金额共计元.8.为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B 两种型号,其中每台的价格,年省油量如表:A B价格(万元/台)a b 节省的油量(万升/年•台) 2.4 2经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元(1)请求出a和b的值;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?9.云南民族村位于云南省昆明市西南郊的滇池之畔,是反映和展示云南25个少数民族社会文化风情的窗口.某校为让学生了解家乡,热爱家乡,亲近自然,增强学生集体观念和团体意识,特组织七年级师生春游云南民族村,已知师生共有762人,准备了49座和37座两种客车共18辆,刚好满座,求49座和37座客车各有几辆?10.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?11.2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?12.(1)某校组织初一年级师生共720人出去春游,学校打算租用旅游公司的大巴车接送,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车满载)车型甲乙丙汽车运载量(人/辆)30 48 60汽车运费(元/辆)400 500 600(1)若只租用甲、乙两种车型来接送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,学校打算用甲、乙、丙三种车型同时参与接送,已知它们的总辆为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?13.滨江区各学校积极参加“给贫困山区献爱心”活动,教育局筹集了120吨的衣物书籍等物品运往山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)200 250 300(1)全部物资可用甲型车8辆,乙型车5量,丙型车辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费4100元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,教育局打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?14.学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B型毛笔都按零售价销售.(1)如果一个小组共有10名同学,若每人各买1支A型毛笔和1支B型毛笔,共支付50元;若每人各买2支A型毛笔和1支B型毛笔,共支付70元.这家文具店的A,B两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的A型毛笔的零售价)的90%出售.现要一次性购买A型毛笔a支,在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.15.亲亲学校初中部组织一起外出活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且空出30个座位没人坐.已知45座客车租金为每辆450元,60座客车租金为每辆560元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?16.小明同学本周日上午先乘坐出租车到图书馆,乘坐了5千米,打车费14元.然后吃好中饭后乘坐出租车到电影院和同学一起看电影,乘坐了8千米,打车费18.5元.看完电影后再乘坐出租车回家.出租车费用为3千米以内为起步a元,超过3千米每千米b元.(1)请求出a和b的值.(2)小明家离电影院有7千米,他有15元,请问他的钱够吗?如果不够,还差多少.17.在400米的环形跑道上,甲、乙两人从同一起点同时出发做匀速运动,若反向而行,40秒后两人第一次相遇;若同向而行,200秒后甲第一次追上乙.(1)你能求出甲、乙两人的速度吗?(2)若甲乙同向而行时,丙也在跑道上匀速前行,且与甲乙的方向一致,出发后20秒甲追上丙,出发后100秒乙追上丙,请问出发时,丙在甲乙前方多少米?丙的速度是多少?18.如图,长为60cm,宽为xcm的大长方形被分割为10块,除A、B两块外,其余8块是形状、大小完全一样的小长方形,其较短一边长为acm.(1)从图可知,每个小长方形较长一边长是cm.(用含a的代数式表示)(2)求图中A、B两块的周长和为多少?(3)分别用含a、x和代数式表示A、B两块的面积,并求a为何值时这两块面积相等19.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分 5 (1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.20.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元/件,乙种产品售价3万元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.参考答案1.解:(1)设该超市购进甲种商品x件,购进乙种商品y件,依题意,得:,解得:.答:该超市购进甲种商品60件,购进乙种商品35件.