2017年重庆市沙坪坝区中考数学一模试卷
- 格式:doc
- 大小:473.50 KB
- 文档页数:26
2017年九年级数学中考模拟试卷一、选择题:1.tan60°的值等于()A.1B.C.D.22.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.0.5或﹣1B.﹣0.5C.0.5或 1D.0.53.已知点A(-2,y),B(3,y2)是反比例函数图象上的两点,则有( )1A.y1<0<y2B.y2<0<y1 C.y1<y2<0 D.y2<y1<04.将两个长方体如图放置,则所构成的几何体的左视图可能是()A. B. C. D.5.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若AE:AC=3:4,AD=9,则AB等于()A.10B.11C.12D.166.掷一枚质地均匀的硬币一次,反面朝上的概率是()A.1B.C.D.7.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形8.如图,在平行四边形ABCD中,点E在边DC上,DE∶CE=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )A.3:4 B.9:16 C.9:1 D.3:19.如图,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(﹣4,1)C.(1,﹣1)D.(﹣3,1)10.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.0.75B.4/3C.0.6D.0.811.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则BC=()A.1.5B.2.5C.3.5D.4.512.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G二、填空题:13.已知两个相似三角形的相似比是3:4,其中一个三角形的最短边长为4cm,那么另一个三角形的最短边长为14.若(m+n)(m+n+5)=6,则m+n的值是________.15.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= .16.抛物线y=(x+1)2+2的对称轴是17.“赵爽弦图”由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖,若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是________.18.如图,将矩形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点A落在边BC的中点M处,点D落在点N处,MN与CD相交于点P,连接EP,若AB=2AD=4,则PE= .三、解答题:19.解方程:3x2-6x-2=0.20.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm.求梯子的长.21.如图,在平面直角坐标系中,反比例函数y=kx-1(x>0)的图象经过点A(1,2)和点B(m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax﹣1与线段AB交于点P,直接写出a的取值范围.22.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩(1)请用表格或树状图求小美玩一次“守株待兔”游戏能得到小兔玩具的概率;(2)假设有1000人次玩此游戏,估计游戏设计者可赚多少元?23.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据 tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).24.汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)25.如图,已知平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.26.如图,已知抛物线y=x2+bx+c图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.参考答案1.C2.B3.B4.C5.C6.B7.D8.B9.B10.D11.D12.C13.略14.答案为:-6或115.答案为:.16.直线x=-117.答案为:0.2 ;18.解:取EP的中点Q,连接MQ.由翻折的性质可知AE=EM.设BE=x,则AE=ME=4﹣x.在Rt△EBM中,EM2=BE2+MB2,即(4﹣x)2=x2+12.解得:x=.∴BE=.由翻折的性质可知∠EMP=∠A=90°,∴∠EMB+∠PMC=90°.又∵∠BEM+∠EMB=90°,∴∠PMC=∠BEM.又∵∠B=∠C,∴△△EBM∽△MCP.∴,即.解得:PC=.∵QM是梯形EBCP的中位线,∴EM+PC=2QM.∵在Rt△EMP中,QM是斜边EP上的中线,∴PE=2QM=EM+PC==.故答案为:.19.解:∵a=3,b=-6,c=-2 ∴∴所以方程的解是20.略21.解:(1)∵反比例函数y=的图象经过点A(1,2),∴k=1×2=2,∴反比例函数解析式为y=.(2)∵点B(m,n)在反比例函数y=的图象上,∴mn=2.又∵S△ABC=0.5BC•(y A﹣y B)=0.5m(2﹣n)=m﹣0.5mn=m﹣1=2,∴m=3,n=,∴点B的坐标为(3,).(3)将A(1,2)代入y=ax﹣1中,2=a﹣1,解得:a=3;将B(3,)代入y=ax﹣1中,=3a﹣1,解得:a=.∵直线y=ax﹣1与线段AB交于点P,P为线段AB上一动点(P不与A、B重合),∴<a<3.22.23.解∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4 即BD=AD设BD=AD=xm,∵AC=50m∴CD=x+50,在Pt△ACD中tanC=,10c=6x+300 4x=300 x≈75.0.答:AD=75.0m.24.解:(1)由题意,得当0<x≤5时 y=30.当5<x≤30时,y=30﹣0.1(x﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.25.证明:(1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=0.5BF.同理,EG=0.5OC,∴BF=OC.又∵点O是▱ABCD的对角线交点,∴AO=CO,∴BF=AO.又∵BF∥AC,即BF∥AO,∴四边形AOBF为平行四边形,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.26.。
