六年级数轴动点问题
- 格式:docx
- 大小:55.44 KB
- 文档页数:3
数轴动点问题6题型
数轴动点问题是数学中常见的一类问题,涉及到数轴上点的移动和位置变化。
一般来说,数轴动点问题可以分为以下六种题型:
1. 绝对值不等式问题,这类问题涉及到数轴上的点在满足绝对值不等式时的位置。
例如,求解 |x 3| < 5 这样的不等式,需要在数轴上确定满足条件的 x 的取值范围。
2. 区间划分问题,这类问题要求根据给定条件在数轴上划分区间,例如求解不等式 2x 1 > 5 时,需要确定 x 的取值范围,从而将数轴划分成若干个区间。
3. 方程与不等式问题,涉及到方程和不等式的问题,例如求解x^2 4x + 3 > 0 这样的不等式时,需要确定 x 的取值范围,也就是数轴上点的位置。
4. 线段长度问题,这类问题需要根据数轴上点的位置来求解线段的长度,例如求解两点之间的距离。
5. 几何位置问题,涉及到几何位置关系的问题,例如求解点到
直线的距离等。
6. 运动问题,这类问题涉及到数轴上点的运动,例如求解两点之间的相对位置关系、速度等。
在解决数轴动点问题时,通常需要画出数轴图示,明确标出各个点的位置,然后根据题目要求进行分析和计算。
希望以上内容能够帮助你更好地理解数轴动点问题的不同题型。
数轴上的动点问题最新版1.如图,已知数轴上两点几〃对应的数分别为-1, 3,点戶为数轴上一动点,其对应的数为X。
(1)数轴上是否存在点只使点P在点才、点〃的距离之和为5若存在,请求出X的值,若不存在,请说明理由;(2)当点戶以每分钟1个单位长度的速度从0点向左运动时,点/1以每分钟5个单位长度的速度向左运动,点〃以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点尸到点月、点〃的距离相等(3)如图,若点、P从B点、出发向左运动(只在线段AB上运动),M为AP的申点、,N为PB 的中点,点尸在运动的过程中,线段My的长度是否发生变化若变化,请说明理由;若不变,请你画出图形,并求出的长。
A O P B→••-••■ •—•-・3 ・2・1 O I 2 3•22.如图,A. B、C是数轴上的三点,O是原点,Bo二3, AB二2B0, 5Λ0=3C0.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中2点,点N在线段CQ上,且CN=-CQ•设运动的时间为t (t>0)秒・①数轴上3点M、N表示的数分别是(用含t的式子表示);②t为何值时,M、N两点到原点0的距离相等I IQl IAA B O 1 C3.如图,数轴上有儿从G 〃四个点,分别对应数爪b、c、d,且满足日、方是方程∣x + 9∣ = l的两根(a<b∖ (C— 16)2与|〃一20|互为相反数。
(1)求 &、b、C y d的值;(2)若力、〃两点以6个单位长度/秒的速度向右匀速运动,同时G 〃两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为七秒。
问E为多少时,A.〃两点都运动在线段①上(不与G 〃两个端点重合)(3)在(2)的条件下,A. B、C、〃四个点继续运动,当点、B运动到点〃的右侧时,问是否存在时间使〃与C的距离是力与〃的距离的4倍,若存在, 求时间十,若不存在,请说明理由。
一、与数轴上的动点问题相关的基本概念数轴上的动点问题离不开数轴上两点之间的距离。
主要涉及以下几个概念:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
两点中点公式:线段AB中点坐标=(a+b)÷2 2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示)。
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示)。
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并根据实际问题验算结果。
(解绝对值方程通常用0点分类讨论方法)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=________,b=________,c=________ (2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-1|+2|x+5| (3)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和p个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.二、典例分析例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
数轴上的线段与动点问题
一、与数轴上的动点问题相关的基本概念
数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概念:
1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.
2.两点中点公式:线段AB中点坐标=(a+b)÷2.
3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b.
4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系. 二、数轴上的动点问题基本解题思路和方法:
1、表示出题目中动点运动后的坐标(一般用含有时间t的式子表示).
2、根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t的式子表示).
3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.
4、解绝对值方程并根据实际问题验算结果. 注:数轴上线段的
动点问题方法类似
1、已知数轴上A、B两点对应数为-
2、4,P为数轴上一动点,对应的数为x.
A B
-2 -1 0 1 2 3 4
(1)若P为AB线段的三等分点,求P对应的数;
(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,
说明理由.
(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?。
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
六年级数轴动点问题
动点问题典型练习题:
1 数轴上A点表示-30,B点表示70
(1)点P从A向正半轴以每秒2个单位,点Q从B向负半轴运动,每秒5个单位
①t秒后,P 、Q表示的数各是多少?