(2)(160﹣120)×60+(130﹣80)×35=4150(元).答:销售完该批商品的利润为4150元.2.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:.答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴,,,∴共3种购买方案,方案一:购进A型车6辆,B型车5辆;方案二:购进A型车4辆,B型车10辆;方案三:购进A型车2辆,B型车15辆.3.解:设用x卷布料制作上衣,y卷布料制作裤子可以使上衣和裤子正好配套,依题意,得:,解得:.答:用16卷布料制作上衣,20卷布料制作裤子可以使上衣和裤子正好配套.4.解:(1)设A商品的标价为x元,B商品的标价为y元,依题意,得:,解得:.答:A商品的标价为80元,B商品的标价为100元.(2)设商场是打m折出售这两种商品,依题意,得:(80×9+100×8)×=912,解得:m=6.答:商场是打6折出售这两种商品.(3)设可以购买A商品a件,B商品b件,依题意,得:(80a+100b)×0.6=912,∴a=19﹣b.又∵a,b均为正整数,∴,,,∴共有3种购买方案,方案1:购买A商品14件,B商品4件;方案2:购买A商品9件,B商品8件;方案3:购买A商品4件,B商品12件.5.解:(1)设6月1日每千克五花肉的价格为x元,每千克排骨的价格为y元,依题意,得:,解得:.答:6月1日每千克五花肉的价格为42元,每千克排骨的价格为48元.(2)依题意,得:42(1+2m%)×(410﹣110)+(48+m)×240×(1﹣25%)=42×410+48×240+5100,整理,得:12600+252m+8640+168m=33840,解得:m=30.答:m的值为30.6.解:设笔的单价为x元,笔记本的单价为y元,依题意,得:,解得:.答:笔的单价为1.5元,笔记本的单价为8元.7.解:(1)(15000﹣1000)×0.1%=14(元).故答案为:14.(2)①依题意,得:,解得:,∴a的值为600,b的值为800.②a+b+(3a+2b)=600+800+(3×600+2×800)=4800.故答案为:4800.8.解:(1)根据题意得:解得:.(2)设购买A型车x台,B型车y台,根据题意得:解得:∴120×6+100×4=1120(万元)答:购买这批混合动力公交车需要1120万元.9.解:设49座客车有x辆,37座客车有y辆,依题意,得:,解得:.答:49座客车有8辆,37座客车有10辆.10.解:设A型号客车用了x辆,B型号客车用了y辆,依题意,得:,解得:.答:A型号客车用了6辆,B型号客车用了2辆.11.解:(1)设每箱井冈蜜柚需要x元,每箱井冈板栗需要y元,依题意,得:,解得:.答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.12.解:(1)设需要甲种车型x辆,乙种车型y辆,根据题意得:,解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设需要甲种车型m辆,乙种车型n辆,则需要丙种车型(14﹣m﹣n)辆,根据题意得:30m+48n+60(14﹣m﹣n)=720,∴m=4﹣n.∵m、n为正整数,∴当n=5时,m=2,14﹣m﹣n=7,此时运费为400×2+500×5+600×7=7500(元);当n=10时,m=0,不合题意舍去.答:安排的三种车型的辆数为甲种车型2辆,乙种车型5辆,丙种车型7辆,此时的运费是7500元.13.解:(1)根据题意得:(120﹣5×8﹣5×8)÷10=4(辆),答:丙型车需4辆来运送.故答案为:4.(2)设需要甲x辆,乙y辆,根据题意得:,解得:,答:分别需甲、乙两种车型为8辆和10辆.(3)设甲车有a辆,乙车有b辆,则丙车有(14﹣a﹣b)辆,由题意得5a+8b+10(14﹣a﹣b)=120,即a=4﹣b,∵a、b、14﹣a﹣b均为正整数,∴b只能等于5,从而a=2,14﹣a﹣b=7,∴甲车2辆,乙车5辆,丙车7辆,则需运费200×2+250×5+300×7=3750(元),答:甲车2辆,乙车5辆,丙车7辆,需运费3750元.14.解:(1)设这家文具店的A型毛笔零售价为每支x元,B型毛笔的零售价为每支y元,由题意得:,解得:,答:这家文具店A型毛笔的零售价为每支2元,B型毛笔的零售价为每支3元;(2)如果按原来的销售方法购买a支A型毛笔共需m元则m=20×2+(a﹣20)×(2﹣0.4)=1.6a+8,如果按新的销售方法购买a支A型毛笔共需n元.则n=a×2×90%=1.8a,于是n﹣m=1.8a﹣(1.6a+8)=0.2a﹣8,①当a≤20时,显然按新的销售方法购买花钱少;②∵20<a<40,∴0.2a<8,∴n﹣m<0,∴当20<a<40时,按新的销售方法购买花钱少;③∵a=40,∴n﹣m=0,∴当a=40时,两种销售方法购买花钱一样多;④∵a>40,∴0.2a>8,∴n﹣m>0,∴当a>40时,按原来的销售方法购买花钱少.15.解:(1)设这批游客有x人,原计划租用y辆45座客车,依题意,得:,解得:.答:这批游客共有330人,原计划租用7辆45座客车.(2)由(1)可知需租用45座客车8辆或租用60座客车6辆.450×8=3600(元),560×6=3360(元),∵3600>3360,∴租用6辆60座客车更合算.16.解:(1)依题意,得:,解得:.答:a的值为11,b的值为1.5.