2020年高考冲刺信息卷之文科数学(一)教师版
- 格式:docx
- 大小:1.14 MB
- 文档页数:9
绝密 ★ 启用前2020年高三最新信息卷文 科 数 学(一)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5}U =,{2,3,5}A =,{2,5}B =,则( ) A .A B ⊂ B .{1,3,4}U B =ð C .{2,5}A B =U D .{3}A B =I【答案】B【解析】∵{1,2,3,4,5}U =,{2,5}B =,∴{1,3,4}U B =ð,故选B . 2.若(i)i 2i x y -=+,,x y ∈R ,则复数i x y +的虚部为( ) A .2 B .1C .iD .1-【答案】B【解析】∵(i)i 1i 2i x x y -=+=+,∴2x =,1y =,所以i x y +的虚部1y =, 故选B .3.已知函数()f x 在点(1,(1))f 处的切线方程为220x y +-=,则(1)(1)f f '+=( )A .32B .1C .12D .0【答案】D【解析】切点(1,(1))f 在切线220x y +-=上,∴12(1)20f +-=,得1(1)2f =, 又切线斜率1(1)2k f '==-,∴(1)(1)0f f '+=,故选D . 4.函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象如图所示,则π()3f 的值为( ) A .12B .1C .2D .3【答案】B【解析】根据图象可得2A =,2πππ2362T =-=,即πT =, 根据2π||T ω=,0ω>,得2π2πω==, ∴2sin(2)y x ϕ=+,又()f x 的图象过点π(,2)6,∴π22sin(2)6ϕ=⨯+, 即ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z , 又因π||2ϕ<,∴π6ϕ=, ∴π()2sin(2)6f x x =+,πππ5π()2sin(2)2sin 13366f =⨯+==,故选B . 5.下列命题错误的是( )A .“2x =”是“2440x x -+=”的充要条件B .命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题 C .在ABC △中,若“A B >”,则“sin sin A B >”D .若等比数列{}n a 公比为q ,则“1q >”是“{}n a 为递增数列”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号【答案】D【解析】由22440(2)202x x x x x -+=⇔-⇔-=⇔=,∴A 正确;命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为命题“若方程20x x m +-=有实根,则14m ≥-”, ∵方程20x x m +-=有实根11404Δm m ⇒=+≥⇒≥-,∴B 正确; 在ABC △中,若sin sin A B a b A B >⇒>⇒>(根据正弦定理),∴C 正确, 故选D .6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图所示,一与六共宗居下,二与七为朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为( ) A .15B .625C .725D .825【答案】A【解析】∵阳数为1,3,5,7,9;阴数为2,4,6,8,10, ∴从阳数和阴数中各取一数的所有组合共有5525⨯=个,满足差的绝对值为5的有(1,6),(3,8),(5,10),(7,2),(9,4)共5个, 则51255p ==,故选A . 7.“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是( ) A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,20203036202÷=L L ,202r =,303m =,202n =;②2020r =>,3032021101÷=L L ,101r =,202m =,101n =;③1010r =>,20210120÷=L L ,0r =,101m =,0n =;④0r =,则0r >否,输出101m =,故选C .8.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,其一条渐近线被圆22()4(0)x m y m -+=>截得的线段长为2,则实数m 的值为( )ABC .2D .1【答案】C【解析】依题意2c ba a===⇒=,∴双曲线渐近线方程为y =,不妨取渐近线10l y -=,则圆心(,0)(0)m m >到1l的距离||22d ==,由勾股定理得2222()22+=,解得2m =±, ∵0m >,∴2m =,故选C .9.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,1()()22xf x =+.则使不等式9(1)4f x -<成立的x 取值范围是( ) A .(,1)(3,)-∞-+∞U B .(1,3)-C .(0,2)D .(,0)(2,)-∞+∞U【答案】A 【解析】∵9(2)4f =,由9(1)4f x -<,得(1)(2)f x f -<, 又∵()f x 为偶函数,∴(|1|)(2)f x f -<, 易知()f x 在(0,)+∞上为单调递减,∴|1|2x ->, ∴12x ->或12x -<-,即3x >或1x <-,故选A .10.函数1()()cos 1xxe f x x e+=⋅-在[5,5]-的图形大致是( ) A . B .C .D . 【答案】A【解析】易知()()f x f x -=-,即函数()f x 是奇函数,图象关于原点对称,排除D ;()f x 在y 轴右侧第一个零点为π2x =,当π02x <<时,10x e +>,10x e -<,cos 0x >,∴()0f x <,排除B ; 当0x +→时,12xe +→,10xe -→,cos 1x →,且10xe -<,∴y →-∞. 故选A . (当π02x <<时,12cos ()()cos cos 11xx x e x f x x x e e+=⋅=---. 222(cos sin sin )2(sin sin )()sin sin 0(1)(1)x x x x x e x e x x e x x f x x x e e +--'=+>+>--,排除C)11.已知三棱锥P ABC -中,2π3APB ∠=,PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为( )A .16πB .28πC .24πD .32π【答案】B【解析】在PAB △中,由余弦定理得3AB =,又222AC AB BC =+,∴ABC △为直角三角形,CB AB ⊥, 又平面PAB ⊥平面ABC 且交于AB ,∴CB ⊥平面PAB ,∴几何体的外接球的球心到平面PAB 的距离为122BC =, 设PAB △的外接圆半径为r,则322πsin3r ==r = 设几何体的外接球半径为R,则22227R =+=, 所求外接球的表面积24π28πS R ==,故选B .12.已知函数1()1xx f x e x +=--,对于函数()f x 有下述四个结论: ①函数()f x 在其定义域上为增函数; ②对于任意的0a <,都有()1f a >-成立; ③()f x 有且仅有两个零点;④若xy e =在点000(,)(1)x x e x ≠处的切线也是ln y x =的切线,则0x 0必是()f x 零点.其中所有正确的结论序号是( )A .①②③B .①②C .②③④D .②③【答案】C【解析】依题意()f x 定义域为(,1)(1,)-∞+∞U ,且22()(1)xf x e x '=+-,∴()f x 在区间(,1)-∞和(1,)+∞上是增函数,①错;∵当0a <时,则201ae a ->-,因此12()1111a a a f a e e a a +=-=-+->---成立,②对; ∵()f x 在区间(,1)-∞上单调递增,且22111(2)033f e e --=-=-<,(0)20f =>, ∴(2)(0)0f f -⋅<,即()f x 在区间(,1)-∞上有且仅有1个零点.∵()f x 在区间(1,)+∞上单调递增,且552445()93304f e =-<-<,2(2)30f e =->,∴5()(2)04f f ⋅<,(也可以利用当1x +→时,()f x →-∞,2(2)30f e =->)得()f x 在区间(1,)+∞上有且仅有1个零点.因此,()f x 有且仅有两个零点,③对;∵xy e =在点000(,)(1)xx e x ≠处的切线方程l 为000()x x y ee x x -=-.又l 也是ln y x =的切线,设其切点为11(,ln )A x x ,则l 的斜率11k x =, 从而直线l 的斜率011x k e x ==,∴01x x e -=,即切点为00(,)x A e x --, 又点在l 上,∴0000000001()0(1)1x x x x x x ee e x e x x -+--=-⇒-=≠-, 即0x 必是()f x 零点,④对.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量(4,2)=-a ,(1,1)=-b ,若()k ⊥+b a b ,则k = . 【答案】3【解析】∵()k ⊥+b a b ,∴()0k ⋅+=b a b ,即2||0k ⋅+=b a b ,由已知得426⋅=--=-b a,||=b 6203k k -+=⇒=.14.为了贯彻落实十九大提出的“精准扶贫”政策,某地政府投入16万元帮助当地贫困户通过购买机器办厂的形式脱贫,假设该厂第一年需投入运营成本3万元,从第二年起每年投入运营成本比上一年增加2万元,该厂每年可以收入20万元,若该厂*()n n ∈N 年后,年平均盈利额达到最大值,则n 等于 .(盈利额=总收入−总成本) 【答案】4【解析】设每年的营运成本为数列{}n a ,依题意该数列为等差数列,且13a =,2d =,所以n 年后总营运成本22n S n n =+,因此,年平均盈利额为220(2)1616181810n n n n n n -+-=--+≤-=,当且仅当4n =时等号成立.15.在棱长为2的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则平面1A EC 截该正方体所得截面面积为 .【答案】【解析】如图,在正方体1111ABCD A B C D -中, ∵平面11A D DA ∥平面11B C CB ,∴平面1A EC 与平面11B C CB 的交线必过C 且平行于1A E , 故平面1A EC 经过1B B 的中点F ,连接1A F ,得截面1A ECF , 易知截面1A ECF其对角线EF BD ==1AC =截面面积11122S AC EF =⨯=⨯=.A16.过点1(1,)2P -作圆221x y +=的切线l ,已知A ,B 分别为切点,直线AB 恰好经过椭圆的右焦点和下顶点,则直线AB 方程为 ;椭圆的标准方程是 .【答案】220x y --=,22154x y +=【解析】①当过点1(1,)2-的直线l 斜率不存在时,直线方程为1x =,切点的坐标(1,0)A ;②当直线l 斜率存在时,设l 方程为1(1)2y k x =--, 根据直线与圆相切,圆心(0,0)到切线的距离等于半径1, 可以得到切线斜率34k =,即35:44l y x =-, 直线l 方程与圆方程的联立可以得切点的坐标34(,)55B -,根据A 、B 两点坐标可以得到直线AB 方程为220x y --=,(或利用过圆222x y r +=外一点00(,)x y 作圆的两条切线,则过两切点的直线方程为200x x y y r +=)依题意,AB 与x 轴的交点(1,0)即为椭圆右焦点,得1c =, 与y 轴的交点(0,2)-即为椭圆下顶点坐标,所以2b =, 根据公式得2225a b c =+=,因此,椭圆方程为22154x y +=.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,角,,A B C 的对边分别为,,a b c ,已知2B C =,34b c =. (1)求cos C ;(2)若3c =,求ABC △的面积. 【答案】(1)2cos 3C =;(2. 【解析】(1)依题意,由正弦定理得3sin 4sin A C =, ∵2B C =,∴3sin 24sin C C =,∴3sin cos 2sin C C C =,∴(0,π)C ∈,sin 0C ≠,∴2cos 3C =. (2)解法一:由题意得3c =,4b =, ∵(0,π)C ∈,∴sin C ==,∴sin sin 22sin cos B C C C ===,221cos cos 2cos sin 9B C C C ==-=-,∴21sin sin(π)sin()sin cos cos sin 939327A B C B C B C B C =--=+=+=⨯-⨯=,∴11sin 4322279ABC S bc A ==⨯⨯⨯=△. 解法二:由题意及(1)得3c =,4b =,2cos 3C =, ∵(0,π)C ∈,∴sin C ==, 由余弦定理2222cos c a b bc C =+-,得2291683a a =+-⨯, 即2316210a a -+=,解得3a =或73a =, 若3a =,又3c =,则A C =, 又2B C =,得ABC △为直角三角形,而三边为3a =,4b =,3c =的三角形不构成直角三角形,矛盾,∴73a =,∴117sin 4223ABC S ab C ==⨯⨯=△ 18.(12分)某种治疗新型冠状病毒感染肺炎的复方中药产品的质量以其质量指标值衡量,质量指标越大表明质量越好,为了提高产品质量,我国医疗科研专家攻坚克难,新研发出A 、B两种新配方,在两种新配方生产的产品中随机抽取数量相同的样本,测量这些产品的质量指标值,规定指标值小于85时为废品,指标值在[85,115)为一等品,大于115为特等品.现把测量数据整理如下,其中B 配方废品有6件.A 配方的频数分布表(1)求a ,b 的值;(2)试确定A 配方和B 配方哪一种好?(说明:在统计方法中,同一组数据常用该组区间的中点值作为代表)【答案】(1)24,0.026;(2)B 配方好些,详见解析. 【解析】(1)依题意,,A B 配方样本容量相同,设为n , 又B 配方废品有6件,由B 配方的频频率分布直方图, 得废品的频率为60.00610n=⨯,解得100n =, ∴100(836248)24a =-+++=.由(0.0060.0380.0220.008)101b ++++⨯=,解得0.026b =, 因此a ,b 的值分别为24,0.026. (2)由(1)及A 配方的频数分布表得,A配方质量指标值的样本平均数为808902410036110241208100A x ⨯+⨯+⨯+⨯+⨯= 20082002410036100100⨯+⨯+⨯==,质量指标值的样本方差为:222221[(20)8(10)240361024208]112100A s =-⨯+-⨯+⨯+⨯+⨯=; 由B 配方的频频率分布直方图得,B 配方质量指标值的样本平均数为:800.06900.261000.381100.221200.08100B x =⨯+⨯+⨯+⨯+⨯=,质量指标值的样本方差为:25222221()(20)0.06(10)0.2600.38100.22200.08104Bi i i s x x p ==-=-⨯+-⨯+⨯+⨯+⨯=∑,综上A B x x =,22A B s s >,即两种配方质量指标值的样本平均数相等,但A 配方质量指标值不够稳定, 所以选择B 配方比较好.19.(12分)如图1,在平行四边形ABCD 中,4AD =,AB =,45DAB ∠=︒,E 为边AD 的中点,以BE 为折痕将ABE △折起,使点A 到达P 的位置,得到图2几何体P EBCD -. (1)证明:PD BE ⊥;(2)当BC ⊥平面PEB 时,求三棱锥C PBD -的体积.【答案】(1)证明见解析;(2)83.【解析】(1)依题意,在ABE △中(图1),2AE =,AB =45EAB ∠=︒, 由余弦定理得2222cos 45EB AB AE AB AE =+-⋅⋅︒842242=+-⨯⨯=, ∴222AB AE EB =+,即在平行四边形ABCD 中,EB AD ⊥. 以BE 为折痕将ABE △折起,由翻折不变性得, 在几何体P EBCD -中,EB PE ⊥,EB ED ⊥. 又ED PE E =I ,∴BE ⊥平面PED , 又BE ⊂平面PEB ,∴PD BE ⊥.