2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
重庆一中初2017届16—17学年度下期第一次定时作业数 学 试 题2017.5(本试题共五个大题,26个小题,满分150分,时间120分钟)注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答。
2、作答前认真阅读答题卡上的注意事项。
参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑。
1.下列各数中,最小的数是( )A .2-B .12C .0D .12.下列航空公司的标志中,是轴对称图形的是( )A .B .C .D . 3.计算2223x x -+的结果是( )A .25x -B .25xC .2x -D .2x 4.若代数式2a b +的值为3,则代数式182a b --的值为( ) A .21 B .15 C .15- D .21-5 )之间。
A .1和2B .2和3C .3和4D .4和5 6.已知2x =是方程240x x c -+=的一个根,则c 的值是( ) A .12- B .4- C .4 D .127.龙兴两江国际影视城是冯小刚拍摄的电影《一九四二》取景地之一。
为估计重庆一中初中部8000名学生去过龙兴两江国际影视城的人数,随机抽取重庆一中400名初中部学生,发现其中有50名学生去过该影视城,由此估计重庆一中初中部8000名学生中有( )名学生去过该影视城。
A .1000 B .800 C .720 D .6408.如图,在平行四边形ABCD 中,点E 是AB 的中点,BD 与CE 相交于点F ,则BEF ∆与DCF ∆的面积比为( )A .1:2B .2:1C .4:1D .1:49.如图,矩形ABCD 中,4,2AD AB ==。
2017年重庆市沙坪坝区中考数学一模试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)6的倒数是()A.6 B.﹣6 C.D.2.(4分)下列数学符号中,是轴对称图形的是()A.B.C.D.3.(4分)计算(ab3)2的结果是()A.a2b6 B.a2b5 C.ab6D.ab54.(4分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量5.(4分)若m=﹣1,n=2,则m2﹣2n+1的值是()A.6 B.0 C.﹣2 D.﹣46.(4分)在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣27.(4分)如果△ABC与△DEF的相似比为1:5,则△ABC与△DEF的面积比为()A.1:25 B.1:5 C.1:2.5 D.1:8.(4分)如图,点A,B,C都在⊙O上,若∠BOC=100°,则∠BAC的度数是()A.40°B.50°C.80°D.100°9.(4分)估计÷2的运算结果在哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和710.(4分)观察下列一组图形,图1中共有4个三角形,图2中共有8个三角形,…,按此规律,则图2017中三角形的个数是()A.2017 B.4034 C.6051 D.806811.(4分)游歌乐山森林公园最佳路线推荐:如图,先从A沿登山步道走到C,再乘坐索道缆车到B,已知在A处观测B,测得仰角∠FAB=31°,且A,C的水平距离AD=150米,A,C的竖直距离CD=40米,索道BC的坡度i=2:3,则索道BC 的长约为(参考数据:sin31°≈0.5,tan31°≈0.6,≈3.6)()A.1200 B.1100 C.1000 D.90012.(4分)若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4 B.﹣3 C.﹣1 D.0二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市沙坪坝火车站综合交通枢纽改造工程总投资额约为760000万元,数字760000用科学记数法表示为.14.(4分)计算:|﹣2|+(1﹣)0+()﹣1=.15.(4分)如图,以等边△AOB的顶点O为圆心的弧与边AB相切,与边OA,OB分别交于C,D两点,若AB=2,则图中阴影部分的面积是(结果保留π)16.(4分)为积极响应沙坪坝区创建全国文明城区活动,某校举行了以“弘扬社会主义核心价值观”为主题的征文比赛,校德育处对全校每班的投稿篇数进行了统计,并绘制了如图所示条形统计图,则在本次征文比赛中,平均每班投稿篇数为.17.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.18.(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=2,BD=6,将△AOD沿AD翻折得到△AED,延长EA交BD于点F,交BC于点G.连接OG,则△FOG的面积是.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,∠C=90°,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)2a(a﹣b)﹣(a﹣b)2;(2)(1+)÷.22.(10分)如图,直线y=kx+1(k≠0)与双曲线y=(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过点A作AC⊥x轴于点C,若点O是CD的中点,连结OA.(1)求该双曲线的解析式;(2)求cos∠OAC的值.23.(10分)沙坪坝区三峡广场水系工程改造将于2017年5月竣工,某施工单位在某工段改造中,计划购进A,B两种不同标号的水泥,其中A种标号40吨,B种标号20吨,共需28000元,已知A种标号水泥的售价比B种标号水泥的售价高100元/吨.(1)求A,B两种标号水泥的售价;(2)在实际购买时,销售商为支持沙区城市建设,将A,B两种标号水泥的售价均降低a%进行销售,同时因为实际需要,施工单位决定在原计划的基础上多购买0.4a吨A种标号水泥,这样购买水泥的总费用恰好比原计划减少1000元,求a的值.24.(10分)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB于点H,求证:∠EAH=2∠HCB.五、解答题(本大题共2小题,共22分)25.(10分)一个形如的五位自然数(其中c表示该数万位和个位上的数字,b表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352是一个“M 数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P <>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.26.