(2)11+(7﹣3)×1.5=17(元),17>15,17﹣15=2(元).答:小明带的钱不够,还差2元.17.解:(1)设甲、乙两人的速度分别为:x米/秒,y米/秒;根据题意得,,解得:,答:甲、乙两人的速度分别为:6米/秒,4米/秒;(2)设丙在甲乙前方a米,丙的速度是m米/秒,根据题意得,,解得:,答:丙在甲乙前方50米,丙的速度是3.5米/秒.18.解:(1)每个小长方形较长一边长是(60﹣4a)cm.故答案为(60﹣4a);(2)∵A的长+B的宽=x,A的宽+B的长=x,∴A、B的周长和=2(A的长+A的宽)+2(B的长+B的宽)=2(A的长+B的宽)+2(B的长+A的宽)=2x+2x=4x;(3)∵S A=(60﹣4a)×(x﹣4a)=,S B=4a(x﹣60+4a),∵A、B两块的面积相等,∴(60﹣4a)×(x﹣4a)=4a(x﹣60+4a),(60﹣4a)x﹣4a(60﹣4a)=4ax﹣4a(60﹣4a),(60﹣4a)x=4ax,(60﹣4a)x﹣4ax=0,(60﹣8a)x=0,60﹣8a=0,解得:a=.19.解:(1)∵小王家今年3月份用水20吨,要交水费为15a+5b,故答案为:(15a+5b);(2)根据题意得,,解得:;(3)设a上调了x元,b的值上调了y元,根据题意得,15x+6y=9.6,∴5x+2y=3.2,∵x,y为整数角钱(没超过1元),∴当x=0.6元时,y=0.1元,当x=0.4元时,y=0.6元,∴a的值上调了0.6元或0.4元,b的值上调了0.1元或0.6元.20.解:(1)设应安排生产x件甲种产品,y件乙种产品,依题意,得:,解得:,所以 5x+3y=135.答:应安排生产15件甲种产品,20件乙种产品,才能恰好使两种原料全部用完,此时总产值是135万元.(2)设生产乙种产品m件,则生产甲种产品(m+15)件,依题意,得:5×(1+10%)(m+15)+3×(1﹣10%)m=131.7,解得:m=6,∴m+15=21(件).答:生产乙种产品6件,则生产甲种产品21件,使总产值是131.7万元.。
2020年江苏中考数学考前压轴题冲刺练习一、选择题(共6题)1.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+2.如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)4.如图,在等腰直角三角形ABC中,∠ACB=90°,BC=2,D是BC边上一动点,将AD 绕点A逆时针旋转45°得AE,连接CE,则线段CE长的最小值为()A.B.C.﹣1 D.2﹣5.如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC、DE上分别找一点M、N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A.90°B.100°C.110°D.120°6.如图,P是半圆O上一点,Q是半径OA延长线上一点,AQ=OA=1,以PQ为斜边作等腰直角三角形PQR,连接OR.则线段OR的最大值为()A.B.3 C.D.1二、填空题(共6题)1.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).2.如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P 是⊙C上一个动点,连接AP交BD于点T,则的最大值是.3.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.第3题第4题4.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.5.如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.第5题第6题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题(共6题)1.如图,A,B,C,D在⊙O上,AB∥CD经过圆心O的线段EF⊥AB于点F,与CD交于点E.(1)如图1,当⊙O半径为5,CD=4,若EF=BF,求弦AB的长;(2)如图2,当⊙O半径为,CD=2,若OB⊥OC,求弦AC的长.2.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx与x轴交于点A(10,0),点B (1,2)是抛物线上点,点M为射线OB上点(不含O,B两点),且MH⊥x轴于点H.(1)求直线OB及抛物线解析式;(2)如图1,过点M作MC∥x轴,且与抛物线交于C,D两点(D位于C左边),若MC=MH,点Q为直线BC上方的抛物线上点,求△BCQ面积的最大值,并求出此时点Q的坐标;(3)如图2,过点B作BE∥x轴,且与抛物线交于E,在线段OA上有点P,在点H从左向右运动时始终有AP=2OH,过点P作PN⊥x轴,且PN与直线OB交于点N,当M 与N重合时停止运动,试判断在此运动过程中△MNE与△BME能否全等,若能请求出全等时的HP长度,若不能请说明理由.3.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s 的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.4.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.5.