②几秒后,P,Q相距30个单位,此时P、Q所表示的数各是多少?
(2)点P从A向负半轴运动,点Q从B向负半轴运动
①t秒后,P 、Q所表示的数是多少?
②几秒后,P、Q 相距30个单位,此时P、Q 六年级数轴动点问题
2 长方形ABCD中,AB =20,BC=10 。
P从A向B运动,每秒2个单位,Q从B向C
运动,每秒1个单位
⑴t秒后AP=________ BP= ________
BQ=________ CQ=________
⑵用含t的代数式表示△DPQ的面积
3 在直角梯形ABCD中,AD=10, BC=30,AB=16, P从A延射线AD运动,每秒1个单位Q从C出发在线段BC上运动,以每秒2个单位
⑴t秒后AP=________ DP=________
BQ=________ CQ=________
⑵用含t表示△BPQ的面积
⑶多少秒后面积为208
⑷用含t的代数式表示△BPQ的面积
4 在直接梯形ABCD中AD=10, BC=30, AB=16 ,P从A出发一每秒2个单位延直线AB
⑴AP=________ BP=________
⑵用含t表示的代数式表示△DPC的面积
B C。
-1-2-33210O B A P 0123-3-2-1B A 数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB的中点,点P 在运动的过程中,线段MN 的长度是否发生变化若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
$;2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO .(1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等.3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)!(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
数轴上动点练习题①数轴上两个点A,B对应的数是-1.5和3。
如果线段AB沿着数轴向左移动一段距离后,B点对应的数字变成了-0.5,那么此时A点对应的数是。
答案:-5解析:由于线段长度不变,所以A,B移动的距离一样。
B向左移动了3.5,所以A也向左移动3.5,对应的数是-1.5-3.5=-5②数轴上两个点A,B对应的数是-30和-20。
点B以每秒2个单位的速度向右运动,5秒后点A以每秒4个单位的速度向右运动,再过多少秒后点A与点B重合。
答案:10解析:B向右运动5秒后:-20+2×5=-10,此时AB的距离是-10-(-30)=20追及时间=追及路程÷速度差=20÷(4-2)=10秒③三个点A,B,C在数轴上的对应的数是a,b,c(a<b<c)。
有一个动点P以每秒m个单位的速度从AB中点运动到BC中点,那么它花费的时间是秒。
(用代数式表示,可以包含a,b,c,m)答案:(c-a)/2m解析:移动距离是正好是AC的一半即(c-a)/2或者根据AB中点是(a+b)/2 BC中点是(b+c)/2。
所以移动距离是(b+c)/2 -(a+b)/2=(c-a)/2所以时间是(c-a)/2 ÷ m =(c-a)/(2m)④点A,B在数轴上的对应的数是-8与16,点A向数轴正方向运动,同时点B向数轴负方向运动,已知点A的运动速度是每秒2个单位长度,点B的运动速度是每秒4个单位长度,设经过的时间是t秒。
t= 时点A与点B重合;t= 时点A与点B的距离是12;答案:4 ;6或2解析:AB的距离是16-(-8)=24,相遇时间=路程÷速度和=24÷(2+4)=4秒点A:-8+2t,点B:16-4t。
根据距离是12,有方程|-8+2t-(16-4t)|=12,化简后|t-4|=2,解得t=6或2。
⑤点A表示的数是-10,点B表示的数是4,如果它们分别以每秒3个单位,每秒1个单位的速度同时向右运动,那么经过多长时间后,点A到原点的距离是点B到原点距离的2倍。
专题04 数轴动点问题专题探究【知识点睛】❖数轴动点问题解题步骤总结:①画图形:在数轴上分析标注动点的起始点、运动方向、运动速度②表示线段:根据动点的运动情况,表示出动点所表示的数,再根据数之间的左右关系表示所需线段的表达式③列方程:根据题目要求的线段间的数量关系,列出符合题意的方程;其中,点的位置不确定的,注意分类讨论④求正解,并写答:解出方程中未知数的值,勿忘写“答”。
另外,不是所有求出来的值都可取的,根据题目要求的范围,不符合题意的答案需舍去。
【类题训练】1.一只蜗牛沿数轴从原点向右移动了5个单位长度到达点A,则点A表示的数是()A.5B.﹣5C.0D.±52.已知点A是数轴上的一点,它到原点的距离为3,把点A向左平移7个单位后,再向右平移5个单位得到点B,则点B到原点的距离为()A.1B.﹣5C.﹣5或1D.1或53.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合.将圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是()A.π﹣1B.﹣π﹣1C.﹣π+1D.π﹣1或﹣π﹣14.小明把有理数a,b表示在数轴上,对应点的位置如图所示,下列式子中正确的是()①﹣a>﹣b;②|a|<|﹣b|;③ab>0;④b﹣a<b+a.A.①②B.①④C.②③D.③④5.在数轴上,点A,B在原点O的两侧,分别表示数a和b(b>2),将点A向右平移2个单位长度得到点C.若OC=OB,则a,b的关系是()A.a+b=2B.a﹣b=2C.a+b=﹣2D.a﹣b=﹣26.纸片上有一数轴,折叠纸片,当表示﹣1的点与表示5的点重合时,表示3的点与表示数的点重合.7.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是.8.