(2)∵BC ⊥平面PEB ,PE ⊂平面PEB ,∴BC PE ⊥. 由(1)得EB PE ⊥,同理可得PE ⊥平面BCE , 即PE ⊥平面BCD ,PE 就是三棱锥P CBD -的高.又45DCB DAB ∠=∠=︒,4BC AD ==,CD AB ==2PE AE ==,∴11sin 454422CBD S BC CD =⨯⨯⨯︒=⨯⨯=△, 11842333C PBD P CBD BCD V V S PE --==⨯=⨯⨯=△,因此,三棱锥C PBD -的体积为83.20.(12分)已知抛物线2:2(0)C y px p =>与直线:10l x y ++=相切于点A ,点B 与A 关于x轴对称.(1)求抛物线C 的方程及点B 的坐标;(2)设,M N 是x 轴上两个不同的动点,且满足BMN BNM ∠=∠,直线BM 、BN 与抛物线C 的另一个交点分别为,P Q ,试判断直线PQ 与直线l 的位置关系,并说明理由.如果相交,求出的交点的坐标.【答案】(1)24y x =,(1,2)B ;(2)PQ l ∥,详见解析.【解析】(1)联立2210y px x y ⎧=⎨++=⎩,消去x ,得2220y py p ++=,∵直线与抛物线相切,∴2480Δp p =-=,又0p >,解得2p =,∴抛物线C 的方程为24y x =,由2440y y ++=,得2y =-,∴切点为(1,2)A -,∵点B 与A 关于x 轴对称,点B 的坐标(1,2)B .(2)直线PQ l ∥,理由如下:依题意直线BM 的斜率不为0,设(,0)(1)M t t ≠,直线BM 的方程为x my t =+,由(1)(1,2)B ,12m t =+,∴直线BM 的方程为12tx y t -=+, 代入24y x =,解得2y =(舍)或2y t =-,∴2(,2)P t t -,∵BMN BNM ∠=∠,∴,M N 关于AB 对称,得(2,0)N t -, 同理得BN 的方程为122t x y t -=+-,代入24y x =, 得2((2),24)Q t t --,2244441(2)44PQ t t k t t t--===----, 直线l 的斜率为1-,因此PQ l ∥. 21.(12分)设函数2()()x f x x m e =+. (1)讨论()f x 的单调性;(2)若()21()xg x e nx f x =---,当1m =,且0x ≥时,()0g x ≤,求n 的取值范围.【答案】(1)见解析;(2)[1,)+∞.【解析】(1)依题得,()f x 定义域为R ,2()(2)xf x x x m e '=++,0x e >,令2()2h x x x m =++,44Δm =-, ①若0Δ≤,即1m ≥,则()0h x ≥恒成立,从而()0f x '≥恒成立,当且仅当1m =,1x =-时,()0f x '=, 所以()f x 在R 上单调递增;②若0Δ>,即1m <,令()0h x =,得1x =--1x =-当(11x ∈---+时,()0f x '<;当(,1(1)x ∈-∞---++∞U 时,()0f x '>,综合上述:当1m ≥时,()f x 在R 上单调递增;当1m <时,()f x在区间(11--上单调递减,()f x在区间(,11)-∞---+∞上单调递增.(2)依题意可知:2()21()1xxxg x e nx f x e x e nx =---=---,令0x =,可得(0)0g =,2()(12)()x g x x x e n x '=---∈R ,设2()(12)x h x x x e n =---,则2()(41)xh x x x e '=-++,当0x ≥时,()0h x '<,()g x '单调递减, 故()(0)1g x g n ''≤=-,要使()0g x ≤在0x ≥时恒成立,需要()g x 在[0,)+∞上单调递减, 所以需要()10g x n '≤-≤,即1n ≥,此时()(0)0g x g ≤=,故1n ≥, 综上所述,n 的取值范围是[1,)+∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线2cos :x C y θθ=⎧⎪⎨=⎪⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程πcos()4ρθα-=,点π)4M 在直线l 上,直线l 与曲线C 交于,A B 两点.(1)求曲线C 的普通方程及直线l 的参数方程; (2)求OAB △的面积.【答案】(1)22:143x yC +=,12:1x l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数);(2)127.【解析】(1)将曲线2cos :x C y θθ=⎧⎪⎨=⎪⎩,消去参数θ得, 曲线C 的普通方程为22143x y +=,∵点π)4M 在直线πcos()4ρθα-=上,∴ππcos()44α=-=∴πcos()4ρθ-=cos sin )ρθρθ+=又cos x ρθ=,sin y ρθ=,∴直线l 的直角坐标方程为20x y +-=,显然l 过点(1,1),倾斜角为3π4. ∴直线l的参数方程为112x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数). (2)解法一:由(1),将直线l 的参数方程代入曲线C 的普通方程得:2211(1)(1)14232t t -++=,整理得27100t +-=,显然0Δ>,设,A B 对应的参数为1t ,2t,则由韦达定理得127t t +=-,12107t t =-,由参数t 的几何意义得12||||7AB t t =-===,又原点(0,0)O 到直线l的距离为d == 因此,OAB △的面积为1112||227S AB d ===. (2)解法二:由(1),联立2214320x y x y ⎧+=⎪⎨⎪+-=⎩,消去y 得271640x x -+=,显然0Δ>. 设11(,)A x y ,22(,)B x y ,则由韦达定理得12167x x +=,1247x x =,由弦长公式得||7AB ===, 又原点(0,0)O 到直线l的距离为d == 因此,OAB △的面积为1112||2277S AB d ==⨯=. (2)解法三:由(1),联立2214320x y x y ⎧+=⎪⎨⎪+-=⎩消去y 得271640x x -+=,显然0Δ>,设11(,)A x y ,22(,)B x y ,则由韦达定理得12167x x +=,1247x x =, ∵直线l 过椭圆右顶点(2,0),∴21627x +=,∴227x =, 把227x =代入直线l 的方程得,2127y =, 因此,OAB △的面积为2111212||22277S OA y ==⨯⨯=. 23.(10分)【选修4-5:不等式选讲】 已知函数()|1||2|f x x x =+--. (1)若()1f x ≤,求x 的取值范围;(2)若()f x 最大值为M ,且a b c M ++=,求证:2223a b c ++≥. 【答案】(1)1x ≤;(2)证明见解析.【解析】(1)由已知3,2()21,123,1x f x x x x ≥⎧⎪=--≤<⎨⎪-<-⎩,当2x ≥时,()3f x =,不符合;当12x -≤<时,()21f x x =-,由()1f x ≤,即211x -≤,解得1x ≤,∴11x -≤≤. 当1x <-时,()3f x =-,()1f x ≤恒成立, 综上,x 的取值范围是1x ≤.(2)由(1)知()3f x ≤,当且仅当2x ≥时,()3f x =, ∴()3max M f x ==.即3a b c ++=,∵222a b ab +≥,222a c ac +≥,222c b bc +≥, ∴2222()2()a b c ab ac bc ++≥++,∴22222223()222()9a b c a b c ab ac bc a b c ++≥+++++=++=, 因此2223a b c ++≥.。
2020年高考金榜冲刺卷(一)数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+B .1i -C .1i +D .i 1--2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}23.设:0p b a <<,11:q a b<,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.如图所示的程序框图,运行后输出的结果为( )A .4B .8C .16D .32 5.设数列{}n a 前n 项和为n S ,已知3=-n n S a n ,则3=a ( )A .98B .158C .198D .2786.圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为( )ABC .D .7.已知α 为第二象限角,sin 4πα⎛⎫+= ⎪⎝⎭ ,则tan 2α 的值为( ) A .12-B .13C .2D .3-8.已知1e ,2e 是夹角为60o 的两个单位向量,若21e e +=,2124e e +-=,则a 与b 的夹角为( ) A .30o B .60o C .120o D .150o 9.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为410.如图所示的正方形123SG G G 中,E F ,分别是12G G ,23G G 的中点,现沿SE ,SF ,EF 把这个正方形折成一个四面体,使1G ,2G ,3G 重合为点G ,则有( )A . SG ⊥平面 EFGB .EG ⊥平面SEFC . GF ⊥平面 SEFD .SG ⊥平面SEF11.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若2c =,ABC ∆的面积为2244a b +-,则ABC ∆面积的最大值为( )A .B 1C .D 112.若存在唯一的正整数0x ,使关于x 的不等式32350x x ax a --+-<成立,则实数a 的取值范围是 ( ) A .1(0,)3B .15(,]34C .13(,]32D .53(,]42二、填空题:本题共4小题,每小题5分,共20分.13.曲线ln y x x =在x e =处的切线的斜率k = . 14. 若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .15.已知0,0,0a b c >>>,若点(),P a b 在直线2x y c ++=上,则4a ba b c+++的最小值为___________. 16.如图,公路MN 和PQ 在P 处交汇,且∠QPN =30°,在A 处有一所中学,AP =160m ,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校受影响,已知拖拉机的速度为18 km/h ,那么学校受影响的时间为________s.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)设{}n a 是等比数列 ,其前n 项的和为n S ,且22a =, 2130S a -=.(1)求{}n a 的通项公式;(2)若48n n S a +>,求n 的最小值.18.(12分)如图,在三棱柱111ABC A B C -中,已知11AB BB C C ⊥侧面,1AB BC ==,12BB =,13BCC π∠=.(1)求证:1C B ABC ⊥平面;(2)求点1B 到平面11ACC A 的距离.19.(12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:已知6个站的平均得分为75分.(1)求广州南站的满意度得分x ,及这6个站满意度得分的标准差;(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率. 20.(12分)已知抛物线22y x =,过点(1,1)P 分别作斜率为1k ,2k 的抛物线的动弦AB 、CD ,设M 、N 分别为线段AB 、CD 的中点.(1)若P 为线段AB 的中点,求直线AB 的方程;(2)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.21.(12分)已知()()21x f x ax e x =-+.(1)当1a =时,讨论函数()f x 的零点个数,并说明理由;(2)若0x =是()f x 的极值点,证明()()2ln 11f x ax x x ≥-+++.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.【极坐标与参数方程】(10分)设A 为椭圆1C :221424x y +=上任意一点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为210cos 240ρρθ-+=,B 为2C 上任意一点.(1)写出1C 参数方程和2C 普通方程;(2)求AB 最大值和最小值.23.【选修4-5:不等式选讲】(10分)已知函数()2f x x a =-+,()4g x x =+,a R ∈. (1)解不等式()()f x g x a <+;(2)任意x ∈R ,2()()f x g x a +>恒成立,求a 的取值范围.2020年高考金榜冲刺卷(一)数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回. 4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21i+(i 为虚数单位)的共轭复数是( ) A .i 1-+ B .1i -C .1i +D .i 1--【答案】C【解析】因为21i i1=-+,所以其共轭复数是1i +,故选C. 2.已知集合{}|110,P x N x =∈≤≤{}2|60,Q x R x x =∈+-=则P Q ⋂等于( )A .{}1,2,3B .{}2,3C .{}1,2D .{}2【答案】D【解析】{}{}2|603,2Q x R x x =∈+-==-{}2P Q ∴⋂=.故选D.3.设:0p b a <<,11:q a b<,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】若0b a <<,则11a b <成立,所以p 是q 的充分条件,若11a b<,则当00b a <<,时成立,不满足0b a <<,所以p 不是q 的必要条件,所以p 是q 的充分不必要条件,故选A. 4.如图所示的程序框图,运行后输出的结果为( )A .4B .8C .16D .32 【答案】C【解析】执行如图程序框图:当n=1,b=1,当n=2,b=2,当n=3,b=4,当n=4,b=16,当n=5则输出b,故选C.5.设数列{}n a 前n 项和为n S ,已知3=-n n S a n ,则3=a ( )A .98B .158C .198D .278【答案】C【解析】当2n ≥时,[]1133(1)n n n n n a S S a n a n --=-=----,整理得1231nn a a -=+,又11131S a a ==-,得11a 2=,21323112a a ∴=+=+,得254a =,321523114a a ∴=+=+,得3198a =,故选C. 6.圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为( )A BC .D .【答案】C【解析】两圆的方程相减可得,两圆公共弦所在的直线方程为:-+20x y =,圆2240x y +-=的圆心到公共弦的距离为dl 故选C.7.已知α为第二象限角,sin 410πα⎛⎫+= ⎪⎝⎭ ,则tan 2α 的值为( ) A .12-B .13C .2D .3-【答案】C【解析】由题意可得:)sin sin cos cos sin sin cos 444210πππααααα⎛⎫+=+=+= ⎪⎝⎭, 则:1sin cos 5αα+=,据此有:2222222sincoscos sin 2tantan 111222222,55sin cos tan 1222ααααααααα+--+==++, 解得:tan22α=或1tan23α=-,α 为第二象限角,则tan 02α>,综上可得:tan 2α的值为2.故选C. 8.已知1e ,2e 是夹角为60o 的两个单位向量,若21e e +=,2124e e +-=,则a 与b 的夹角为( ) A .30o B .60o C .120o D .150o 【答案】C【解析】试题分析:因为 21e e a +=,2124e e b +-=,所以2212121122()(42)422a b e e e e e e e e ⋅=+⋅-+=--⋅+r r u r u u r u r u u r u r u r u u r u u r ,而012121cos602e e e e ⋅==u r u u r u r u u r ,所以2211224224123a b e e e e ⋅=--⋅+=--+=-r r u r u r u u r u u r,而12a e e =+===r u r u u r1242b e e =-+===r u r u u r ,所以与的夹角的余弦值为1cos 2a b a bθ→→⋅===-r r ,所以与的夹角为120o ,故选C .9.