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.6.如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD =AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当=7时,请直接写出线段AE的长.【答案与解析】一、选择题1.【分析】由已知点可求四边形ABCD分成面积=AC×(|y B|+3)==14;求出CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有7=×(3﹣)×(+1),即可求k;【解答】解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0(舍去),∴k=,∴直线解析式为y=x+;故选:D.【点评】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键.2.【分析】根据勾股定理可判断A;连接CF,作FG⊥EC于G,易证得△FGC是等腰直角三角形,设EG=x,则FG=2x,利用三角形相似的性质以及勾股定理得到CG=2x,CF=2x,EC=3x,BC=x,FD=x,即可证得3FD=AD,可判断B;根据平行线分线段成比例定理可判断C;求得cos∠HCD可判断D.【解答】解:∵正方形ABCD,DPMN的面积分别为S1,S2,∴S1=CD2,S2=PD2,在Rt△PCD中,PC2=CD2+PD2,∴S1+S2=CP2,故A结论正确;连接CF,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.3.【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.4.【分析】在AB上截取AF=AC=2,由旋转的性质可得AD=AE,由勾股定理可求AB=2,可得BF=2﹣2,由“SAS”可证△ACE≌△AFD,可得CE=DF,则当DF⊥BC时,DF值最小,即CE的值最小,由直角三角形的性质可求线段CE长的最小值.【解答】解:如图,在AB上截取AF=AC=2,∵旋转∴AD=AE∵AC=BC=2,∠ACB=90°∴AB=2,∠B=∠BAC=45°,∴BF=2﹣2∵∠DAE=45°=∠BAC∴∠DAF=∠CAE,且AD=AE,AC=AF∴△ACE≌△AFD(SAS)∴CE=DF,当DF⊥BC时,DF值最小,即CE的值最小,∴DF最小值为=2﹣故选:D.5.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交ED于N,则A′A″即为△AMN的周长最小值.作EA延长线AH,∵∠BAE=120°,∴∠HAA′=60°,∴∠A′+∠A″=∠HAA′=60°,∵∠A′=∠MAA′,∠NAE=∠A″,且∠A′+∠MAA′=∠AMN,∠NAE+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAE+∠A″=2(∠A′+∠A″)=2×60°=120°,故选:D.6.【分析】将△RQO绕点R顺时针旋转90°,可得△RPE,可得ER=RO,∠ERO=90°,PE=OQ=2,由直角三角形的性质可得EO=RO,由三角形三边关系可得EO≤PO+EP =3,即可求解.【解答】解:将△RQO绕点R顺时针旋转90°,可得△RPE,∴ER=RO,∠ERO=90°,PE=OQ=2∴EO=RO,∵EO≤PO+EP=3∴RO≤3∴OR的最大值=故选:A.二、填空题1.【分析】连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.2.【分析】方法1、过点A作BD的垂线AG,AG为定值;过点P作BD的垂线PE,只要PE最大即可,进而求出PE最大,即可得出结论;方法2、先判断出最大时,BE最大,再用相似三角形的性质求出BG,HG,CH,进而判断出HM最大时,BE最大,而点M在⊙C上时,HM最大,即可HP',即可得出结论.【解答】方法1、解:如图,过点A作AG⊥BD于G,∵BD是矩形的对角线,∴∠BAD=90°,∴BD==5,∵AB•AD=BD•AG,∴AG=,∵BD是⊙C的切线,∴⊙C的半径为过点P作PE⊥BD于E,∴∠AGT=∠PET,∵∠ATG=∠PTE,∴△AGT∽△PET,∴,∴=×PE∵==1+,要最大,则PE最大,∵点P是⊙C上的动点,BD是⊙C的切线,∴PE最大为⊙C的直径,即:PE最大=,∴最大值为1+=3,故答案为3.方法2、解:如图,过点P作PE∥BD交AB的延长线于E,∴∠AEP=∠ABD,△APE∽△ATB,∴,∵AB=4,∴AE=AB+BE=4+BE,∴,∴BE最大时,最大,∵四边形ABCD是矩形,∴BC=AD=3,CD=AB=4,过点C作CH⊥BD于H,交PE于M,并延长交AB于G,∵BD是⊙C的切线,∴∠GME=90°,在Rt△BCD中,BD==5,∵∠BHC=∠BCD=90°,∠CBH=∠DBC,∴△BHC∽△BCD,∴,∴,∴BH=,CH=,∵∠BHG=∠BAD=90°,∠GBH=∠DBA,∴△BHG∽△BAD,∴=,∴,∴HG=,BG=,在Rt△GME中,GM=EG•sin∠AEP=EG×=EG,而BE=GE﹣BG=GE﹣,∴GE最大时,BE最大,∴GM最大时,BE最大,∵GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,∴GP'=HP'+HG=,过点P'作P'F∥BD交AB的延长线于F,∴BE最大时,点E落在点F处,即:BE最大=BF,在Rt△GP'F中,FG====,∴BF=FG﹣BG=8,∴最大值为1+=3,故答案为:3.3.