(12分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,连结BC.(1)求直线BC的解析式;(2)如图2,点D是CB上方抛物线上一动点,连结DC,DB,过点A作CB的平行线,交对称轴于点E,交DB的延长线于点F,连接CF,当△CDF的面积最大时,在对称轴上找一点R,使得DR+RE的值最小,求出此时点R的坐标;(3)如图3,将抛物线平移,与x轴,y轴分别交于点G,H,且满足点G与点B关于原点O对称,CH=CO,∠OHG的平分线交x轴于点P,PQ⊥GH于点Q,将△PQH绕点O逆时针旋转α(0°<α<180°),记旋转中的△PQH为△P′Q′H′,在旋转过程中,直线P′Q′,P′H′分别与直线GH交于点M,N,△P′MN能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.2017年重庆市沙坪坝区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)6的倒数是()A.6 B.﹣6 C.D.【解答】解:6的倒数是,故选:C.2.(4分)下列数学符号中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选C.3.(4分)计算(ab3)2的结果是()A.a2b6 B.a2b5 C.ab6D.ab5【解答】解:(ab3)2=a2b6.故选A.4.(4分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【解答】解:A、调查热播电视剧《人民的名义》的收视率适宜采用抽样调查方式;B、调查重庆市民对皮影表演艺术的喜爱程度适宜采用抽样调查方式;C、调查某社区居民对重庆万达文旅城的知晓率适宜采用抽样调查方式;D、调查我国首艘货运飞船“天舟一号”的零部件质量适宜采用普查方式;故选:D.5.(4分)若m=﹣1,n=2,则m2﹣2n+1的值是()A.6 B.0 C.﹣2 D.﹣4【解答】解:当m=﹣1,n=2时,原式=1﹣4+1=﹣2,故选C6.(4分)在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣2【解答】解:∵x+2≥0,∴m≥﹣2.故选B.7.(4分)如果△ABC与△DEF的相似比为1:5,则△ABC与△DEF的面积比为()A.1:25 B.1:5 C.1:2.5 D.1:【解答】解:∵△ABC与△DEF的相似比为1:5,∴△ABC与△DEF的面积比为1:25.故选A.8.(4分)如图,点A,B,C都在⊙O上,若∠BOC=100°,则∠BAC的度数是()A.40°B.50°C.80°D.100°【解答】解:∵所对的圆心角是∠BOC,圆周角是∠BAC,又∵∠BOC=100°,∴∠BAC=100°×=50°.故选B.9.(4分)估计÷2的运算结果在哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和7【解答】解:﹣÷2=4﹣1,∵5<<6,∴4<﹣1<5,∴÷2的运算结果在4和5之间,故选B.10.(4分)观察下列一组图形,图1中共有4个三角形,图2中共有8个三角形,…,按此规律,则图2017中三角形的个数是()A.2017 B.4034 C.6051 D.8068【解答】解:∵图1中三角形个数4=4×1,图2中三角形个数8=4×2,…∴图2017中三角形个数为4×2017=8068,故选:D.11.(4分)游歌乐山森林公园最佳路线推荐:如图,先从A沿登山步道走到C,再乘坐索道缆车到B,已知在A处观测B,测得仰角∠FAB=31°,且A,C的水平距离AD=150米,A,C的竖直距离CD=40米,索道BC的坡度i=2:3,则索道BC 的长约为(参考数据:sin31°≈0.5,tan31°≈0.6,≈3.6)()A.1200 B.1100 C.1000 D.900【解答】解:∵索道BC的坡度i=2:3,∴设BE=2x,则CE=3x.∵BF⊥AF,CD⊥AF,CE⊥BF,CD=40米,AD=150米,∴EF=CD=40米,CE=DF=3x,∴BF=BE+EF=(2x+40)米,AF=DF+AD=(3x+150)米,∵∠FAB=31°,∴=tan31°,即=0.6,解得x=250米,∴BC===x≈3.6×250=900(米).故选D.12.(4分)若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4 B.﹣3 C.﹣1 D.0【解答】解:由不等式组可知:x≤4且x>,∵x有且只有5个整数解,∴﹣1≤<0,∴﹣4≤a<3由分式方程可知:x=,将x=代入x﹣1≠0,∴a≠1,∵关于x的分式方程有整数解,∴a+1能被2整除,∵a是整数,∴a=﹣3或﹣1∴所有满足条件的整数a之和为﹣4故选(A)二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市沙坪坝火车站综合交通枢纽改造工程总投资额约为760000万元,数字760000用科学记数法表示为7.6×105.【解答】解:数字760000用科学记数法表示为7.6×105,故答案为:7.6×105.14.(4分)计算:|﹣2|+(1﹣)0+()﹣1=5.【解答】解:原式=2+1+2=5,故答案为:515.(4分)如图,以等边△AOB的顶点O为圆心的弧与边AB相切,与边OA,OB分别交于C,D两点,若AB=2,则图中阴影部分的面积是﹣(结果保留π)【解答】解:连接OE,∵以等边△AOB的顶点O为圆心的弧与边AB相切,∴OE⊥AB,∵OA=OB,∴E为AB中点,即AE=BE=AB=1,∠AOE=∠BOE=30°,∴OA=2AE=2,根据勾股定理得:OE==,=×4﹣=﹣.则S阴影故答案为.16.(4分)为积极响应沙坪坝区创建全国文明城区活动,某校举行了以“弘扬社会主义核心价值观”为主题的征文比赛,校德育处对全校每班的投稿篇数进行了统计,并绘制了如图所示条形统计图,则在本次征文比赛中,平均每班投稿篇数为8.【解答】解:根据题意得:=8(篇),答:平均每班投稿篇数为8篇;故答案为:8.17.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.【解答】解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.18.(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=2,BD=6,将△AOD沿AD翻折得到△AED,延长EA交BD于点F,交BC于点G.连接OG,则△FOG的面积是.【解答】解:作AH⊥CD于H,GN⊥AC于N.∵四边形ABCD是菱形.∴AC⊥BD,OA=OC=1,OB=OD=3,∴CD==,∴•AC•BD=CD•AH,∴AH=,DH==,∵∠CAG+2∠DAC=180°,∠ADC+2∠DAC=180°,∴∠CAG=∠ADC,∵∠ACG=∠ACD=∠CAD,∠AGC=∠ACG,∴AG=AC=2,∵∠ANG=∠AHD,∴△AGN∽△DAH,∴==,∴GN=,AN=,∵OF∥GN,∴=,∴OF=,=•OF•ON=••=.