第四章无约束最优化的直接方法解析
- 格式:ppt
- 大小:1.49 MB
- 文档页数:13
无约束最优化直接方法和间接方法的异同一、什么是无约束最优化最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。
其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。
实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。
最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。
无约束最优化问题实际上是一个多元函数无条件极值问题。
虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。
或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。
所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。
无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。
这里我们比较这两类方法的异同。
二、无约束最优化方法1.使用导数的间接方法1.1 最速下降法函数的负梯度方向是函数值在该点下降最快的方向。
将 n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。
无约束优化问题的数学模型可以表示为:min f x x R n,我们假设函数xf x 具有一阶连续偏导数。