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【解析】根据题意有()1cos235cos212cos2222x f x x x -=+-+=+,所以函数()f x 的最小正周期为22T ππ==,且最大值为()max 35422f x =+=,故选B. 10.如图所示的正方形123SG G G 中,E F ,分别是12G G ,23G G 的中点,现沿SE ,SF ,EF 把这个正方形折成一个四面体,使1G ,2G ,3G 重合为点G ,则有( )A . SG ⊥平面 EFGB .EG ⊥平面SEFC . GF ⊥平面 SEFD .SG ⊥平面SEF【答案】A【解析】由题意:SG FG ⊥,SG EG ⊥,FG EG G =I ,FG EG ⊂,平面EFG ,所以SG ⊥平面EFG 正确,D 不正确;又若EG ⊥平面SEF ,则EG ⊥EF ,由平面图形可知显然不成立;同理 GF ⊥平面 SEF 不正确;故选A.11.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若2c =,ABC ∆的面积为2244a b +-,则ABC ∆面积的最大值为( )A .B 1C .D 1【答案】D【解析】∵2c =,22222444ABCa b a b c S ∆+-+-==2cos 1sin 42ab C ab C ==.∴tan 14C Cπ=?,由余弦定理得2222242cos c a b ab C a b ==+-=+2ab ≥-,∴4ab ≤=+(11sin 4222ABC S ab C ∆=≤⨯+⨯1=.故选D.12.若存在唯一的正整数0x ,使关于x 的不等式32350x x ax a --+-<成立,则实数a 的取值范围是 ( ) A .1(0,)3B .15(,]34C .13(,]32D .53(,]42【答案】B【解析】设32()35f x x x ax a =--+-,则存在唯一的正整数0x ,使得0()0f x <,设32()35g x x x =-+,()(1)h x a x =+,因为2()36g x x x '=-,所以当(,0)x ∈-∞以及(2,)+∞时,()g x 为增函数,当(0,2)x ∈时,()g x 为减函数,在0x =处,()g x 取得极大值5,在2x =处,()g x 取得极大值1.而()h x 恒过定点(1,0)-, 两个函数图像如图,要使得存在唯一的正整数0x ,使得0()0f x <,只要满足(1)(1)(2)(2)(3)(3)g h g h g h ≥⎧⎪<⎨⎪≥⎩,即135281253272754a a a -+≥⎧⎪-+<⎨⎪-+≥⎩,解得1534a <≤,故选B. 二、填空题:本题共4小题,每小题5分,共20分.13.曲线ln y x x =在x e =处的切线的斜率k = . 【答案】2【解析】因为ln y x x =,所以'ln 1y x =+,所以它在x e =处的切线的斜率ln 12k e =+=.14. 若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .【答案】[2,)+∞【解析】因为函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,所以()0f x '≥在区间ππ(,)63恒成立,22cos sin (sin )(sin )sin 1()cos cos x x a x x a x f x x x-⋅--⋅--'== 因为2cos 0x >,所以sin 10a x -≥在区间ππ(,)63恒成立,所以1sin a x ≥,因为(,)63x ππ∈,所以11sin 2223sin x x <<⇒<<,所以a 的取值范围是[2,)+∞. 15.已知0,0,0a b c >>>,若点(),P a b 在直线2x y c ++=上,则4a ba b c+++的最小值为___________.【答案】2+【解析】(),P a b Q 在2x y c ++=上,2a b c ∴++=,20a b c +=->,4422a b c a b c c c +-+=++-4212c c =+--,设2c m c n -=⎧⎨=⎩,则2m n +=,42424222m n c c m n m n +⎛⎫+=+=⨯+ ⎪-⎝⎭2333n m m n =++≥+=+当222m n =,即2c =时,“=”成立,4213122c c∴+-≥+=+-即4a b a b c+++的最小值为2+,故答案为2+. 16.如图,公路MN 和PQ 在P 处交汇,且∠QPN =30°,在A 处有一所中学,AP =160m ,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校受影响,已知拖拉机的速度为18 km/h ,那么学校受影响的时间为________s.【答案】24【解析】学校受到噪音影响。
2020届湖南师大附中新高考原创考前信息试卷(一)文科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题1.已知集合P={y|y=2x},Q={x|y=},则P∩Q=()A.[﹣1,1]B.[0,+∞)C.(﹣∞,1]∪[1,+∞)D.(0,1]2.计算(i为虚数单位)等于()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.144.经过原点并且与直线x+y﹣2=0相切于点(2,0)的圆的标准方程是()A.(x﹣1)2+(y+1)2=2B.(x+1)2+(y﹣1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=45.已知向量.若向量,则实数m等于()A.3B.﹣3C.D.﹣6.如图在程序框图中,若输入n=6,则输出k的值是()A.2B.3C.4D.57.如图,正三棱柱ABC﹣A1B1C1中,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E8.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF=2AF=2,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A.B.C.D.9.等差数列{a n}的公差为d,前n项和为S n,当首项a1和d变化时,a3+a7+a11是一个定值,则下列各数也为定值的是()A.S7B.S8C.S13D.S1510.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且当0≤x<2时,f(x)=x3﹣x,则在区间[0,6]上函数y=f(x)的图象与x轴的交点的个数为()A.6B.7C.8D.911.已知点P是双曲线右支上一点,F1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF1的中垂线,则该双曲线的离心率是()A.B.C.2D.12.函数若a>0>b,且f(a)=f(b),则f(a+b)的取值范围是()A.(﹣∞,0]B.[﹣1,+∞)C.[﹣1,0]D.(﹣∞,﹣1]二.填空题(本大题共4小题,每小题5分,共20分)13.已知函数,则f(f(﹣2))=.14.甲、乙、丙、丁、戊5名同学参加“庆国庆70周年,爱国主义知识大赛”活动,决出第1名到第5名的名次.甲乙两名同学去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从以上回答分析,丙是第一名的概率是.15.若变量x,y满足约束条件,则z=2x+y的最大值.16.已知A、B是球O球面上的两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为.三.解答题(本题共5小题,共70分,请在指定位置写出解答过程)17.已知函数f(x)=a(2cos2+sin x)+b.(1)当a=1时,求f(x)的单调递增区间;(2)当a>0,且x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.18.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.(Ⅰ)用分层抽样的方法从交通指数在[4,6),[6,8),[8,10]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(Ⅱ)从(Ⅰ)中抽出的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.19.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.20.已知函数f(x)=e x﹣ax2,曲线y=f(x)在点(1,f(1))处的切线方程为y=bx+1.(Ⅰ)求a,b的值;(Ⅱ)求f(x)在[0,1]上的最大值.21.如图,已知椭圆Γ:=1(a>b>0)经过点A(2,0),离心率e=.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B为椭圆与y轴正半轴的交点,点C为线段AB的中点,点P是椭圆Γ上的动点(异于椭圆顶点)且直线PA,PB分别交直线OC于M,N两点,问|OM|•|ON|是否为定值?若是,求出定值;若不是,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知直线l:(t为参数,α为l的倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C为:ρ2﹣6ρcosθ+5=0.(1)若直线l与曲线C相切,求α的值;(2)设曲线C上任意一点的直角坐标为(x,y),求x+y的取值范围.[选修4-5:不等式选讲]23.若实数x,y,m满足|x﹣m|<|y﹣m|,则称x比y接近m.(Ⅰ)若2x比1接近3,求x的取值范围;(Ⅱ)已知a,b∈R,m>0且a≠b,求证:比接近0.参考答案与试题解析一、选择题1.已知集合P={y|y=2x},Q={x|y=},则P∩Q=()A.[﹣1,1]B.[0,+∞)C.(﹣∞,1]∪[1,+∞)D.(0,1]【解答】解:∵P={y|y>0},Q={x|x≤1},∴P∩Q=(0,1].故选:D.2.计算(i为虚数单位)等于()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【解答】解:=.故选:C.3.已知一组数据点(x1,y1),(x2,y2),(x3,y3),…,(x7,y7),用最小二乘法得到其线性回归方程为,若数据x1,x2,x3,…x7的平均数为1,则=()A.2B.11C.12D.14【解答】解:∵,且()在线性回归直线上,∴,则=.故选:D.4.经过原点并且与直线x+y﹣2=0相切于点(2,0)的圆的标准方程是()A.(x﹣1)2+(y+1)2=2B.(x+1)2+(y﹣1)2=2C.(x﹣1)2+(y+1)2=4D.(x+1)2+(y﹣1)2=4【解答】解:设圆心的坐标为(a,b),则a2+b2=r2①,(a﹣2)2+b2=r2②,=1③;由①②③组成方程组,解得a=1,b=﹣1,r2=2;故所求圆的标准方程是(x﹣1)2+(y+1)2=2.故选:A.5.已知向量.若向量,则实数m等于()A.3B.﹣3C.D.﹣【解答】解:向量,若向量,则•=3+m=0,则实数m=﹣,故选:A.6.如图在程序框图中,若输入n=6,则输出k的值是()A.2B.3C.4D.5【解答】解:执行程序框图,有n=6,k=0n=13,不满足条件n>100,k=1;n=27,不满足条件n>100,k=2;n=55,不满足条件n>100,k=3;n=111,满足条件n>100,输出k的值为3.故选:B.7.如图,正三棱柱ABC﹣A1B1C1中,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E【解答】解:CC1与B1E是异面直线,是相交直线,不正确;因为AC与AB不垂直,所以AC⊥平面ABB1A1,不正确;AE,B1C1为异面直线,且AE⊥B1C1,正确;因为AC与平面AB1E相交,A1C1∥AC,所以A1C1∥平面AB1E,不正确;故选:C.8.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设DF=2AF=2,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A.B.C.D.【解答】解:由题意有:AF=2,EF=4,∠AFC=,FC=6,再△AFC中,由余弦定理得:AC2=AF2+FC2﹣2AF×FC×=52,设事件A为”此点取自小等边三角形(阴影部分)“,由几何概型中的面积型可得:P(A)===,故选:A.9.等差数列{a n}的公差为d,前n项和为S n,当首项a1和d变化时,a3+a7+a11是一个定值,则下列各数也为定值的是()A.S7B.S8C.S13D.S15【解答】解:a3+a7+a11=3a7是一个定值,只有:S13==13a7是一个定值,故选:C.10.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且当0≤x<2时,f(x)=x3﹣x,则在区间[0,6]上函数y=f(x)的图象与x轴的交点的个数为()A.6B.7C.8D.9【解答】解:因为f(x)是R上偶函数,且满足f(1+x)=f(1﹣x),∴满足f(1+x)=f(1﹣x)=f(x﹣1),令x+1=t,则x=t﹣1,∴f(t)=f(t﹣2);∴f(x)是最小正周期为2的周期函数,当0≤x<2时,f(x)=x3﹣x=0解得x=0或x=1,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7.故选:B.11.已知点P是双曲线右支上一点,F1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF1的中垂线,则该双曲线的离心率是()A.B.C.2D.【解答】解:由题意,△PF1F2是直角三角形,PF2的斜率为﹣,设|PF1|=m,|PF2|=n,则,∵m﹣n=2a,m2+n2=4c2,∴m=2b,n=2a,∵mn=2b2,∴b=2a,∴c=a,∴e==.故选:D.12.函数若a>0>b,且f(a)=f(b),则f(a+b)的取值范围是()A.(﹣∞,0]B.[﹣1,+∞)C.[﹣1,0]D.(﹣∞,﹣1]【解答】解:设f(a)=f(b)=t,作出f(x)的图象,由图象知,t≥0,由f(a)=a2=t,得a=,由f(b)=﹣2b﹣3=t,得b=,则a+b=+=﹣t+﹣=﹣(﹣1)2﹣1,∵t≥0,∴≥0,则m=﹣(﹣1)2﹣1≤﹣1,即m=a+b≤﹣1,此时f(a+b)=f(m)=﹣2m﹣3≥2﹣3=﹣1,即f(a+b)的取值范围是[﹣1,+∞),故选:B.二.填空题(本大题共4小题,每小题5分,共20分)13.已知函数,则f(f(﹣2))=2.【解答】解:∵函数,∴f(﹣2)=﹣4×(﹣2)+1=9,f(f(﹣2))=f(9)=log39=2.故答案为:2.14.甲、乙、丙、丁、戊5名同学参加“庆国庆70周年,爱国主义知识大赛”活动,决出第1名到第5名的名次.甲乙两名同学去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从以上回答分析,丙是第一名的概率是.【解答】解:∵甲和乙都不可能是第一名,∴第一名只可能是丙、丁或戊,又考虑到所有的限制条件对丙、丁都没有影响,∴这三个人获得第一名是等概率事件,∴丙是第一名的概率是.故答案为:.15.若变量x,y满足约束条件,则z=2x+y的最大值10.【解答】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线过B(4,2)时直线在y轴上的截距最大,z最大,为z=2×4+2=10.故答案为:10.16.已知A、B是球O球面上的两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为144π.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故答案为:144π.三.解答题(本题共5小题,共70分,请在指定位置写出解答过程)17.已知函数f(x)=a(2cos2+sin x)+b.