∴S△OFG故答案为.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,∠C=90°,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.【解答】解:∵l1∥l2,∠1=26°,∴∠1=∠ABD=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为20%,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)2a(a﹣b)﹣(a﹣b)2;(2)(1+)÷.【解答】解:(1)原式=2a2﹣2ab﹣(a2﹣2ab+b2)=a2﹣b2(2)原式=×=a+222.(10分)如图,直线y=kx+1(k≠0)与双曲线y=(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过点A作AC⊥x轴于点C,若点O是CD的中点,连结OA.(1)求该双曲线的解析式;(2)求cos∠OAC的值.【解答】解:(1)在y=kx+1中令x=0,解得y=1,则E的坐标是(0,1),则OE=1.∵tan∠ADO==1,∴OD=OE=1,又∵O是CD的中点,∴OC=OD=1,CD=2.∵tan∠ADC==1,∴AC=2,∴A的坐标是(1,2).把(1,2)代入y=得k=2,则反比例函数的解析式是y=;(2)在Rt△AOC中,AC===,则cos∠OAC===.23.(10分)沙坪坝区三峡广场水系工程改造将于2017年5月竣工,某施工单位在某工段改造中,计划购进A,B两种不同标号的水泥,其中A种标号40吨,B种标号20吨,共需28000元,已知A种标号水泥的售价比B种标号水泥的售价高100元/吨.(1)求A,B两种标号水泥的售价;(2)在实际购买时,销售商为支持沙区城市建设,将A,B两种标号水泥的售价均降低a%进行销售,同时因为实际需要,施工单位决定在原计划的基础上多购买0.4a吨A种标号水泥,这样购买水泥的总费用恰好比原计划减少1000元,求a的值.【解答】解:(1)设B种标号水泥的售价为x元/吨,则A种标号水泥的售价为(x+100)元/吨,根据题意得:40(x+100)+20x=28000,解得:x=400,x+100=500.答:A种标号水泥的售价为500元/吨,B种标号水泥的售价为400元/吨.(2)根据题意得:28000×a%﹣0.4a×500(1﹣a%)=1000,整理得:a2+40a﹣500=0,解得:a1=10,a2=﹣50(舍去).答:a的值为10.24.(10分)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB于点H,求证:∠EAH=2∠HCB.【解答】(1)解:如图1中,作AH⊥BC于H.∵AB=AC,∠BAC=90°,AH⊥BC,∴AH=BH=HC=2,在Rt△AEH中,∵∠AHE=90°,AH=2,∠AEH=30°,∴EH==2,∴EB=EH﹣BH=2﹣2.(2)证明:如图2中,连接AD.∵∠BDH=∠HAC,∠BHD=∠CHA,∴△BHD∽△CHA,∴=,∴=,∵∠AHD=∠CHB,∴△AHD∽△CHB,∴∠ADH=∠CBH=45°,∠DAH=∠BCH,∴∠ADB=90°+45°=135°,∴∠ADE=360°﹣90°﹣135°=135°,∴∠ADE=∠ADB,在△ADE和△ADB中,,∴△ADE≌△ADB,∴∠DAE=∠DAB,∵∠DAB=∠BCH,∴∠EAH=2∠HCB.五、解答题(本大题共2小题,共22分)25.(10分)一个形如的五位自然数(其中c表示该数万位和个位上的数字,b表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352是一个“M 数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P <>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.【解答】解:(1)=10000c+1000b+100a+10b+c=10001c+1010b+100a.∵a+c=b,∴=10001c+1010b+100a=11011c+1110a=370×(4c+3a)+9531c=370×(4c+3a)+1059c×9∵4c+3a能被9整除,∴370×(4c+3a)+1059c×9也能被9整除,∴任意一个“M数”都能被9整数;(2)“M数”与它各数位数字之和的差为:11011c+1110a﹣(a+2b+2c)=11011c+1110a﹣a﹣2b﹣2c=11011c+1110a﹣a﹣2(a+c)﹣2c=11007c+1107a=7×1572c+7×158a+a+3c=7(1572c+158a)+a+3c,∵“M数”与它各数位数字之和的差能被7整除,∴a+3c为7的倍数,当a+3c=21,且c=7、a=0时,与各数位数字之和的差能被自然数7整除的最大“M 数”为77077;当a+3c=7,且c=1、a=4时,与各数位数字之和的差能被自然数7整除的最小“M 数”15451.26.(12分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,连结BC.(1)求直线BC的解析式;(2)如图2,点D是CB上方抛物线上一动点,连结DC,DB,过点A作CB的平行线,交对称轴于点E,交DB的延长线于点F,连接CF,当△CDF的面积最大时,在对称轴上找一点R,使得DR+RE的值最小,求出此时点R的坐标;(3)如图3,将抛物线平移,与x轴,y轴分别交于点G,H,且满足点G与点B关于原点O对称,CH=CO,∠OHG的平分线交x轴于点P,PQ⊥GH于点Q,将△PQH绕点O逆时针旋转α(0°<α<180°),记旋转中的△PQH为△P′Q′H′,在旋转过程中,直线P′Q′,P′H′分别与直线GH交于点M,N,△P′MN能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.【解答】解:(1)如图1中,对于抛物线y=﹣x2+x+2,令y=0,得到﹣x2+x+2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),令x=0,得到y=2,∴C(0,2),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+2.(2)如图2中,连接OD,作DH⊥AF于H,RQ⊥AF于Q,DH交对称轴于R′.