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG 都是矩形且OE=OD=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OD=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.4.【分析】(1)在BC上截取BG=PD,通过三角形全等证得AG=AP,BG=DP,得出△AGP是等边三角形,得出AP=GP,则P A+PC=GP+PC=GC=PE,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,BG=DP,∴GC=PE,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴AP=GP,∴P A+PC=GP+PC=GC=PE∴P A+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,5.【分析】如图,连接BD.由△ADG∽△GCF,设CF=BF=a,CG=DG=b,可得=,推出=,可得b=a,在Rt△GCF中,利用勾股定理求出b,即可解决问题;【解答】解:如图,连接BD.∵四边形ABCD是矩形,∴∠ADC=∠DCB=90°,AC=BD=,∵CG=DG,CF=FB,∴GF=BD=,∵AG⊥FG,∴∠AGF=90°,∴∠DAG+∠AGD=90°,∠AGD+∠CGF=90°,∴∠DAG=∠CGF,∴△ADG∽△GCF,设CF=BF=a,CG=DG=b,∴=,∴=,∴b2=2a2,∵a>0.b>0,∴b=a,在Rt△GCF中,3a2=,∴a=,∴AB=2b=2.故答案为2.6.【分析】以AC为直径作圆O′,连接BO′、BC.在点P移动的过程中,点D在以AC 为直径的圆上运动,当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D,利用勾股定理求出BO′即可解决问题.【解答】解:如图,以AC为直径作圆O′,连接BO′、BC,O'D,∵CD⊥AP,∴∠ADC=90°,∴在点P移动的过程中,点D在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AB=8,∠CAB=60°,∴BC=AB•sin60°=4,AC=AB•cos60°=4,∴AO'=CO'=2,∴BO'===2,∵O′D+BD≥O′B,∴当O′、D、B共线时,BD的值最小,最小值为O′B﹣O′D=2﹣2,故答案为2﹣2.三、解答题1.【分析】(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.利用勾股定理构建方程组解决问题即可.(2)如图2中,作CH⊥AB于H.证明△ACH是等腰直角三角形,四边形EFHC是矩形,求出EF即可解决问题.【解答】解:(1)如图1中,连接OB,OC.设BF=EF=x,OF=y.∵AB∥CD,EF⊥AB,∴EF⊥CD,∴∠CEF=∠BFO=90°∴AF=BF=x,DE=EC=2,根据勾股定理可得:,解得(舍弃)或,∴BF=4,AB=2BF=8.(2)如图2中,作CH⊥AB于H.∵OB⊥OC,∴∠A=∠BOC=45°,∵AH⊥CH,∴△ACH是等腰直角三角形,∵AC=CH,∵AB∥CD,EF⊥AB,∴EF⊥CD,∠CEF=∠EFH=∠CHF=90°,∴四边形EFHC是矩形,∴CH=EF,在Rt△OEC中,∵EC=,OC=,OE===2,∵∠EOC+∠OCE=90°,∠EOC+∠FOB=90°,∴∠FOB=∠ECO,∵OB=OC,∴△OFB≌△CEO(AAS),∴OF=EC=,∴CH=EF=3,∴AC=EF=6.2.【分析】(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,可求y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),由已知可求C(3m,2m),将点C代入抛物线解析式可得m=,即可求BC的直线解析为y=x+,设Q(n,﹣n2+n),过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),QT=|n2﹣8n+7|,当QT最大时,则△BCQ的面积最大;(3)函数对称轴x=5,E(9,2),设P(t,0),则依次可求N(t,2t),H(5﹣t,0),M(5﹣t,10﹣t),BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,t+1=10﹣t,,此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,由于△<0,t不存在.