(1)当a=1时,求f(x)的单调递增区间;(2)当a>0,且x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.【解答】解:(1)当a=1时,f(x)=2cos2+sin x+b=1+cos x+sin x+b=sin(x+)+b+1.由2kπ﹣≤x+≤2kπ+(k∈Z)得:2kπ﹣≤x≤2kπ+(k∈Z),所以f(x)的单调递增区间为[2kπ﹣,2kπ+](k∈Z);(2)因为,f(x)=a(2cos2+sin x)+b=a(1+cos x+sin x)+b=a sin(x+)+b+a,x∈[0,π]⇒x+∈[,]⇒sin(x+)∈[﹣,1]⇒a sin(x+)∈[﹣a,a],所以,f(x)∈[b,()a+b],又f(x)的值域是[3,4],所以b=3,a==.18.交通拥堵指数是综合反映道路网畅通或拥堵的概念,记交通拥堵指数为T,其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通拥堵指数数据绘制的直方图如图所示.(Ⅰ)用分层抽样的方法从交通指数在[4,6),[6,8),[8,10]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(Ⅱ)从(Ⅰ)中抽出的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.【解答】解:(Ⅰ)由直方图可知:(0.1+0.2)×1×20=6,(0.25+0.2)××20=9,(0.1+0.05)×1×20=3.所以这20个路段中,轻度拥堵、中度拥堵、严重拥堵路段分别为6个,9个,3个.拥堵路段共有6+9+3=18个,按分层抽样从18个路段中选出6个,每种情况分别为:,,=1,即这三个级别路段中分别抽取的个数为2,3,1.(Ⅱ)记(Ⅰ)中选取的2个轻度拥堵路段为A1,A2,选取的3个中度拥堵路段为B1,B2,B3,选取的1个严重拥堵路段为C,则从6个路段选取2个路段的可能情况如下:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),(B1,B2),(B1,B3),(B1,C),(B2,B3),(B2,C),(B3,C),共15种可能,其中至少有1个轻度拥堵的有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C),(A2,B1),(A2,B2),(A2,B3),(A2,C),共9种可能,所以所选2个路段中至少1个路段轻度拥堵的概率为p=.19.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,由AB⊥平面PAD,得AB⊥AD,∴V P﹣ABCD=====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.20.已知函数f(x)=e x﹣ax2,曲线y=f(x)在点(1,f(1))处的切线方程为y=bx+1.(Ⅰ)求a,b的值;(Ⅱ)求f(x)在[0,1]上的最大值.【解答】解:(Ⅰ)f′(x)=e x﹣2ax,由题设得f′(1)=e﹣2a=b,f(1)=e﹣a=b+1,解得a=1,b=e﹣2.(Ⅱ)由(1)知f(x)=e x﹣x2,所以f′(x)=e x﹣2x,f″(x)=e x﹣2,所以f′(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,所以f′(x)≥f′(ln2)=2﹣2ln2>0,所以f(x)在[0,1]上单调递增,所以f(x)max=f(1)=e﹣1.21.如图,已知椭圆Γ:=1(a>b>0)经过点A(2,0),离心率e=.(Ⅰ)求椭圆Γ的方程;(Ⅱ)设点B为椭圆与y轴正半轴的交点,点C为线段AB的中点,点P是椭圆Γ上的动点(异于椭圆顶点)且直线PA,PB分别交直线OC于M,N两点,问|OM|•|ON|是否为定值?若是,求出定值;若不是,请说明理由.【解答】解:(Ⅰ)由题意可知:,解得,所以椭圆Γ的方程:+y2=1;(Ⅱ)由已知,点C的坐标为(1,),得直线OC的方程为x﹣2y=0,设P(x0,y0),M(2y1,y1),N(2y2,y2),因P,A,M三点共线,故整理得y1=,因P,B,N三点共线,故,整理得y2=,因点P在椭圆Γ上,故x02+4y02=4,从而y1y2=•==,所以|OM||ON|=|y1||y2|=5|y1y2|=为定值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.已知直线l:(t为参数,α为l的倾斜角),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C为:ρ2﹣6ρcosθ+5=0.(1)若直线l与曲线C相切,求α的值;(2)设曲线C上任意一点的直角坐标为(x,y),求x+y的取值范围.【解答】解:(1)曲线C的直角坐标方程为x2+y2﹣6x+5=0即(x﹣3)2+y2=4曲线C为圆心为(3,0),半径为2的圆.直线l的方程为:x sinα﹣y cosα+sinα=0…∵直线l与曲线C相切∴即…∵α∈[0,π)∴α=…(2)设x=3+2cosθ,y=2sinθ则x+y=3+2cosθ+2sinθ=…∴x+y的取值范围是.…[选修4-5:不等式选讲]23.若实数x,y,m满足|x﹣m|<|y﹣m|,则称x比y接近m.(Ⅰ)若2x比1接近3,求x的取值范围;(Ⅱ)已知a,b∈R,m>0且a≠b,求证:比接近0.【解答】解:(Ⅰ)由已知得|2x﹣3|<|1﹣3|=2,则﹣2<2x﹣3<2,∴,∴x的取值范围为.(II)要证比接近0,只需证,只需证只需证(a+mb)2<(a2+mb2)(m+1),即证2amb<(a2+b2)m.∵a,b∈R,m>0且a≠b,∴2amb<(a2+b2)m显然成立,∴比接近0.。
2020年高考考前45天大冲刺卷文 科 数 学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知全集U =R ,2{|ln(1)}A x y x ==-,2{|4}x B y y -==,则()U A B =I ð( )A .(1,0)-B .[0,1)C .(0,1)D .(1,0]-2.已知1a >,则“log log a a x y <”是“2x xy <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数2()(2)g x f x x =-是减函数,且(1)2f =,则(1)f -=( ) A .32-B .1-C .32D .744.已知α是第一象限角,24sin 25α=,则tan 2α=( )A .43-B .43C .34-D .345.设向量(2,2)=a ,b 与a 的夹角为3π4,且2⋅=-a b ,则b 的坐标为( )A .(0,1)-B .(1,0)-C .(0,1)-或(1,0)-D .以上都不对6.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =( ) A .12n -B .13()2n -C .12()3n -D .11()2n -7.已知α为锐角,则32tan tan 2αα+的最小值为( )A .1B .2CD8.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥B .若c ⊥平面α,则a α∥,b α∥C .若存在平面α,使得c α⊥,a α⊂,b α∥D .若存在平面α,使得c α∥,a α⊥,b α⊥9.已知两点(,0)A a ,(,0)(0)B a a ->,若圆22((1)1x y -+-=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(0,3]B .[1,3]C .[2,3]D .[1,2]10.在区间[0,2]上随机取一个数x,使πsin 22x ≥的概率为( ) A .13B .12 C .23D .3411.已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,B 为C 的短轴的一个端点,直线1BF 与C 的另一个交点为A ,若2BAF △为等腰三角形,则12||||AF AF =( ) A .13B .12C .23D .312.已知函数2()ln(||1)f x x x =++,若对于[1,2]x ∈-,22(22)9ln 4f x ax a +-<+恒成立,则实数a 的取值范围是( ) A.212a -<<B .11a -<<C.22a >或22a <D.2222a <<第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.已知i 为虚数单位,复数3i2ia +的实部与虚部相等,则实数a = . 14.执行如图所示的程序框图,则输出的n 的值为 .15.某工厂为了解某车间生产的每件产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在[96,106]内,将所得数据按[96,98),[98,100),[100,102),[102,104),[104,106]分成五组,其频率分布直方图如图所示,且五个小矩形的高构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)内的产品件数是.16.在平面直角坐标系xOy 中,(1,2)P 是双曲线22221(0,0)x y a b a b-=>>的一条渐近线l 上的一点1F ,2F 分别为双曲线的左右焦点,若1290F PF ∠=︒,则双曲线的左顶点到直线l 的距离为 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a bc +=+. (1)求角A 的大小;(2)若sin 2sin cos A B C =,是判断ABC △的形状并给出证明.18.(12分)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y bx a =+,②bxy ae =分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计了的值:残差图(1)根据残差图,比较模型①②的拟合效果,应选则那个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除:(ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)广告投入量18x =时,(1)中所选模型收益的预报值是多少?附:对于一组数据11(,)x y ,22(,)x y ,L ,(,)n n x y ,其回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()n niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,ˆˆay bx =-.19.(12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(1)求证:AB CG ⊥;(2)若ABC △和梯形BCGF 3G ABE -的体积.20.(12分)在平面直角坐标系xOy 中,已知椭圆22:14x C y +=,点11(,)P x y ,22(,)Q x y 是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为1k ,2k ,若11(,)2x y =m ,22(,)2xy =n ,0⋅=m n .(1)求证:1214k k ⋅=-; (2)试探求OPQ △的面积S 是否为定值.21.(12分)已知函数()(ln )xf x xe a x x =-+,a ∈R . (1)当a e =时,判断()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知曲线C的参数方程为sin x y αα⎧=⎪⎨⎪=⎩(α为参数),以平面直角坐标系的原点O 为极点, x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)P ,Q 为曲线C 上两点,若0OP OQ ⋅=u u u r u u u r ,求2222||||||||OP OQ OP OQ ⋅+u u u r u u u r u u ur u u u r 的值.23.(10分)【选修4-5:不等式选讲】 已知函数1()||()3f x x a a =-∈R . (1)当2a =时,解不等式1||()13x f x -+≥; (2)设不等式1||()3x f x x -+≤的解集为M ,若11[,]32M ⊆,求实数a 的取值范围.参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D2.【答案】A3.【答案】A4.【答案】D5.【答案】C6.【答案】B7.【答案】D8.【答案】C9.【答案】B10.【答案】A11.【答案】A12.【答案】A第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.【答案】314.【答案】201715.【答案】10016.【答案三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)π3A =;(2)ABC △为等边三角形,证明见解析. 18.【答案】(1)应该选择模型①,详见解析;(2)(ⅰ)ˆ38.04y x =+;(ⅱ)62.04万元.19.【答案】(1)证明见解析;(2)13. 【解析】(1)如图,取BC 的中点为D ,连接DF ,由题意得,平面ABC ∥平面EFG ,平面ABC I 平面BCGF BC =, 平面EFG I 平面BCGF FG =,∴BC FG ∥, ∵2CB GF =,∴CD GF ∥,CD GF =, ∴四边形CDFG 为平行四边形,∴CG DF ∥,∵BF CF =,D 为BC 的中点,∴DF BC ⊥,∴CG BC ⊥.∵平面ABC ⊥平面BCGF ,且平面ABC I 平面BCGF BC =,CG ⊂平面BCGF , ∴CG ⊥平面ABC ,又AB ⊂平面ABC ,∴AB CG ⊥.(2)∵2CB GF =,∴2AC EG =, 又AC EG ∥,∴2ACG AEC S S =△△, ∴1122G ABE B AEG B ACG G ABC V V V V ----===三棱锥三棱锥三棱锥三棱锥, 由(1)知CG ⊥平面ABC ,∴CG BC ⊥. ∵正三角形ABC 3∴2BC =,1CF =,直角梯形BCGF 3,∴(12)32CG+⋅=23CG =, 11112233ABC G ABE G ABC V V S CG --==⨯⨯⨯=△三棱锥三棱锥.20.【答案】(1)证明见解析;(2)为定值,详见解析. 【解析】(1)∵1k ,2k 存在,∴120x x ≠,∵0⋅=m n ,∴121204x x y y +=,∴12121214y y k k x x ⋅==-.(2)①当直线PQ 斜率不存在时,即12x x =,12y y =-时,由121214y y x x =-,得221114x y -=, 又由11(,)P x y 在椭圆上,得221114x y +=,∴1||x =,1||2y =,∴1121||||12POQ S x y y =⋅-=△. ②当直线PQ 斜率存在时,设直线PQ 的方程为(0)y kx b b =+≠,由2214y kx bx y =+⎧⎪⎨+=⎪⎩,得222(41)8440k x kbx b +++-=,222222644(41)(44)16(41)0Δk b k b k b =-+-=+->,∴122841kbx x k -+=+,21224441b x x k -=+,∵121204x x y y +=,∴1212()()04x xkx b kx b +++=,得22241b k -=,满足0Δ>,∴11||||2||122POQS PQ b b ====△, ∴OPQ △的面积S 为定值.21.【答案】(1)()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;(2)(,)e +∞. 【解析】(1)()f x 的定义域为(0,)+∞,当a e =时,(1)()()x x xe e f x x+-'=,令()0f x '=,得1x =,∵当01x <<时,()0f x '<;当1x >时,()0f x '>, ∴()f x 在(0,1)上单调递减,在(1,)+∞上单调递增.