∵AF∥BC,=S△ABC=定值,∴S△BCF=S△BCD+S△BCF,∵S△CDF∴△BCD的面积最大时,△CDF的面积最大,设D(m,﹣m2+m+2),S△BCD=S△OBD+S△OCD﹣S△BCO=×4×(﹣m2+m+2)+×2×m﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,∴m=2时,S定值最大,此时D(2,3),△BCD易知∠CBO=∠BAF=∠QRE,∴cos∠QRE=cos∠CBO=,在Rt△RQE中,RQ=RE•cos∠QRE=RE,∴DR+RE=DR+RQ,∴当Q与H重合,且D、R、Q共线时,DR+RE定值最小.(此时R与R′重合)∵DH⊥AF,AF∥BC,∴DH⊥BC,∴直线DH的解析式为y=2x﹣1,∴R′(,2).(3)由题意可知H(0,4),G(﹣4,0),∴OH=OG,∴∠OHG=∠OGH=45°∵PH平分∠OHG,∴∠OHP=∠PHQ=22.5°,∠HPO=∠HPQ=∠H′P′Q′=67.5°①如图3中,当P′H′∥OH时,易证∠NMP′=∠MP′N=67.5°,此时旋转角α=22.5°.②如图4中,当P′M∥OG时,易证∠MNP′=∠MP′N=67.5°,此时旋转角α=45°.③如图5中,当P′M=P′N时,易知∠P′NM=∠P′MN=33.75°,∠OKP=33.75°+45°=78.75°,∴∠KOP′=180°=78.75°﹣67.5°=33.75°,此时旋转角α=123.75°.综上所述,当旋转角为22.5°或45°或123.75°时,△P′MN是等腰三角形.。
主视图左视图ABCD第4题图8题图OCBA6题图2017年重庆中考模拟试卷 数学试题含详细答案(全卷共五个大题,满分150分,考试时间120分钟)一、选择题(本大题共10个小题,每小题4分,共48分) 1. )7(4-- 等于( B )A . 3B . 11C . -3D .-11 2. 下列运算正确的是( D )A .3362x x x += B .824x x x ÷= C .mnn m x x x =• D .()4520xx -=3. 函数21+=x y 的自变量取值范围是( D ) A .2->x B .2-<x C .2-≥x D .2-≠x 4. 如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则E ∠=( C ) A.70° B.80° C.90° D.100°5.下列调查中,适宜采用抽样调查方式的是( C ) A .对我国首架大型民用直升机各零部件的检查; B .对某校初三(5)班第一小组的数学成绩的调查; C .对我市市民实施低碳生活情况的调查;D .对2010年重庆市中考前200名学生的中考数学成绩的调查。
6.如图,⊙O 是△ABC 的外接圆,∠OCB =350,则∠A 的度数等于( A ) A .55° B . 50° C .45° D .40°7. 如下右图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形 不可能是( C )8、如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是( A ) A .513B .1213C .512D .1359、小超上完体育课需从操场返回教室上文化课,已知她先从操场走到教学楼楼下的水龙头处洗了一会儿手,此时听到上课预备铃已经打响,于是她马上跑步回到教室上课.下面是小超下体育课后走的路程s (m )关于时间t (min )的函数图象,那么符合情况的大致图象是( A )x yx yxyxy10.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数为( B ) A .102 B .91 C .55 D .3111.如上图,正比例函数y=x 与反比例函数y=的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( A )A .1B .2C . D.12.如上图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( B )A .a +b =-1B . a -b =-1C . b <2aD . ac <0 二、填空题(本大题6个小题,每小题4分,共24分) 13.021(1)()2sin60|31|3π-++-+-=14.在2016年中招体育考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 186 . 15. 已知ABC ∆与DEF ∆相似且面积比为9:25,则ABC ∆与DEF ∆的相似比为___ 5:3 __. 16.⊙O 的半径为3cm ,点P 到圆心O 的距离为7cm ,则点P 与⊙O 的位置关系是 P 在⊙O 外.12题图17.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程22(1)(3)0x a x a a --+-=有两个不相等的实数根,且以x 为自变量的二次函数22(1)2y x a x a =-+-+的图象不经过点(1,0)的概率是___3/7_____18.如下图,矩形ABCD 中,点B 与原点重合,点D (8,6),AE ⊥BD ,△AEB 沿着y 轴翻折得到△AFB ,将△AFB 绕着点B 顺时针旋转(090)αα<<得到△BF ’A ’,直线F ’A ’与线段AB 、AE 分别交于点M 、N ,当MN =MA 时,△BF ’A ’与△AEB 重叠部分的面积为8125. x y FABCDE三.解答题(本大题2小题,每小题7,共14分)19.如上图,在△ABC 中,AD 是△ABC 的中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F . 求证:BE=CF .20.经国家体育总局、重庆市民政局批准,国家级青少年体育俱乐部﹣重庆巴蜀青少年体育俱乐部﹣于2013年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题: (1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人), 喜欢乒乓球人数为60人, ∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1﹣20%﹣30%﹣40%=10% ∴喜欢排球的人数为:200×10%=20(人), ∴喜欢篮球的人数为200×40%=80(人), 由以上信息补全条形统计图得:(2)根据题意画图如下: 男1 男2 男3女1女2男1 男1男2 男1男3 女1男1 女2男1 男2 男1男2 男3男2 女1男1 女2男2 男3 男1男3 男2男3女1男3 女2男3女1 男1女1 男2女1 男3女1女2女1女2男1女2男2女2男3女2 女1女2由图可知总有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为 P (一男一女)==.四.解答题(共4个小题,每小题10分,共40分)21.先化简,再求值:a a a a a a 2239622÷⎪⎪⎭⎫ ⎝⎛+--+-,其中a 是方程0132=--x x 的一个根.