【解答】解:(1)将点A(10,0),点B(1,2)代入y=ax2+bx中,∴a=﹣,b=,∴y=﹣x2+x,直线OB的解析式为y=2x;(2)设M(m,2m),∵MC=MH,∴C(3m,2m),∴2m=﹣×9m2+×3m,∴m=,∴C(7,),M(,),∴BC的直线解析为y=x+,设Q(n,﹣n2+n),∴过点Q与BC垂直的直线解析式为y=﹣x﹣n2+n,则两直线的交点为T(﹣n2+n﹣,n2+n﹣),∴QT=|n2﹣8n+7|,∴当n=4时,△BCQ面积的最大值,∴Q(4,);(3)函数对称轴x=5,∴E(9,2),设P(t,0),∴N(t,2t),∵AP=2OH,∴H(5﹣t,0),∴M(5﹣t,10﹣t),∴BM2=t2﹣8t+32,ME2=t2﹣11t+89,NE2=5t2﹣26t+85,MN2=t2﹣75t+125,当BM=MN,BE=EN时,此时△BEN是等腰三角形,M是BN的中点,BN⊥ME,∴t+1=10﹣t,,∴t=,t=,∴此时不成立;当BE=MN,BM=EN时,t2﹣8t+32=5t2﹣26t+85,∴△<0,∴t不存在;综上所述:在此运动过程中△MNE与△BME不能全等.3.【分析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.【解答】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当点A′落在边BC上时,由题意得,四边形AP A′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4﹣5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴,即=,解得:x=,∴当点A′落在边BC上时,x=;(2)当A′B=BC时,(5﹣8x)2+(3x)2=32,解得:.∵x≤,∴;当A′B=A′C时,x=.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=P A'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=,∴A′B′=QE﹣PD=x=;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5﹣7x,∴cos B=,∴x=,∴A′B′=B′D﹣A′D=;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=,∴A′B′=P A′sin A=;当A′B′⊥AB时,x=,A′B′=;当A′B′⊥BC时,x=,A′B′=;当A′B′⊥AC时,x=,A′B′=.4.【分析】(1)①由∠ABO=90°和DB⊥PB可得∠DBA=∠PBO,结合边长关系由两边对应成比例及其夹角相等的三角形相似即可证明结论.②过D点作DH⊥BO交OB延长线于H点,由AD∥OB平行可得∠DAB=90°,而△ADB∽△OPB可知∠POB=90°,由已知可求出AD.由Rt△DHO即可计算OD的长,③由△ADB∽△OPB可知,可求AD=,由此可知D在以A为圆心AD为半径的圆上运动,所以OD的最大值为OD过A点时最大.求出OA即可得到答案.(2)在OC上取点B′,使OB′=OP=,构造△BOP~△POB′,可得=P A﹣PB′≤AB',求出AB’即可求出最大值.【解答】解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP~△POB′,∴,∴=P A﹣PB′≤AB',∴∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,5.【分析】(1)根据角平分线的定义得到∠EDF=∠ADF,根据圆内接四边形的性质和圆周角定理结论得到结论;(2)根据圆周角定理得到AD⊥BF,推出△ACB是等边三角形,得到∠ADB=∠ACB=60°,根据等腰三角形的性质得到结论;(3)设CD=k,BC=2k,根据勾股定理得到BD==k=10,求得=2,BC=AC=4,根据相似三角形的性质即可得到结论【解答】(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠F AC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.6.【分析】(1)过点E作EG⊥BC,垂足为点G.AE=x,则EC=2﹣x.根据BG=EG构建方程求出x即可解决问题.(2)①证明△AEF∽△BEC,可得,由此构建关系式即可解决问题.②分两种情形:当∠CAD<120°时,当120°<∠CAD<180°时,分别求解即可解决问题.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴,,∴BG=2﹣CG=1+x,在Rt△BGE中,∠EBC=45°,∴,解得.所以线段AE的长是.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴,由(1)得在Rt△CGE中,,,∴BE2=BG2+EG2=x2﹣2x+4,∴(0<x<2).②当∠CAD<120°时,y=7,则有7=,整理得3x2+x﹣2=0,解得x=或﹣1(舍弃),.当120°<∠CAD<180°时,同法可得y=当y=7时,7=,整理得3x2﹣x﹣2=0,解得x=﹣(舍弃)或1,∴AE=1.。