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单调递增,且t ∈R , ∴()(ln )xy f x xe a x x ==-+,即ty e at =-,令()tg t e at =-,∴()f x 在0x >上有两个零点等价于()tg t e at =-在t ∈R 上有两个零点. ①当0a =时,()tg t e =,在R 上单调递增,且()0g t >,故()g t 无零点; ②当0a <时,()0t g t e a '=->,()g t 在R 上单调递增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点;③当0a >时,由()0tg t e a '=-=可知()g t 在ln t a =时有唯一的极小值(ln )(1ln )g a a a =-.若0a e <<,()(1ln )0g t a a =->极小值,()g t 无零点; 若a e =,()0g t =极小值,()g t 只有一个零点;若a e >,()(1ln )0g t a a =-<极小值,而(0)10g =>, 由ln x y x=在x e >时为减函数,可知当a e >时,2a e e a a >>,从而2()0a g a e a =->, ∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点,综上当a e >时,()f x 有两个零点,即实数a 的取值范围是(,)e +∞.22.【答案】(1)2253sin 2ρθ=+;(2)57. 【解析】(1)由2sin x y αα⎧=⎪⎨⎪=⎩,得曲线C 的普通方程是22215x y +=, 将cos x ρθ=,sin y ρθ=代入,得2222sin 2cos 5ρθρθ+=, 即2253sin 2ρθ=+(22255sin 2cos ρθθ=+).(2)因为22255sin 2cos ρθθ=+,所以22212cos sin 5θθρ=+,由0OP OQ ⋅=u u u r u u u r,得OP OQ ⊥,设点P 的极坐标为1(,)ρθ,则点Q 的极坐标可设为2π(,)2ρθ±, 所以22222222222212||||11111112cos 2sin ||||sin cos ||||55OP OQ OP OQ OP OQ θθθθρρ⋅===++++++u u u r u u u r u u u r u u u r u u u r u u u r 152715==+. 23.【答案】(1){|0x x ≤或1}x ≥;(2)14[,]23-. 【解析】(1)当2a =时,1||()13x f x -+≥,即|31||2|3x x -+-≥. ①当13x ≤时,不等式即1323x x -+-≥,解得0x ≤,所以0x ≤; ②当123x <<时,不等式即3123x x -+-≥,解得1x ≥,所以12x ≤<; ③当2x ≥时,不等式即3123x x -+-≥,解得32x ≥,所以2x ≥,综上所述,当2a =时,不等式的解集为{|0x x ≤或1}x ≥.(2)不等式1||()3x f x x -+≤可化为|31|||3x x a x -+-≤, 依题意不等式|31|||3x x a x -+-≤在11[,]32x ∈上恒成立,所以31||3x x a x -+-≤,即||1x a -≤,即11a x a -≤≤+,所以113112a a ⎧-≤⎪⎪⎨⎪+≥⎪⎩,解得1423a -≤≤,故实数a 的取值范围是14[,]23-.。
2020届全国百师联盟新高考原创考前信息试卷(一)文科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合{}2|60A x x x =--<,集合{}2|log 1B x x =<,则A B =I ( ) A .()2,3- B .(),3-∞ C .()2,2- D .()0,2 2.已知复数i2ia z +=+(R a ∈)是纯虚数,则a 的值为( ) A.12-B.12C.2-D.23.已知等差数列{}n a 的前n 项和为n S ,若5222a a -=,则15S =( ) A.28B.30C.56D.604.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( )A.a b c >>B.a c b >>C.b a c >>D.b c a >>5.函数()21ln 12f x x x =--的大致图象为( ) A . B .C .D .6.已知点F 是抛物线22(0)y px p =>(O 为坐标原点)的焦点,倾斜角为3π的直线l 过焦点F 且与抛物线在第一象限交于点A ,当2AF =时,抛物线方程为( ) A. 2y x = B. 22y x = C. 24y x = D. 28y x = 7.剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是( ) A. 332-B. 634-C.33D.638.已知函数()()sin f x A x ωϕ=+π0,0,2()A ωϕ>><的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )A.π12 B.π6C.π3D.5π129.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k 的值为 ( )y x 211π12O -2π6A. 45B. 60C. 75D. 10010.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B ,b =4,则△ABC的面积的最大值为( )A .43B .23C .33D . 311.已知1F 、2F 是双曲线C :22221x y a b-= (00)a b >>,的左、右焦点,若直线3y x=与双曲线C 在第一象限交于点P ,过P 向x 轴作垂线,垂足为D ,且D 为2OF (O 为坐标原点)的中点,则该双曲线离心率为( )A.2 B.3 C.21 D. 3112.已知函数22,0()e ,0x x x f x x ⎧<⎪=⎨≥⎪⎩,若12()()f x f x =(12x x ≠),则12x x +的最大值为( )A.2-B.2ln 22C.3ln 22-D.ln21-二.填空题:(本大题共4小题,每小题5分,共20分,请将答案填在答题卡上.)13.已知向量,a b r r 的夹角为π4,且(1,0)a =r ,2b =r 2a b +=r r __________.14.某中学教学处采用系统抽样方法,从学校高三年级全体800名学生中抽50名学生做学习状况问卷调查.现将800名学生从1到800进行编号,在1至16号中随机抽取一个数,如果抽到的是6,则从41至56号中应取的数是__________. 15.已知4sin 65πα⎛⎫+=⎪⎝⎭,5,36ππα⎛⎫∈ ⎪⎝⎭,则cos α的值为__________. 16.已知三棱锥P ABC -中,PA ⊥底面ABC ,4AC =,3BC =,5AB =,3PA =,则该三棱锥的内切球的体积为__________.三、解答题:(本大题共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A 类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C 类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:(1)求出表中x ,y 的值;(2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加课外阅读与否”与性别有关;18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,12a =,且124,,a a a 成等比数列.(1)求数列{}n a 的通项公式及前n 项和n S ; (2)记1211n n n b S a -=+,求数列{}n b 的前n 项和n T . 19.(本小题满分12分)如图,在三棱锥P ABC -中,PB AC ⊥, 1AB AC ==,22PB =,6PC =,45PBA ∠=︒.(1)求证:平面PAB ⊥平面PAC ;(2),E F 分别是棱,PB BC 的中点,G 为棱PC 上的点,求三棱锥A EFG -的体积. 20.(本小题满分12分) 已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230x y --=,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点. 21.(本小题满分12分)已知动点P 是△PMN 的顶点,M (﹣2,0),N (2,0),直线PM ,PN 的斜率之积为﹣. (1)求点P 的轨迹E 的方程;(2)设四边形ABCD 的顶点都在曲线E 上,且AB ∥CD ,直线AB ,CD 分别过点 (﹣1,0),(1,0),求四边形ABCD 的面积为时,直线AB 的方程.选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线2:1-=x C ,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C 、2C 的极坐标方程; (2)若直线3C 的极坐标方程为π4θ=,设2C ,3C 的交点为M ,N ,求2C MN ∆的面积. 选修4-5:不等式选讲23.已知函数()22f x x a x =++-(其中a R ∈).PABCEFG(1)当1a =-时,求不等式()6f x ≥的解集;(2)若关于x 的不等式2()32f x a x ≥--恒成立,求a 的取值范围.高三文数试题答案一.1—6 DABCCB 7—12 BABADC二.410- 16 .3281π三、解答题:(本大题共70分,解答应写出文字说明,证明过程或演算步骤)17、【解答】:(1)设抽取的20人中,男,女生人数分别为1n ,2n ,则1201200122000⨯==n ,22080082000⨯==n ,所以12534=--=x ,8332=--=y ;………6分2K 的观测值220(4628)100.159 2.70612814663⨯-⨯==≈<⨯⨯⨯k , 所以没有90%的把握认为“参加阅读与否”与性别有关;………12分18.解:(1)124,,a a a Q 成等比数列,2214a a a ∴=⋅,12a =Q ,2(2)2(23)d d ∴+=+,解得2d =或0d =(舍去)………2分2(1)22n a n n ∴=+-⨯=………4分(22)(1)2n n n S n n +==+………6分 (2)由(Ⅰ)得1111=(1)1n S n n n n =-++,112111222n n n a --==⋅,111+12n nb n n =-+………8分 11(1)1111122(1)()()+1223112n n T n n -∴=-+-++-+-L ………10分 11111+1=21212n n n n =----++………12分 19.解:(1)证明:在PAB ∆中,由余弦定理得2222cos PA PB AB PB AB PBA =+-⋅⋅⋅∠22121cos 455=+-⋅⋅︒=,即PA =2分又1AC =,PC =222PC PA AC ∴=+,AC PA ∴⊥………3分又AC PB ⊥,PA PB P =I,PAB PB PA 平面⊆,,AC ∴⊥平面PAB ………4分⊆AC Θ平面PAC ,∴平面PAB ⊥平面PAC ………6分(2)11sin 1sin 45122PAB S PB AB PBA ∆=⋅⋅⋅∠=⋅⋅︒=Q ,11111333P ABC PAB V S AC -∆∴=⋅⋅=⋅⋅=………8分,E F Q 分别是棱,PB BC 的中点,//EF PC ∴,14EFG PBC S S ∆∆∴=………10分1114412A EFG A PBC P ABC V V V ---∴===………12分20.(1)()'af x x x=+. 由切线的斜率为2得()'112f a =+=. ∴1a =.………4分 (2)()21ln 2g x a x x =+ ()1a x -+,0x >, ∴()'a g x x x =+ ()()()11x a x a x---+=. 1.当01a <<时,由()'0g x >得0x a <<或1x >,()'0g x <得1a x <<, ∴()g x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增.又()21ln 2g a a a a =+ ()11ln 12a a a a a ⎛⎫-+=--⎪⎝⎭0<, ()()22ln 220g a a a +=+>,∴当01a <<时函数()g x 恰有一个零点.………7分2.当1a =时,()'0g x ≥恒成立,()g x 在()0,+∞上递增.又()11202g =-<,()4ln40g =>, 所以当1a =时函数()g x 恰有一个零点.………9分3.当1a >时,由()'0g x >得01x <<或x a >,()'0g x <得1x a <<, ∴()g x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增. 又()1102g a =--<, ()()22ln 220g a a a +=+>,∴当1a >时函数()g x 恰有一个零点.综上,当0a >时,函数()()()1g x f x a x=-+恰有一个零点.………12分21.解:(1)设点P (x ,y ),∵直线PM 与PN 的斜率之积为﹣,即==﹣,化简得(x ≠±2),∴动点P 的轨迹E 的方程为(x ≠±2);………4分(2)设直线AB 的方程为x =my ﹣1,A (x 1,y 1),B (x 2,y 2),由得(3m 2+4)y 2﹣6my ﹣9=0, 则 0>∆, y 1+y 2=,,………6分|y 1﹣y 2|==,∴|AB |==,又原点O 到直线AB 的距离d =,∴S △ABO =×=,………8分由图形的对称性可知,S ABCD =4S △ABO , ∴S ABCD ==,化简得18m 4﹣m 2﹣17=0,………10分解得m 2=1,即m =±1,∴直线AB 的方程为x =±y ﹣1,即x ±y +1=0.………12分 22.解:(1)因为cos x ρθ=,sin y ρθ= ∴1C 的极坐标方程为cos 2ρθ=-………2分2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.………5分(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-=,解得1ρ=2ρ12MN ρρ=-=8分因为2C 的半径为1,则2C MN ∆的面积111sin 4522⨯︒=.………10分 23.解:(1)方法一:当1a =-时,函数()212f x x x =-+-, 则不等式为2126x x -+-≥,①当2x ≥时,原不等式为2126x x -+-≥,解得:3x ≥;②当122x ≤<时,原不等式为2126x x -+-≥,解得:5x ≥.此时不等式无解; ③当12x <时,原不等式为1226x x -+-≥,解得:1x ≤-,原不等式的解集为{|13}x x x ≤-≥或.………5分方法二:当1a =-时,函数()212f x x x =-+- 33,211,22133,2x x x x x x ⎧⎪-≥⎪⎪=+≤<⎨⎪⎪-+<⎪⎩,画出函数()f x 的图象,如图:结合图象可得原不等式的解集为{|13}x x x ≤-≥或.………5分(2)不等式()232f x a x ≥--即为22x a x ++- 232a x ≥--, 即关于x 的不等式22223x a x a ++-≥恒成立. 而222x a x ++- 224x a x =++- ()()224x a x ≥+-- 4a =+, 所以243a a +≥,解得243a a +≥或243a a +≤-, 解得413a -≤≤或a φ∈. 所以a 的取值范围是41,3⎡⎤-⎢⎥⎣⎦.………10分。