(1)22(1)(1)1x x -+- (2)228161212224x x x x x x x -+⎛⎫÷-++ ⎪+++⎝⎭()()()()()()()()()()分分,分分分,过一次函数分过点反比例函数分分中,轴于作过点解:10 (3122)122218........................................................................................147................................................................................2,4024,082,121436 (12)15 (1)2102220,22,24 (4)42,223...............................................................................................2,22.. (2421)tan 2,2,21tan tan tan ,901........................................................2),0,2(),2,2(1212=⨯⨯+⨯⨯=+=∴--∴=-=∴=-+∴=-+∴+=+=∴⎪⎩⎪⎨⎧==∴⎩⎨⎧=+-=+∴-+==∴=∴=∴=⨯=⋅∠=∴===∠=∠=∠∴︒=∠∆==∴-⊥∆∆∆BOD AOD AOB S S S B x x x x x x x x x y b a b a b a D A b ax y xy k A xky A DE ADE AE OE OD ADE CDO DEAE ADE AED ADERt OE OD E D Ex AE A 22.如图,一次函数b ax y +=的图象与反比例函数xky =的图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为()0,2-,点A 的横坐标是2,1tan =∠CDO .(1)求点A 的坐标;(2)求一次函数和反比例函数的解析式; (3)求△AOB 的面积;22.23.商场某种商品平均每天可销售40件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请解答:(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2300元?(结果保留整数);(参考数据:4.12≈,7.13≈,2.25≈)(3)设商场每日获利为w 元,每件商品降价多少元时,商场可获得最大利润?最大利润是多少元?解(1)x 2,x -50。
重庆市2017年初中毕业暨高中招生考试数 学 模 拟 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(, 对称轴为2bx a=-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将 答题卡上题号右侧正确答案所对应的方框涂黑。
1.在14,-1,0,2这四个数中,最小的数的是( )A 、14B 、-1C 、0D 、22.下列图形是中心对称图形而不是轴对称图形的是( )A .B .C .D 3.(2015•重庆A )计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b 4.下列调查中,最适合采用普查方式的是( ) A .调查一批灯泡的使用寿命B .调查全国人民对延迟退休政策的态度C .调查某航班的旅客是否携带了违禁物品D .调查全国人民对里约奥运会的收视情况5、(2015浙江嘉兴,6,4分)与无理数31最接近的整数是( ) A. 4 B. 5 C. 6 D. 76、如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则DE :EC =( )A 、2:5B 、2:3C 、3:5D 、3:2 7.代数式有意义,则x 的取值范围是( )A .x >2B .x ≥﹣2C .x ≥﹣2且x ≠0D .x ≥﹣2且x ≠﹣1(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)8、.若b=++1,则a ﹣3b+1的值为( )A .0B .1C .2D .3(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)9.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( A )A .18﹣9πB .18﹣3πC .9﹣D .18﹣3π(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)10.如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是( )A .96B .112C .144D .180(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)11. 为了弘扬九十五中学办学理念,我校将“立己立人,尽善尽美”的校训印在旗帜上,放置在教学楼的顶部(如图所示)。
2019-2019学年重庆名校中考数学模拟试卷一拉分题部分一、选择题(本大题共10小题,每小题4分,共40分。
)8、甲地连降大雨,某部队前往救援。
乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队与甲地的距离s (千米)与时间t (小时)之间函数关系的大致图象是( )9、下面各图都是用全等的等边三角形拼成的一组图形,第①个图形中有1个等腰梯形,第②个图形中有4个等腰梯形,……依此类推,则第6个图形中有( )个等腰梯形。
A 、16B 、26C 、36D 、5610、如图是二次函数2y ax bx c =++图象的一部分,图象过点()3,0A -,对称轴 为直线1x =-。
则以下结论错误..的是( ) A 、24b ac > B 、20a b += C 、0a b c ++= D 、5a b <二、填空题(本大题共6小题,每小题4分,共24分。
请将答案写在答卷上。
)14、已知一个扇形的弧长为10cm π,其圆心角度数是150°,则该扇形的半径为 cm 。
15、有十张正面分别标有数字3,2,1,0,1,2,3,4,5,6---的不透明卡片,它们除数字不同外其余全部相同。
现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b 。
则数字,a b 使得关于x 的方程210ax bx +-=有解的概率为 。
16、含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克四、解答题(本大题共4小题,每小题10分,共40分。