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是2;②点P到达点B时,t=3;③BP=2时,t=2;④在点P的运动过程中,线段MN的长度不变.A.①③④B.②③④C.②③D.②④9.已知数轴上的点A,B所对应的数分别为﹣2,6,点Q是数轴上的动点,且对应的数为x.(1)点Q到点A和点B的距离和的最小值是;(2)若点Q是线段AB的中点,则x的值是;(3)若点Q到点A和点B的距离和是12,求x的值.10.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16,线段AB的中点表示的数是,若点C是数轴上的一个动点,当2AC﹣BC=10时,点C表示的数是.11.如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点,某天,小明参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若小明开始志愿服务活动时该汽车油量占油箱总量的,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?12.如图,在数轴上有三个不同的点A,B,C,点C对应有理数10;原点O为线段AB的中点,且线段AB的长度是BC的3倍.(1)求点A,B所对应的有理数;(2)动点P从点A出发,以每秒1个单位的速度向右移动,当点P到点A的距离是到点B距离的2倍时,直接写出此时点P所对应的有理数.13.数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.点A、B 对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)a=,b=,并在数轴上面标出A、B两点;(2)若P A=2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB﹣P A的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.14.定义:数轴上有A,B两点,若点A到原点的距离为点B到原点的距离的两倍,则称点A为点B的2倍原距点.已知点A,M,N在数轴上表示的数分别为4,m,n.(1)若点A是点M的2倍原距点,①当点M在数轴正半轴上时,则m=;②当点M在数轴负半轴上,且为线段AN的中点时,判断点N是否是点A的2倍原距点,并说明理由;(2)若点M,N分别从数轴上表示数10,6的点出发向数轴负半轴运动,点M每秒运动速度为2个单位长度,点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时,点A恰好也是点N 的2倍原距点,请直接写出a所有可能的值.15.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是﹣5,那么点B所表示的数是;②在图1中标出原点O的位置.(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是.(3)如图3,数轴上标出若干个点,其中点A,B,C所表示的数分别为a,b,c.若数轴上标出的若干个点中每相邻两点相距1个单位(如AB=1),且c﹣2a=8.①试求a的值;②若点D也在这条数轴上,且CD=2,求出点D所表示的数.16.在如图所示的数轴上,点P为原点.点A、点B距离﹣2都为6个单位长度,且点A在点B的左侧,若现在有点C、点D两点分别从点P、点B同时向点A移动,且已知点C、点D分别以每秒2个单位长度和每秒3个单位长度的速度移动了t秒.请回答下列问题:(1)A点表示数为,B点表示数为;(2)当t=2时,CD的长度为多少个单位长度?(3)当D在线段BP上运动时,线段AC、CD之间存在何种数量关系式?17.已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,则点P对应的数是.(2)数轴的原点右侧有点P,使点P到点A,点B的距离之和为8.请你求出x的值.(3)现在点A,点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,直接写出点P对应的数.。
六年级数轴动点问题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
易通六年级数学 动点问题典型练习题:
1 数轴上A 点表示-30,B 点表示70
(1)点P 从A 向正半轴以每秒2个单位,点Q 从B 向负半轴运动,每秒5个单位 ①t 秒后,P 、Q 表示的数各是多少?
②几秒后,P,Q 相距30个单位,此时P 、Q 所表示的数各是多少?
(2)点P 从A 向负半轴运动,点Q 从B 向负半轴运动
①t 秒后,P 、Q 所表示的数是多少?
②几秒后, P 、Q 相距30个单位,此时P 、Q 所表示的数是各是多少?
2 长方形ABCD 中,AB =20,BC=10 。
P 从A 向B 运动,每秒2个单位,Q 从B 向C 运动,每秒1个单位 ⑴ t 秒后 AP=________ BP= ________ BQ=________ CQ=________ ⑵ 用含t 的代数式表示△DPQ 的面积
3 在直角梯形ABCD 中,AD=10, BC=30, AB=16, P 从A 延射线AD 运动,每秒1个单
位Q 从C 出发在线段BC 上运动,以每秒2个单位
________ DP=________
表示△BPQ 的面积
208
的代数式表示△BPQ 的面积
A B D C
4 在直接梯形ABCD中 AD=10, BC=30, AB=16 ,P从A出发一每秒2个单位延直线AB
运动
⑴AP=________ BP=________
DPC的面积A D。