·文科数学 第1页(共14页) 文科数学 第2页(共14页)绝密 ★ 启用前2020年普通高等学校招生全国统一考试文 科 数 学(一)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3.回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4.考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|}2A x y x==-,{1,0,1,2,3}B =-,则()A B =R I ð( ) A .{2} B .{1,0,1,2}-C .{2,3}D .{1,0,1}-【答案】C【解析】由题意得{|2}A x x =<,∴{|2}A x x =≥R ð,∴(){2,3}A B =R I ð. 2.i 是虚数单位,复数1i1iz -=+,则|1|z +=( ) A .1 B .2C .3D .2【答案】B 【解析】1i=i 1iz -=-+,|1||1i|2z +=-=. 3.31()lg cos x f x x x-=+的定义域为( ) A .(0,3)B .{|3x x <且π}2x ¹C .ππ(0,)(,3)22UD .{|0x x <或3}x >【答案】C【解析】由题得3030π0π2π,cos 02x x x x x k k x Z ìì-<<ïïïï>ïï揶<<眄镲??镲¹镲îî或π32x <<. 4.从A 、B 等5名学生中随机选出2人,则B 学生被选中的概率为( ) A .15B .25C .825D .925【答案】B【解析】5名学生中随机选出2人有10种,B 学生被选中有4种,42105P ==.5.若向量(2,3)=m ,(1,)λ=-n ,且(23)⊥-m m n ,则实数λ的值为( ) A .329-B .329C .32D .32-【答案】B【解析】由题意得,23(7,63)λ-=-m n ,∵(23)⊥-m m n ,∴(23)0⋅-=m m n ,即141890λ+-=,解得329λ=. 6.若π3cos()64α-=,则πsin(2)6α+=( ) A .18- B .18 C .716-D .716【答案】B【解析】由题意得22ππ31cos(2)2cos ()12()13648αα-=--=⨯-=, ∴πππππ1sin(2)cos[(2)]cos(2)cos(2)626338αααα+=-+=-=-=.7.已知双曲线22221x y a b-=(0a >,0b >)的焦距为25,且双曲线的一条渐近线与直线20x y +=平行,则双曲线的方程为( )A .2214x y -=B .2214y x -=C .221164x y -=D .22331520x y -=【答案】B【解析】∵双曲线22221x y a b-=(0a >,0b >)的焦距为25,且双曲线的一条渐近线与直线20x y +=平行,∴5=c ,2ba=, 此卷只装订不密封班级 姓名 准考证号 考场号 座位号文科数学 第3页(共14页) ·文科数学 第4页(共14页)∵222c a b =+,∴1a =,2b =,∴双曲线的方程为2214y x -=.8.某公司针对新购买的50000个手机配件的重量随机抽出1000台进行检测,右图是根据抽样检测后的重量(单位:克)数据绘制的频率分布直方图,其中配件重量的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].用样本估计总体,则下列法错误的是( )A .这批配件重量的平均数是101.30(精确到0.01)B .这批配件重量的中位数是在[100,101]之间C .0.125а=D .这批配件重量在[96,100)范围的有15000个 【答案】B【解析】易得0.125a =,C 正确; 平均数970.10990.201010.301030.251050.15101.30=?????,A 正确;中位数是累计频率为0.5的数,[96,100)的累计频率为0.3,[96,102)的累计频率为0.6, 因此中位数在[100,102)内,又[100,102)的频率为0.3,需要找到其中频率为0.2的点, 所以中位数应在[101,102)内,B 错误;这批配件重量在[96,100)范围的有50000(0.100.20)15000?=个,D 正确.9.执行如图的程序框图,如果输出的13b =,则图中判断框内应填入( )A .4?i >B .5?i >C .6?i >D .7?i >【答案】C【解析】输入0a =,1b =,1i =,第1次循环,1c =,1a =,1b =,2i =,第2次循环, 2c =,1a =,2b =,3i =,第3次循环, 3c =,2a =,3b =,4i =,第4次循环,5c =,3a =,5b =,5i =,第5次循环, 8c =,5a =,8b =,6i =,第6次循环, 13c =,8a =,13b =,7i =,…,因为输出13b =,所以7i =时就要输出,结合选项,故选C .10.已知函数()2sin()(0,0π)f x ωx φωφ=+><<的部分图象如图所示,点A ,π(,0)3B ,则下列说法中错误的是( )A .直线π12x =是()f x 图象的一条对称轴 B .()f x 的图象可由()2sin 2g x x =向左平移π3个单位而得到 C .()f x 的最小正周期为πD .()f x 在区间ππ(,)312-上单调递增 【答案】B 【解析】由(0)f =,可得sin 2φ=, 又0πφ<<,所以π3φ=或2π3,π()03f =,·文科数学 第5页(共14页) 文科数学 第6页(共14页)①当π3φ=时,πππ3133ωk ωk +=?-,k Z Î;②当2π3φ=时,π2ππ3233ωk ωk +=?-,k Z Î,由图可知,ππππ3(,3)432232T T ωωω<<?<尬,故π2()2sin(2)3ωf x x =?+,易知A ,C ,D 正确,B 错误.11.设n S 为数列{}n a 的前n 项和,已知12a =,对任意p ,*q ∈N ,都有p q p q a a a +=⋅,则11(4)260n n nS S a --⋅++(1n >,*n ∈N )取得最小值时,n =( )A .2B .3C .4D .5【答案】C【解析】当1q =时,112p p p a a a a +=⋅=,∴数列{}n a 是首项为2,公比为2的等比数列,∴2nn a =,∴12(21)2221nn n S +-==--,∴122n n S -=-,∴211(4)(22)(22)24n n nn n S S --⋅+=-⋅+=-,∴211(4)260225625623222n nn n n nn S S a --⋅+++==+≥=, 当且仅当216n=,即4n =时,等号成立.12.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为11A D ,11C D 的中点,则过B ,E ,F 三点的平面截该正方体,所得截面的周长为( )A.B.CD【答案】C【解析】过B 作l AC ∥,分别交DA ,DC 的延长线于G ,H ,连接EG 交1AA 于M ,连接FH 交1CC 与N ,连接BM ,BN ,则所得截面为五边形EMBNF .∵1A E AD ∥,∴1112A E A M AG MA ==,∴123A M =,43AM =,∴EM ==,MB ==,同理有FN =,NB =.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.已知322()3f x x ax bx a =+++在1x =-时有极值0,则a b -的值为 . 【答案】7-【解析】∵函数322()3f x x ax bx a =+++,∴2()36f x x ax b '=++, 又∵函数322()3f x x ax bx a =+++在1x =-处有极值0,∴2360130a b a b a -+=⎧⎨-+-+=⎩,∴13a b =⎧⎨=⎩或29a b =⎧⎨=⎩, 当13a b =⎧⎨=⎩时,22()363(1)0f x x ax b x '=++=+≥,函数在R 上单调递增,不满足题意; 当29a b =⎧⎨=⎩时,2()363(1)(3)f x x ax b x x '=++=++,满足题意, ∴7a b -=-.14.已知两个同底的正四棱锥的所有顶点都在同一球面上,它们的底面边长为2,体积的比值为12,则该球的表面积为________. 【答案】9π【解析】因为两个正四棱锥有公共底面且两个正四棱锥的体积之比为12, 所以两个棱锥的高之比也为12, 设两个棱锥的高分别为x ,2x ,球的半径为R ,则232x x x R +==,即32x R =, 所以球心到公共底面的距离是2x,。
2020年高考数学(文科)模拟冲刺卷(一)考生注意事项:1.答题前,先将自己的姓名、考号填写在试题卷和答题卡上。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{}11A x x =-<<,{}220B x x x =--<,则()A B =R I ð( )A .(1,0]-B .[1,2)-C .[1,2)D .(1,2]2.已知1a >,则“log log a a x y <”是“2x xy <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数2()(2)g x f x x =-是减函数,且(1)2f =,则(1)f -=( ) A .32-B .1-C .32D .744.已知α是第一象限角,24sin 25α=,则tan 2α=( ) A .43- B .43 C .34- D .345.设向量(2,2)=a ,b 与a 的夹角为3π4,且2⋅=-a b ,则b 的坐标为( )A .(0,1)-B .(1,0)-C .(0,1)-或(1,0)-D .以上都不对6.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =( )A .12n -B .13()2n -C .12()3n -D .11()2n -7.已知α为锐角,则32tan tan 2αα+的最小值为( )A .1B .2 C. D.8.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥ B .若c ⊥平面α,则a α∥,b α∥C .若存在平面α,使得c α⊥,a α⊂,b α∥D .若存在平面α,使得c α∥,a α⊥,b α⊥9.已知两点(,0)A a ,(,0)(0)B a a ->,若圆22((1)1x y -+-=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(0,3]B .[1,3]C .[2,3]D .[1,2]10.在区间[0,2]上随机取一个数x,使πsin 2x ≥的概率为( ) A .13B .12C .23D .3411.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>,过右顶点A 作一条渐近线的垂线交另一条渐近线于点B ,若OB OA =,则双曲线的离心率为( )A.B. C.D.12.已知函数2()ln(||1)f x x x =++,若对于[1,2]x ∈-,22(22)9ln 4f x ax a +-<+恒成立,则实数a 的取值范围是( ) A.212a -<<B .11a -<<C.a >或a <D.a <<第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知i 为虚数单位,复数3i2ia +的实部与虚部相等,则实数a = . 14.执行如图所示的程序框图,则输出的n 的值为 .15.某工厂为了解某车间生产的每件产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在[96,106]内,将所得数据按[96,98),[98,100),[100,102),[102,104),[104,106]分成五组,其频率分布直方图如图所示,且五个小矩形的高构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)内的产品件数是 .16.在平面直角坐标系xOy 中,(1,2)P 是双曲线22221(0,0)x y a b a b-=>>的一条渐近线l 上的一点1F ,2F 分别为双曲线的左右焦点,若1290F PF ∠=︒,则双曲线的左顶点到直线l 的距离为 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,E 是BC 的中点,3AC =,AE =2213cos 7cos 60ABE AEB ∠-∠-=.(1)求AB ; (2)求C .18.(12分)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y bx a =+,②bxy ae =分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计了的值:残差图(1)根据残差图,比较模型①②的拟合效果,应选则那个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除: (ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)广告投入量18x =时,(1)中所选模型收益的预报值是多少?附:对于一组数据11(,)x y ,22(,)x y ,L ,(,)n n x y ,其回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()n niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.19.(12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(1)求证:AB CG ⊥;(2)若ABC △和梯形BCGF的面积都等于G ABE -的体积.20.(12分)已知抛物线21:2(0)C y px p =>的焦点是椭圆22222:1(0)x y C a b a b+=>>的右焦点,且两条曲线相交于点2(3. (1)求椭圆2C 的方程;(2)过椭圆2C 右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C 和点B ,D ,且12l l ⊥, 设M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.21.(12分)已知函数()(ln )xf x xe a x x =-+,a ∈R .(1)当a e =时,判断()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 是过坐标原点且倾斜角为α的直线,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且点,A B 均异于坐标原点O,AB =,求α的值.23.(10分)【选修4-5:不等式选讲】 已知函数()f x x =.(1)解关于x 的不等式(2)(1)2f x f x --+<;(2)存在0x ∈R ,使得不等式00(2)()(1)2f x f x a f a -++<--,求实数a 的取值范围.。