请将解答过程写在答卷上。
)21、先化简,再求值:2211211x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭,其中x 满足方程220x x --=。
重庆市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·仙游期中) 平行四边形、矩形、菱形、正方形中是轴对称图形的有().A . 1个B . 2个C . 3个D . 4个2. (2分)数字,,π,sin60°,中是无理数的个数是()A . 1个B . 2个C . 3个D . 4个3. (2分)-5的相反数是()A . -5B . 5C .D .4. (2分)已知关于x的方程x2+kx+6=0的一个根为x=﹣2,则实数k的值为()A . 5B . -5C . 4D . -35. (2分)如图所示,△FDE经过怎样的平移可得到△ABC()A . 沿射线EC的方向移动DB长B . 沿射线CE的方向移动DB长C . 沿射线EC的方向移动CD长D . 沿射线BD的方向移动BD长6. (2分)已知M、N两点关于y轴对称,且点M在反比例函数y=的图象上,点N在一次函数 y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A . 有最小值,且最小值是-B . 有最大值,且最大值是-C . 有最大值,且最大值是D . 有最小值,且最小值是7. (2分)(2017·巴彦淖尔模拟) 已知二次函数y=kx2+k(k≠0)与反比例函数y=﹣,它们在同一直角坐标系中的图象大致是()A .B .C .D .8. (2分)在矩形ABCD中,DE⊥AC于E,设∠ADE=,且, AB=4,则AD的长为().A . 3B .C .D .9. (2分) (2016八上·平凉期中) 某等腰三角形的顶角是80°,则一腰上的高与底边所成的角的度数()A . 40°B . 60°C . 80°D . 100°10. (2分)(2019·贵港) 如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1 , S2 ,则下列结论错误的是()A . S1+S2=CP2B . AF=2FDC . CD=4PDD . cos∠HCD=二、填空题 (共6题;共12分)11. (1分)一种微粒的半径是0.000043米,这个数据用科学记数法表示为________ 米.12. (1分) (2017七下·宜春期末) 关于、的二元一次方程组的解满足不等式,则的取值范围是________13. (7分)某区从参加地理学业水平考试的8000名学生中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到下表;随后汇总整个样本数据,得到部分结果,绘制成如下统计图.(注:A:优秀(≥90分)、B:良好(≥70分且<90分)、C:及格(≥60分且<70分)、D:不及格(<60分))表一甲组乙组人数(人)12080平均分(分)8883请根据图和表所示信息回答下列问题:(1)样本中,学生地理学成绩平均分为________ 分,中位数在________ 内(填等第),众数是________ (填等第).A占的百分比是________ ,C占的百分比是________ .(2)补全条形统计图________ .(3)成绩不低于60的为合格,估计这8000名学生的合格人数为________ .14. (1分) (2019七下·翁牛特旗期中) 如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是________.15. (1分)某市在旧城改造中,计划在市内一块如图所示三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要________ 元16. (1分) (2017九上·重庆开学考) 若二次函数y=ax2+4x+a﹣1的最小值是2,则a的值是________.三、解答题、 (共9题;共83分)17. (5分)解不等式组并写出它的所有非负整数解.18. (5分)如图:四边形AEFD和EBCF都是平行四边形,在不增加其他条件的情况下,试写出一个你认为最合理的结论,并给出证明.19. (15分) (2017八下·新野期中) 如图所示,P(a,3)是直线y=x+5上的一点,直线 y=k1x+b与双曲线相交于P、Q(1,m).(1)求双曲线的解析式及直线PQ的解析式;(2)根据图象直接写出不等式>k1x+b的解集.(3)若直线y=x+5与x轴交于A,直线y=k1x+b与x轴交于M求△APQ的面积20. (8分)(2019·包河模拟) “不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:(1)扇形统计图中玉兰所对的圆心角为________,并补全条形统计图________;(2)该区今年共种植月季8000株,成活了约________株;(3)园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.21. (5分)日照市改善空气质量,开展“绿色家园”活动,加快了绿化荒山的速度,2013年市政府共投资4亿元人民币绿化荒山160万平方米,预计到2015年这三年共累计投资19亿元人民币绿化荒山.若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的绿化成本不变,预计2015年能绿化多少万平方米荒山?22. (10分)(2017·梁子湖模拟) 如图,AB是⊙O的直径,点C为AB上一点,作CD⊥AB交⊙O于D,连接AD,将△ACD沿AD翻折至△AC′D.(1)请你判断C′D与⊙O的位置关系,并说明理由;(2)过点B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的长.23. (10分) (2020九上·嘉陵期末) 如图,AB是⊙O的一条弦,点C是半径OA的中点,过点C作OA的垂线交AB于点E,且与BE的垂直平分线交于点D,连接BD。
2017年中考数学一模试题(重庆市外国语学校含答案)12.从-2、-1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程xx-2 -m-22-x =-1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1B.2C.3D.4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
13.2016年重庆新房成交共约305000套,将305000用科学计数法表示为。
14.计算:38 -|-2|+(-14 )-2=;15.如图,在矩形ABCD中,AB=3 ,AD=2,以D为圆心、AD为半径画弧交线段BC于点E,则阴影部分的面积为。
16.有四张形状材质相同的不透明卡片,下面分别写有1、2、-1、-3四个数字。