热点专题4实际应用问题考向1一次方程(组)的实际应用1. (2019 江苏省宿迁市)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.【解析】设“△”的质量为x,“□”的质量为y,由题意得:,解得:,△第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.2. (2019 江苏省淮安市)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?【解析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,△,△每节火车车皮装物资50吨,每辆汽车装物资6吨;点评本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.3. (2019 江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【解析】(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)△现有A型球、B型球的质量共17千克,△设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.考向2分式方程的实际应用1. (2019 江苏省苏州市)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x=- 【解析】 找到等量关系为两人买的笔记本数量15243x x ∴=+ 故选A2. (2019 江苏省常州市)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【解析】 设甲每小时做x 个零件,则乙每小时做(30﹣x )个零件,由题意得:=,解得:x =18,经检验:x =18是原分式方程的解,则30﹣18=12(个).答:甲每小时做18个零件,则乙每小时做12个零件.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意检验.3. (2019 江苏省扬州市) “绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?【解析】设甲工程队每天修x 米,则乙工程队每天修(1500﹣x )米,根据题意可得:=,解得:x =900,经检验得:x=900是原方程的根,故1500﹣900=600(m),答:甲工程队每天修900米,乙工程队每天修600米.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.考向3函数的实际运用1. (2019 江苏省连云港市)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中△C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【解析】如图,过点C作CE△AB于E,则四边形ADCE为矩形,CD=AE=x,△DCE=△CEB=90°,则△BCE=△BCD﹣△DCE=30°,BC=12﹣x,在Rt△CBE中,△△CEB=90°,△BE=BC=6﹣x,△AD=CE=BE=6﹣x,AB=AE+BE=x+6﹣x=x+6,△梯形ABCD面积S=(CD+AB)•CE=(x+x+6)•(6﹣x)=﹣x2+3x+18=﹣(x﹣4)2+24,△当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点评】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.2. (2019 江苏省淮安市)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x 之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.【解析】(1)快车的速度为:180÷2=90千米/小时,慢车的速度为:180÷3=60千米/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时;(2)由题意可得,点E的横坐标为:2+1.5=3.5,则点E的坐标为(3.5,180),快车从点E到点C用的时间为:(360﹣180)÷90=2(小时),则点C的坐标为(5.5,360),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,,得,即线段EC所表示的y1与x之间的函数表达式是y1=90x﹣135;(3)设点F的横坐标为a,则60a=90a﹣135,解得,a=4.5,则60a=270,即点F的坐标为(4.5,270),点F代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3. (2019 江苏省连云港市)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【解析】(1)y=0.3x+0.4(2500﹣x)=﹣0.1x+1000因此y与x之间的函数表达式为:y=﹣0.1x+1000.(2)由题意得:△1000≤x≤2500又△k=﹣0.1<0△y随x的增大而减少△当x=1000时,y最大,此时2500﹣x=1500,因此,生产甲产品1000吨,乙产品1500吨时,利润最大.【点评】这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.4. (2019 江苏省泰州市)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.(1)求图中线段AB所在直线的函数表达式;(2)小李用800元一次可以批发这种水果的质量是多少?