绝密★启用前2020年晋通爲等学校招生全国统一考试文科数学冲剌试卷(•)<⅛ «:120分钟满分J50分〉注•事项:1•齐总前・彭生务必将白己的址名、号生巧等填丐亦签题卡和试卷 指定位置h.2.冋答迭择国时•透出毎小题答案后•用锻笔把答題卡上对应題日 的答案标号漆黒•如盂改动•用濛皮≡T⅛>G∙再述徐其他答案採号• I 叫答作选择題时•将衿案书在答迪卡上•丐住本试左上无效.3号诫结車后•将本试住和存并交何•一、迭择題:本題共12小題,毎小題5分•共60分.在每小題饴出 的四个迭项中•只有一项是符合题目姜求的.文集合 Λ=u ∈N ∣ -3<j <l∏B={y ∣ v=r ÷1}∙则人∏<C B B) =()A∙ {2∙3} B{0}C. {0.1}D∙ {—2«— 1*0∙1}2.设复数H=冷.则"1 =()■ /H √26A2 " 2,C. √T3D. √263.如图所示.AAB 「中∙D∙E 分别是线段BC.AB 的中点•则我4•为了研究OO 后求职H 寸考虑的要素•研究人员随机抽取了一定 数量的00后求职者逬行调杳•所得情况统计如F 图所示•则下文科数学 冲剌试卷(一)第1页(共6趺尸A. -2 D⅛--∣-BΓ C.-1 I>Γ--J-TfCB∙ -2 Df ⅛ ^hCD.-3 Df--I-W②公诵風利Mlne4)聲朋体亀ΦbArtr*A.参与JHI充的求馭希总人数町旄为3000H.接受调代的()0话求职者中•选择“棒陪体条”的人数最名C. 接受凋杳的00肓求职幷中•选择-公司福利-的人数最少D. 接受崗査的00后求职旨中•选抒“薪酬休系“的人数可能比选择"培Ull机遇”的多400人5. 已知长方体ABCD-A I B I C I D l的8个顶点都生圆柱Oo r的底面関周上•若Λ(1-5√2.AA1-6.则関柱的体积为( )Λ,63κB,42π C. 21π D. 8心6. 若函象/(χ) = e,j,÷(2M-l)s in x + m<√ + l>为训诵数•则曲线^≡∕(χ)在点(1.∕(∣))处的切线方程为( ) A∙ y= <e+ I)X B. y=(e+ 1 )χ-(e+1)C∙ >∙=ex÷e D. βy=e-r-e7. F图中小正方形的边氏为1・祖实线f⅛岀的是茱圄柱的三视图・侧柱表⅛i卜的点M在的觇图卜的对应点为A •側件表面上的点N在止觇图和俯視圏丄的对应点分别为B.B∖MΨ点B为劣弧&两数Λx>= Asin(2x+y) + 4Λ<)上单调递减•A∙叶考] B∙>f-T]C.[一节・—OD. [γ.y]9.已知椭圆G斗十*≡≡i(α>Q0)的左.右焦点分别为F1.F1. U b第一象限的点M住椭圆「匕•若ZAfFJ)= vZ-WOF1 = 15*.WffJsIC的离心半为( )A 普Kf C,√3-l n.⅛l10•已知长方体ABCD-A1B1C1D1中JB = 4∙BC=3∙若険长方休的表面积为66.W直线Br l与平面ACC I A I所成角的正切值为( )文科敦学冲则试卷(一》第2页(Jt 5页)11.已知角α*的顶点为坠标贩点•始边与*轴的非负半轴∙R 介.A(IMhn).B(∕r,∕n >分别是角α*终边上的点•找中mn≠Q.若 LL^±J, W z 2尸 ()Sin a嗨 <f+ 4才二>_少的取值范国为 A.「― 1・—卜 C.(-2∙-l)D.(-2∙-l]二、填空題:本題共4小题,毎小題3分,共20分. 13. IOgI 16+ log 23 I IOgI 144— ______ .=—2a yP6∙2^÷y>0.W z ≈2χ-y 的用大值为J -Λ≤δ∙15•已知BI 「过点<0.0)U6∙-8>∙(6∙0)>iilft 点的直线 /与BIC交TM. V 曲点•若IMNl=√Σ∙则直仪I 的方程为 ____________ 16. MH 为J 响应国凉勺出•实现全Ir 脱贫”・且委决定开发H 城旅游业•首先计 划修建一条从县城到达诫区的公路.已 知且城与槓区通路的中段有一座高山, 需婆條涌一圣陡酒A/人为ΓMy^∣α AD 的艮度,现在平面ABCD 中测鈕相应数!《•其中 A D - 5 √3 . B(-10.C 7>- 8. «ij AI)^ ______ . 三、解答題:共70分•解答应写出文字说明、证明过程或演算步费.第17-21題为必考题,每个试JS 考生都必须作答.第22、23雄 为选考题•考生根据更求作答. 17. (*小题满分12分〉记許序为2的数列{α.}的炳R 项和为S.. U 2S, = S rψl -2.tt 列他}满足⅛≡⅛・(I )证阴,数列{“.}为零比数列:(Il >记数列的前"项和为丁.•若丁.玄20,求实数入的 取值范围.)2co^ B=戸丐YX 「若/(3x+ 1 )>∕(x) •则实数.r 2・才< —2∙18. 《本小题满分12分)已知WfeBS-ABCO 中•底rti AHCI)是菱形.ZAHC=120∖ SA = SD=2・点V足:线段人D的中点・IL SD丄BN•点G亦线段SC上.(I [求证:SB丄ADI< U)若NSAD=60°.点Vf是线段B(、上靠近「的四等分点• 平而DGM丄T tf∏ ABCD•求二棱傩D-CMG的体积.19. (本小题满分12分)为了比较传统新旳粗食〃的产Ift是杏有力別,研左人员在若ΓH±地上分别种植/传统粮食α与新型粮食$,并收坐统计了&的山产址•所得数据如卜图所示・U知传统粗生α 的产量约为760公斤/亩.< 1)求新型粮伏0的由产Ja在[785.805)的槪率,<∏〉通过计算比较传统報食α与新型粮食0的平均亩产昴间的大小关系$(IIl)现按分整抽样的方法,在种植新熨粮食3的由产貳介于[785.805)的上地中抽取6山••再庄这6应土地中随机抽収2 亩研究粮食的生产是否受到上壤的影响•求抽到的2亩上地新加粮您0的商产就都在IX间[785.795)卜的御率.广20. (本小题満分12分〉巳知抛物线C s√=2^(p>0)的焦点F到准线的/的距离为2•点M,N是抛物线C上的点•且MFN三点共线.(I〉若IMNl = I2・求直线MN的方程;(Il)直线Z l山分别是抛物线C在M・N处的切线,且直线Z I, I Z交点为A.求证:AF丄MF.21. (本小題满分12分)已知西数/(x) = γ —W -J?"----- c∣j∙.(I)若α = 2∙求函数/(工)的单凋区间;(H)若关于的不等式2/(工)+αj^ + (∙τ' +J^)1Π J∙+A≥O恒成立•求证:36—6α÷5≥0.22∙(本小题满分10分)选修4一4:坐标系与参数方程平面直角坐标系χθy中•直线/的参数方程为J r=^Z为j=√6∕.参数)•以坐标原点为极点・才轴的正半轴为极轴建立极坐标系•曲线「的极坐标方程财7严=Sin 0.(I)求曲线(、的参数方程和直线/的极坐标方程:(II)若在线加的极坐标方程为O = ^(Pe R)・设曲线C与直线/的交点为o、M•曲线C与直线加的交点为O、N•求△OMN的面枳.23.(本小题满分10分)选修4一5:不等式选讲已知函数/(x) = ∣mx+11 + |工一加I +fc r∙(I)若加=2・求不等式/(j-)≥8的僧集:< U)若m>0.关于工的不等A∕<∙r)≥^∙÷2在R上恒成立,求实数加的取值范围•2020佯普通盛等学校招生全国统一考试文科数学模拟试卷(•)C rM βτl(fttt G .Λ-1 .f e NI -J<./ < O-<<∣∙1.2.3hB -<v∣v-2,÷∏-{v∣ y> H •期£』一Iyl τ≤ 门•故4D (CHB)=I-SSWlIN XJ-√÷ S •扳一;G \・衬味Ih 爲⅛I ÷∖ fi ∣∈H.⅛徐ΛJ3.⅛ 2 I •本B中給易由于翼砒・J E、哺* "•府W的花》⅛-<-2.-k<l.l.?.:<! .⅛>⅞S⅛ W 人靑今力斤/令对氏念•块冷约泾耳• h 5祈5*卸— g m誥占i';二'7 JiT二宁故ld = 74'-ς-⅛p^-■Aii6 B.【知识惟摆】I=I整卡友红乂的馍龙•乂一个X⅛⅛j4iφ→ ^=u-∕d<u∙∕÷R?. tfi∣√l= √u r^Λr. «什•建叹為屮冷R1 -20 口旳竹・4方抚巧穴卜比・;・「【命St聿绍】金騎人罟务t ⅛⅛⅛⅛4∙岌我的走令・A 【解IfiI^ADtfi中点M i^r⅛∙∣∙⅛ X .ji⅛ ΓA∕.Λ∕.∖. WflI IM ΓI1I⅛ IK EΛ∕.M> 如K^dhttPΛ≡7>Γ7∙ ½ -上Tfi-Ct丨丄灰・即齐一 -? Tjt一4jΓΓ∙战述A.X •!.玖丄∙JTΓ>∙≡ -Dt—PTT ^√VΓ>- —2— P*∖I)•伽町•划晁”垢讯眦训的Aft4<⅛ 粮取•排除、搖受峋代旳W町求职府中・选打∙∣ι ⅛L∣Γ)2L rtPsSM V.Hf建Iu⅛吃迥任的oil \;^H⅛ΛΦ 连H M J⅛ 讥叫谒■的人散Ja少∙Il Rh C. Ia ⅛ IΛ.【答題授脈】坏十旣讨图k化刁轨乎同灵・*忙氐巧壬处丛扭自良卩旳亦吠仏电∙W L阿P ★巧卩IjJ的Λ御代A人Rrt «夕・比心汁.0比何們欠4∙ M f J M K冬T・图J勺址人y*询乂掩计用ns.t rM4r]巡迪gH≡≡M I Λj c>nj.k l cf≡l∣.λlt⅛1 忙M >'肿底MI i l怦为√TT. ⅛ M忙f “町休SL ⅛ n z .• 、■(-≡S)-'∙<*i=21-:.Atii「・A Iaif!«?#JSTrfl.∙⅞^ Art «hΛ-【介JS倉囹】3飓人号点的2空河氏阿体・»1. \ 【績析ι%⅛re:•.门-(>-/<(►.cd JeI十O-IIMn (—a-√> —J >• + 1 ;= Jj + ∣1M- 1 *>in ∣→M<√ ÷ u.v>n? w=4∙.*i,f< •>=」"*△"-】>.π ι>≡v-∣i∙ΛWi 吋•“♦)=/ —4~(∙-∙,)・八八=W “・八故门 1 >=I — 1 ・ I刃r!∣i 术UJ 线h F* h V= (V-D / ∙ ⅛ J⅛ Λ.【知识(3《】左已加片僞M京点応的t杆巾KΛX L Z・屮; 叼门一2=八八比八一.门=—八* ∙∣⅞i⅛铃丸芒累余歩.-ttΛ 7ΛftiFHJIT以把.<•験AJtU個•知税他屮•可14计凰八一半)〜"孑)•再“川一丄・匕苓以电蜒■ ■ ■J-ft⅛ħ∕τ f∙J ^4t∕Ai>^z w 中Hn J 令奇弘 H•罡找与侑Jfit的出以%伶朱ArJtH生VMI- 1 -(∙ ⅛∙•讥图1»电人曜金荊足学和的心纫点纥∙G狀幻M廣・-K CfllMlA W 6J∣V IlH卜的男为判门\ 6 Ittlt上的拴卩林M二罕∙m科丹住陀何■:坡H -nJ¾mw到.v In冷讣屮•品知琳存的氏也方√(7x7≡7 -S Λ-Lr T.tt J⅛ IUfWWtt^l⅛⅛rj!≠ι<η心诂张征岛上巧昭壮3 <•】?S lE叶、一般誓仔此如爲展歼•逻而4十掛Sl多中•时冋谒JUX衿隹岛罠址即可J1] t t.[饰Jft意a∏Q⅛t人号缶询丘三祝阳.空怀化忆体.Kn【篆析"于∙ XW伸∙γ≤y・23“S以予+^X,x≤-< ≤γ^ - A兀"fc∙ Zb ≡ 1I k = J 吋・-P7≤.* ≤-pr ・ IM 为冲•导Ij罟•晋IHjM:・、.∙,∙riI【一鬆芻蔡】八< >≡i∕s4n< J r ------ 、—“・,乜r« / ?ατ -Tτfl5t l f ⅛J 尺G∙r i≡>r⅛去S 辜$ W 号【囱骥進鸟】 = »•«‘•)⅛{∣rT- = » ⅛rM(4S -]>6-f^⅜⅛∙r > I 十 “>G∙—加 <>c->τ +」£ IW ”< tl÷∙^>∕^∙^ ⅛ l⅜l UH) RtW (07 » M ψ.U ∣4ft2V J ::E 殆 &=、3书 W ⅛ V ?.< ^ViX Φ[ffl⅛KΦ) 书∙ Y *;沖・Y ^rt∙I -O ^ +。
1 绝密 ★ 启用前2020年高三最新信息卷文 科 数 学(一)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5}U =,{2,3,5}A =,{2,5}B =,则( ) A .A B ⊂ B .{1,3,4}U B =ð C .{2,5}A B =U D .{3}A B =I【答案】B【解析】∵{1,2,3,4,5}U =,{2,5}B =,∴{1,3,4}U B =ð,故选B . 2.若(i)i 2i x y -=+,,x y ∈R ,则复数i x y +的虚部为( ) A .2 B .1C .iD .1-【答案】B【解析】∵(i)i 1i 2i x x y -=+=+,∴2x =,1y =,所以i x y +的虚部1y =, 故选B .3.已知函数()f x 在点(1,(1))f 处的切线方程为220x y +-=,则(1)(1)f f '+=( )A .32B .1C .12D .0【答案】D【解析】切点(1,(1))f 在切线220x y +-=上,∴12(1)20f +-=,得1(1)2f =, 又切线斜率1(1)2k f '==-,∴(1)(1)0f f '+=,故选D . 4.函数()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><的图象如图所示,则π()3f 的值为( ) A .12B .1C .2D .3【答案】B【解析】根据图象可得2A =,2πππ2362T =-=,即πT =, 根据2π||T ω=,0ω>,得2π2πω==, ∴2sin(2)y x ϕ=+,又()f x 的图象过点π(,2)6,∴π22sin(2)6ϕ=⨯+, 即ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z , 又因π||2ϕ<,∴π6ϕ=, ∴π()2sin(2)6f x x =+,πππ5π()2sin(2)2sin 13366f =⨯+==,故选B . 5.下列命题错误的是( )A .“2x =”是“2440x x -+=”的充要条件B .命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为真命题 C .在ABC △中,若“A B >”,则“sin sin A B >”D .若等比数列{}n a 公比为q ,则“1q >”是“{}n a 为递增数列”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号2【答案】D【解析】由22440(2)202x x x x x -+=⇔-⇔-=⇔=,∴A 正确;命题“若14m ≥-,则方程20x x m +-=有实根”的逆命题为命题“若方程20x x m +-=有实根,则14m ≥-”, ∵方程20x x m +-=有实根11404Δm m ⇒=+≥⇒≥-,∴B 正确; 在ABC △中,若sin sin A B a b A B >⇒>⇒>(根据正弦定理),∴C 正确, 故选D .6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为“宇宙魔方”,是中华文化阴阳术数之源.河图的排列结构如图所示,一与六共宗居下,二与七为朋居上,三与八同道居左,四与九为友居右,五与十相守居中,其中白圈为阳数,黑点为阴数,若从阳数和阴数中各取一数,则其差的绝对值为5的概率为( ) A .15B .625C .725D .825【答案】A【解析】∵阳数为1,3,5,7,9;阴数为2,4,6,8,10, ∴从阳数和阴数中各取一数的所有组合共有5525⨯=个,满足差的绝对值为5的有(1,6),(3,8),(5,10),(7,2),(9,4)共5个, 则51255p ==,故选A . 7.“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是( ) A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,20203036202÷=L L ,202r =,303m =,202n =;②2020r =>,3032021101÷=L L ,101r =,202m =,101n =;③1010r =>,20210120÷=L L ,0r =,101m =,0n =;④0r =,则0r >否,输出101m =,故选C .8.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,其一条渐近线被圆22()4(0)x m y m -+=>截得的线段长为2,则实数m 的值为( )ABC .2D .1【答案】C【解析】依题意2c ba a===⇒=,∴双曲线渐近线方程为y =,不妨取渐近线10l y -=,则圆心(,0)(0)m m >到1l的距离||22d ==,由勾股定理得2222()22+=,解得2m =±, ∵0m >,∴2m =,故选C .9.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,1()()22xf x =+.则使不等式9(1)4f x -<3 成立的x 取值范围是( ) A .(,1)(3,)-∞-+∞U B .(1,3)-C .(0,2)D .(,0)(2,)-∞+∞U【答案】A 【解析】∵9(2)4f =,由9(1)4f x -<,得(1)(2)f x f -<, 又∵()f x 为偶函数,∴(|1|)(2)f x f -<, 易知()f x 在(0,)+∞上为单调递减,∴|1|2x ->, ∴12x ->或12x -<-,即3x >或1x <-,故选A .10.函数1()()cos 1xxe f x x e+=⋅-在[5,5]-的图形大致是( ) A . B .C .D . 【答案】A【解析】易知()()f x f x -=-,即函数()f x 是奇函数,图象关于原点对称,排除D ;()f x 在y 轴右侧第一个零点为π2x =,当π02x <<时,10x e +>,10x e -<,cos 0x >,∴()0f x <,排除B ; 当0x +→时,12xe +→,10xe -→,cos 1x →,且10xe -<,∴y →-∞. 故选A . (当π02x <<时,12cos ()()cos cos 11xx x e x f x x x e e+=⋅=---. 222(cos sin sin )2(sin sin )()sin sin 0(1)(1)x x x x x e x e x x e x x f x x x e e +--'=+>+>--,排除C)11.已知三棱锥P ABC -中,2π3APB ∠=,PA PB ==,5AC =,4BC =,且平面PAB ⊥平面ABC ,则该三棱锥的外接球的表面积为( )A .16πB .28πC .24πD .32π【答案】B【解析】在PAB △中,由余弦定理得3AB =,又222AC AB BC =+,∴ABC △为直角三角形,CB AB ⊥, 又平面PAB ⊥平面ABC 且交于AB ,∴CB ⊥平面PAB ,∴几何体的外接球的球心到平面PAB 的距离为122BC =, 设PAB △的外接圆半径为r,则322πsin3r ==r = 设几何体的外接球半径为R,则22227R =+=, 所求外接球的表面积24π28πS R ==,故选B .12.已知函数1()1xx f x e x +=--,对于函数()f x 有下述四个结论: ①函数()f x 在其定义域上为增函数; ②对于任意的0a <,都有()1f a >-成立; ③()f x 有且仅有两个零点;④若xy e =在点000(,)(1)x x e x ≠处的切线也是ln y x =的切线,则0x 0必是()f x 零点.其中所有正确的结论序号是( )A .①②③B .①②C .②③④D .