【解析】(1)设线段AB所在直线的函数表达式为y=kx+b,根据题意得,解得,△线段AB所在直线的函数表达式为y=﹣0.01x+6(100≤x≤300);(2)设小李共批发水果m吨,则单价为﹣0.01m+6,根据题意得:﹣0.01m+6=,解得m=200或400,经检验,x=200,x=400(不合题意,舍去)都是原方程的根.答:小李用800元一次可以批发这种水果的质量是200千克.【点评】本题主要考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.5. (2019 江苏省宿迁市)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?【解析】(1)根据题意得,y=﹣x+50;(2)根据题意得,(40+x)(﹣x+50)=2250,解得:x1=50,x2=10,△每件利润不能超过60元,△x=10,答:当x为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,w=(40+x)(﹣x+50)=﹣x2+30x+2000=﹣(x﹣30)2+2450,△a=﹣<0,△当x<30时,w随x的增大而增大,△当x=20时,w增大=2400,答:当x为20时w最大,最大值是2400元.【点评】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.6. (2019 江苏省镇江市)学校数学兴趣小组利用机器人开展数学活动.在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B 之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、在端点处相遇这两种.观察△观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;△若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;发现设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了y与x 的函数关系,并画出了部分函数图象(线段OP,不包括点O,如图2所示).△a=;△分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;拓展设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,则他们第一次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)【解析】观察△△相遇地点与点A之间的距离为30个单位长度,△相遇地点与点B之间的距离为150﹣30=120个单位长度,设机器人甲的速度为v,△机器人乙的速度为v=4v,△机器人甲从相遇点到点B所用的时间为,机器人乙从相遇地点到点A再返回到点B所用时间为=,而,△设机器人甲与机器人乙第二次迎面相遇时,机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,30+150+150﹣m=4(m﹣30),△m=90,故答案为:90;△△相遇地点与点A之间的距离为40个单位长度,△相遇地点与点B之间的距离为150﹣40=110个单位长度,设机器人甲的速度为v,△机器人乙的速度为v=v,△机器人乙从相遇点到点A再到点B所用的时间为=,机器人甲从相遇点到点B所用时间为,而,△设机器人甲与机器人乙第二次迎面相遇时,机器人从第一次相遇点到点A,再到点B,返回时和机器人乙第二次迎面相遇,设此时相遇点距点A为m个单位,根据题意得,40+150+150﹣m=(m﹣40),△m=120,故答案为:120;发现△当点第二次相遇地点刚好在点B时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+150=(150﹣x),△x=50,经检验:x=50是分式方程的根,即:a=50,故答案为:50;△当0<x≤50时,点P(50,150)在线段OP上,△线段OP的表达式为y=3x,当v<v时,即当50<x<75,此时,第二次相遇地点是机器人甲在到点B返回向点A时,设机器人甲的速度为v,则机器人乙的速度为v,根据题意知,x+y=(150﹣x+150﹣y),△y=﹣3x+300,即:y=,补全图形如图2所示,拓展如图,由题意知,x+y+150+150=(150﹣x+150﹣y),△y=﹣5x+300,△第三次迎面相遇时,相遇地点与点A之间的距离y不超过60个单位长度,△﹣5x+300≤60,△x≥48,△x<75,△48≤x<75,故答案为48≤x<75.【点评】本题考查了一次函数的应用,两点间的距离,分式方程的应用,一元一次方程的应用,正确的理解题意是解题的关键.考向4不等式的实际运用1. (2019 江苏省无锡市)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为() A.10B.9C.8D.7【解析】设原计划m天完成,开工n天后有人外出,则15am=2160,am=144,15an+12(a+2)(m-n)<2160,化简可得:an+4am+8m-8n<720,将am=144 代入得an+8m-8n<144,an+8m-8n<am,a(n-m)<8(n-m),其中n-m<0,a>8,至少为9 ,因此本题选B。