②③【答案】C4 【解析】依题意()f x 定义域为(,1)(1,)-∞+∞U ,且22()(1)xf x e x '=+-,∴()f x 在区间(,1)-∞和(1,)+∞上是增函数,①错;∵当0a <时,则201ae a ->-,因此12()1111a a a f a e e a a +=-=-+->---成立,②对; ∵()f x 在区间(,1)-∞上单调递增,且22111(2)033f e e --=-=-<,(0)20f =>, ∴(2)(0)0f f -⋅<,即()f x 在区间(,1)-∞上有且仅有1个零点.∵()f x 在区间(1,)+∞上单调递增,且552445()93304f e =-<-<,2(2)30f e =->,∴5()(2)04f f ⋅<,(也可以利用当1x +→时,()f x →-∞,2(2)30f e =->)得()f x 在区间(1,)+∞上有且仅有1个零点.因此,()f x 有且仅有两个零点,③对;∵xy e =在点000(,)(1)xx e x ≠处的切线方程l 为000()x x y ee x x -=-.又l 也是ln y x =的切线,设其切点为11(,ln )A x x ,则l 的斜率11k x =, 从而直线l 的斜率011x k e x ==,∴01x x e -=,即切点为00(,)x A e x --, 又点在l 上,∴0000000001()0(1)1x x x x x x ee e x e x x -+--=-⇒-=≠-, 即0x 必是()f x 零点,④对.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量(4,2)=-a ,(1,1)=-b ,若()k ⊥+b a b ,则k = . 【答案】3【解析】∵()k ⊥+b a b ,∴()0k ⋅+=b a b ,即2||0k ⋅+=b a b ,由已知得426⋅=--=-b a,||=b 6203k k -+=⇒=.14.为了贯彻落实十九大提出的“精准扶贫”政策,某地政府投入16万元帮助当地贫困户通过购买机器办厂的形式脱贫,假设该厂第一年需投入运营成本3万元,从第二年起每年投入运营成本比上一年增加2万元,该厂每年可以收入20万元,若该厂*()n n ∈N 年后,年平均盈利额达到最大值,则n 等于 .(盈利额=总收入−总成本) 【答案】4【解析】设每年的营运成本为数列{}n a ,依题意该数列为等差数列,且13a =,2d =,所以n 年后总营运成本22n S n n =+,因此,年平均盈利额为220(2)1616181810n n n n n n -+-=--+≤-=,当且仅当4n =时等号成立.15.在棱长为2的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则平面1A EC 截该正方体所得截面面积为 .【答案】【解析】如图,在正方体1111ABCD A B C D -中, ∵平面11A D DA ∥平面11B C CB ,∴平面1A EC 与平面11B C CB 的交线必过C 且平行于1A E , 故平面1A EC 经过1B B 的中点F ,连接1A F ,得截面1A ECF , 易知截面1A ECF其对角线EF BD ==1AC =截面面积11122S AC EF =⨯=⨯=.A516.过点1(1,)2P -作圆221x y +=的切线l ,已知A ,B 分别为切点,直线AB 恰好经过椭圆的右焦点和下顶点,则直线AB 方程为 ;椭圆的标准方程是 .【答案】220x y --=,22154x y +=【解析】①当过点1(1,)2-的直线l 斜率不存在时,直线方程为1x =,切点的坐标(1,0)A ;②当直线l 斜率存在时,设l 方程为1(1)2y k x =--, 根据直线与圆相切,圆心(0,0)到切线的距离等于半径1, 可以得到切线斜率34k =,即35:44l y x =-, 直线l 方程与圆方程的联立可以得切点的坐标34(,)55B -,根据A 、B 两点坐标可以得到直线AB 方程为220x y --=,(或利用过圆222x y r +=外一点00(,)x y 作圆的两条切线,则过两切点的直线方程为200x x y y r +=)依题意,AB 与x 轴的交点(1,0)即为椭圆右焦点,得1c =, 与y 轴的交点(0,2)-即为椭圆下顶点坐标,所以2b =, 根据公式得2225a b c =+=,因此,椭圆方程为22154x y +=.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,角,,A B C 的对边分别为,,a b c ,已知2B C =,34b c =. (1)求cos C ;(2)若3c =,求ABC △的面积. 【答案】(1)2cos 3C =;(2. 【解析】(1)依题意,由正弦定理得3sin 4sin A C =, ∵2B C =,∴3sin 24sin C C =,∴3sin cos 2sin C C C =,∴(0,π)C ∈,sin 0C ≠,∴2cos 3C =. (2)解法一:由题意得3c =,4b =, ∵(0,π)C ∈,∴sin C ==,∴sin sin 22sin cos B C C C ===,221cos cos 2cos sin 9B C C C ==-=-,∴21sin sin(π)sin()sin cos cos sin 939327A B C B C B C B C =--=+=+=⨯-⨯=,∴11sin 4322279ABC S bc A ==⨯⨯⨯=△. 解法二:由题意及(1)得3c =,4b =,2cos 3C =, ∵(0,π)C ∈,∴sin C ==, 由余弦定理2222cos c a b bc C =+-,得2291683a a =+-⨯, 即2316210a a -+=,解得3a =或73a =, 若3a =,又3c =,则A C =, 又2B C =,得ABC △为直角三角形,而三边为3a =,4b =,3c =的三角形不构成直角三角形,矛盾,∴73a =,∴117sin 4223ABC S ab C ==⨯⨯=△ 18.(12分)某种治疗新型冠状病毒感染肺炎的复方中药产品的质量以其质量指标值衡量,质量指标越大表明质量越好,为了提高产品质量,我国医疗科研专家攻坚克难,新研发出A 、B两种新配6 方,在两种新配方生产的产品中随机抽取数量相同的样本,测量这些产品的质量指标值,规定指标值小于85时为废品,指标值在[85,115)为一等品,大于115为特等品.现把测量数据整理如下,其中B 配方废品有6件.A 配方的频数分布表(1)求a ,b 的值;(2)试确定A 配方和B 配方哪一种好?(说明:在统计方法中,同一组数据常用该组区间的中点值作为代表)【答案】(1)24,0.026;(2)B 配方好些,详见解析. 【解析】(1)依题意,,A B 配方样本容量相同,设为n , 又B 配方废品有6件,由B 配方的频频率分布直方图, 得废品的频率为60.00610n=⨯,解得100n =, ∴100(836248)24a =-+++=.由(0.0060.0380.0220.008)101b ++++⨯=,解得0.026b =, 因此a ,b 的值分别为24,0.026. (2)由(1)及A 配方的频数分布表得,A配方质量指标值的样本平均数为808902410036110241208100A x ⨯+⨯+⨯+⨯+⨯= 20082002410036100100⨯+⨯+⨯==,质量指标值的样本方差为:222221[(20)8(10)240361024208]112100A s =-⨯+-⨯+⨯+⨯+⨯=; 由B 配方的频频率分布直方图得,B 配方质量指标值的样本平均数为:800.06900.261000.381100.221200.08100B x =⨯+⨯+⨯+⨯+⨯=,质量指标值的样本方差为:25222221()(20)0.06(10)0.2600.38100.22200.08104Bi i i s x x p ==-=-⨯+-⨯+⨯+⨯+⨯=∑,综上A B x x =,22A B s s >,即两种配方质量指标值的样本平均数相等,但A 配方质量指标值不够稳定, 所以选择B 配方比较好.19.(12分)如图1,在平行四边形ABCD 中,4AD =,AB =,45DAB ∠=︒,E 为边AD 的中点,以BE 为折痕将ABE △折起,使点A 到达P 的位置,得到图2几何体P EBCD -. (1)证明:PD BE ⊥;(2)当BC ⊥平面PEB 时,求三棱锥C PBD -的体积.【答案】(1)证明见解析;(2)83.【解析】(1)依题意,在ABE △中(图1),2AE =,AB =45EAB ∠=︒, 由余弦定理得2222cos 45EB AB AE AB AE =+-⋅⋅︒842242=+-⨯⨯=, ∴222AB AE EB =+,即在平行四边形ABCD 中,EB AD ⊥. 以BE 为折痕将ABE △折起,由翻折不变性得, 在几何体P EBCD -中,EB PE ⊥,EB ED ⊥. 又ED PE E =I ,∴BE ⊥平面PED , 又BE ⊂平面PEB ,∴PD BE ⊥.7(2)∵BC ⊥平面PEB ,PE ⊂平面PEB ,∴BC PE ⊥. 由(1)得EB PE ⊥,同理可得PE ⊥平面BCE , 即PE ⊥平面BCD ,PE 就是三棱锥P CBD -的高.又45DCB DAB ∠=∠=︒,4BC AD ==,CD AB ==2PE AE ==,∴11sin 454422CBD S BC CD =⨯⨯⨯︒=⨯⨯=△, 11842333C PBD P CBD BCD V V S PE --==⨯=⨯⨯=△,因此,三棱锥C PBD -的体积为83.20.(12分)已知抛物线2:2(0)C y px p =>与直线:10l x y ++=相切于点A ,点B 与A 关于x轴对称.(1)求抛物线C 的方程及点B 的坐标;(2)设,M N 是x 轴上两个不同的动点,且满足BMN BNM ∠=∠,直线BM 、BN 与抛物线C 的另一个交点分别为,P Q ,试判断直线PQ 与直线l 的位置关系,并说明理由.如果相交,求出的交点的坐标.【答案】(1)24y x =,(1,2)B ;(2)PQ l ∥,详见解析.【解析】(1)联立2210y px x y ⎧=⎨++=⎩,消去x ,得2220y py p ++=,∵直线与抛物线相切,∴2480Δp p =-=,又0p >,解得2p =,∴抛物线C 的方程为24y x =,由2440y y ++=,得2y =-,∴切点为(1,2)A -,∵点B 与A 关于x 轴对称,点B 的坐标(1,2)B .(2)直线PQ l ∥,理由如下:依题意直线BM 的斜率不为0,设(,0)(1)M t t ≠,直线BM 的方程为x my t =+,由(1)(1,2)B ,12m t =+,∴直线BM 的方程为12tx y t -=+, 代入24y x =,解得2y =(舍)或2y t =-,∴2(,2)P t t -,∵BMN BNM ∠=∠,∴,M N 关于AB 对称,得(2,0)N t -, 同理得BN 的方程为122t x y t -=+-,代入24y x =, 得2((2),24)Q t t --,2244441(2)44PQ t t k t t t--===----, 直线l 的斜率为1-,因此PQ l ∥. 21.(12分)设函数2()()x f x x m e =+. (1)讨论()f x 的单调性;(2)若()21()xg x e nx f x =---,当1m =,且0x ≥时,()0g x ≤,求n 的取值范围.【答案】(1)见解析;(2)[1,)+∞.【解析】(1)依题得,()f x 定义域为R ,2()(2)xf x x x m e '=++,0x e >,令2()2h x x x m =++,44Δm =-, ①若0Δ≤,即1m ≥,则()0h x ≥恒成立,从而()0f x '≥恒成立,当且仅当1m =,1x =-时,()0f x '=, 所以()f x 在R 上单调递增;②若0Δ>,即1m <,令()0h x =,得1x =--1x =-当(11x ∈---+时,()0f x '<;当(,1(1)x ∈-∞---++∞U 时,()0f x '>,综合上述:当1m ≥时,()f x 在R 上单调递增;当1m <时,()f x在区间(11--上单调递减,()f x在区间(,11)-∞---+∞上单调递增.(2)依题意可知:2()21()1xxxg x e nx f x e x e nx =---=---,令0x =,可得(0)0g =,2()(12)()x g x x x e n x '=---∈R ,设2()(12)x h x x x e n =---,则2()(41)xh x x x e '=-++,8当0x ≥时,()0h x '<,()g x '单调递减, 故()(0)1g x g n ''≤=-,要使()0g x ≤在0x ≥时恒成立,需要()g x 在[0,)+∞上单调递减, 所以需要()10g x n '≤-≤,即1n ≥,此时()(0)0g x g ≤=,故1n ≥, 综上所述,n 的取值范围是[1,)+∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线2cos :x C y θθ=⎧⎪⎨=⎪⎩(θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程πcos()4ρθα-=,点π)4M 在直线l 上,直线l 与曲线C 交于,A B 两点.(1)求曲线C 的普通方程及直线l 的参数方程; (2)求OAB △的面积.【答案】(1)22:143x yC +=,12:1x l y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数);(2)127.【解析】(1)将曲线2cos :x C y θθ=⎧⎪⎨=⎪⎩,消去参数θ得, 曲线C 的普通方程为22143x y +=,∵点π)4M 在直线πcos()4ρθα-=上,∴ππcos()44α=-=∴πcos()4ρθ-=cos sin )ρθρθ+=又cos x ρθ=,sin y ρθ=,∴直线l 的直角坐标方程为20x y +-=,显然l 过点(1,1),倾斜角为3π4. ∴直线l的参数方程为112x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数). (2)解法一:由(1),将直线l 的参数方程代入曲线C 的普通方程得:2211(1)(1)14232t t -++=,整理得27100t +-=,显然0Δ>,设,A B 对应的参数为1t ,2t,则由韦达定理得127t t +=-,12107t t =-,由参数t 的几何意义得12||||7AB t t =-===,又原点(0,0)O 到直线l的距离为d == 因此,OAB △的面积为1112||227S AB d ===. (2)解法二:由(1),联立2214320x y x y ⎧+=⎪⎨⎪+-=⎩,消去y 得271640x x -+=,显然0Δ>. 设11(,)A x y ,22(,)B x y ,则由韦达定理得12167x x +=,1247x x =,由弦长公式得||7AB ===, 又原点(0,0)O 到直线l的距离为d == 因此,OAB △的面积为1112||2277S AB d ==⨯=. (2)解法三:由(1),联立2214320x y x y ⎧+=⎪⎨⎪+-=⎩消去y 得271640x x -+=,显然0Δ>,9 设11(,)A x y ,22(,)B x y ,则由韦达定理得12167x x +=,1247x x =, ∵直线l 过椭圆右顶点(2,0),∴21627x +=,∴227x =, 把227x =代入直线l 的方程得,2127y =, 因此,OAB △的面积为2111212||22277S OA y ==⨯⨯=. 23.(10分)【选修4-5:不等式选讲】 已知函数()|1||2|f x x x =+--. (1)若()1f x ≤,求x 的取值范围;(2)若()f x 最大值为M ,且a b c M ++=,求证:2223a b c ++≥. 【答案】(1)1x ≤;(2)证明见解析.【解析】(1)由已知3,2()21,123,1x f x x x x ≥⎧⎪=--≤<⎨⎪-<-⎩,当2x ≥时,()3f x =,不符合;当12x -≤<时,()21f x x =-,由()1f x ≤,即211x -≤,解得1x ≤,∴11x -≤≤. 当1x <-时,()3f x =-,()1f x ≤恒成立, 综上,x 的取值范围是1x ≤.(2)由(1)知()3f x ≤,当且仅当2x ≥时,()3f x =, ∴()3max M f x ==.即3a b c ++=,∵222a b ab +≥,222a c ac +≥,222c b bc +≥, ∴2222()2()a b c ab ac bc ++≥++,∴22222223()222()9a b c a b c ab ac bc a b c ++≥+++++=++=, 因此2223a b c ++≥.。