将这四张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数y=kx+b中的k的值;第二次从余下的三张卡片中再随机抽取一张,上面标有的数字作为b的值,则使该一次函数的图像经过第一、三、四象限的概率为。
17.快、慢两车分别从相距480km的甲、乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到过甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调养时间忽略不计),如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图像,则当两车第一次相遇时,快车距离甲地的路程是千米。
18.如图,正方形ABCD的连长为10 ,对角线AC、BD 相交于点O,以AB为斜边在正方形内部作Rt△ABE,∠AEB=90°,连接OE,点P为边AB上的一点,将△AEP 沿着EP翻折到△GEP,若PG⊥BE于点F,OE=2 ,则S △EPB=。
三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程惴惴不安在答题卡中对应的位置上。
2017年重庆市沙坪坝区中考数学一模试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)6的倒数是()A.6 B.﹣6 C.D.2.(4分)下列数学符号中,是轴对称图形的是()A.B.C.D.3.(4分)计算(ab3)2的结果是()A.a2b6 B.a2b5 C.ab6D.ab54.(4分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量5.(4分)若m=﹣1,n=2,则m2﹣2n+1的值是()A.6 B.0 C.﹣2 D.﹣46.(4分)在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣27.(4分)如果△ABC与△DEF的相似比为1:5,则△ABC与△DEF的面积比为()A.1:25 B.1:5 C.1:2.5 D.1:8.(4分)如图,点A,B,C都在⊙O上,若∠BOC=100°,则∠BAC的度数是()A.40°B.50°C.80°D.100°9.(4分)估计÷2的运算结果在哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和710.(4分)观察下列一组图形,图1中共有4个三角形,图2中共有8个三角形,…,按此规律,则图2017中三角形的个数是()A.2017 B.4034 C.6051 D.806811.(4分)游歌乐山森林公园最佳路线推荐:如图,先从A沿登山步道走到C,再乘坐索道缆车到B,已知在A处观测B,测得仰角∠FAB=31°,且A,C的水平距离AD=150米,A,C的竖直距离CD=40米,索道BC的坡度i=2:3,则索道BC 的长约为(参考数据:sin31°≈0.5,tan31°≈0.6,≈3.6)()A.1200 B.1100 C.1000 D.90012.(4分)若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4 B.﹣3 C.﹣1 D.0二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市沙坪坝火车站综合交通枢纽改造工程总投资额约为760000万元,数字760000用科学记数法表示为.14.(4分)计算:|﹣2|+(1﹣)0+()﹣1=.15.(4分)如图,以等边△AOB的顶点O为圆心的弧与边AB相切,与边OA,OB分别交于C,D两点,若AB=2,则图中阴影部分的面积是(结果保留π)16.(4分)为积极响应沙坪坝区创建全国文明城区活动,某校举行了以“弘扬社会主义核心价值观”为主题的征文比赛,校德育处对全校每班的投稿篇数进行了统计,并绘制了如图所示条形统计图,则在本次征文比赛中,平均每班投稿篇数为.17.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.18.(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=2,BD=6,将△AOD沿AD翻折得到△AED,延长EA交BD于点F,交BC于点G.连接OG,则△FOG的面积是.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,∠C=90°,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)2a(a﹣b)﹣(a﹣b)2;(2)(1+)÷.22.(10分)如图,直线y=kx+1(k≠0)与双曲线y=(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过点A作AC⊥x轴于点C,若点O是CD的中点,连结OA.(1)求该双曲线的解析式;(2)求cos∠OAC的值.23.(10分)沙坪坝区三峡广场水系工程改造将于2017年5月竣工,某施工单位在某工段改造中,计划购进A,B两种不同标号的水泥,其中A种标号40吨,B种标号20吨,共需28000元,已知A种标号水泥的售价比B种标号水泥的售价高100元/吨.(1)求A,B两种标号水泥的售价;(2)在实际购买时,销售商为支持沙区城市建设,将A,B两种标号水泥的售价均降低a%进行销售,同时因为实际需要,施工单位决定在原计划的基础上多购买0.4a吨A种标号水泥,这样购买水泥的总费用恰好比原计划减少1000元,求a的值.24.(10分)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB于点H,求证:∠EAH=2∠HCB.五、解答题(本大题共2小题,共22分)25.(10分)一个形如的五位自然数(其中c表示该数万位和个位上的数字,b表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352是一个“M 数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P <>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.26.(12分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,连结BC.(1)求直线BC的解析式;(2)如图2,点D是CB上方抛物线上一动点,连结DC,DB,过点A作CB的平行线,交对称轴于点E,交DB的延长线于点F,连接CF,当△CDF的面积最大时,在对称轴上找一点R,使得DR+RE的值最小,求出此时点R的坐标;(3)如图3,将抛物线平移,与x轴,y轴分别交于点G,H,且满足点G与点B关于原点O对称,CH=CO,∠OHG的平分线交x轴于点P,PQ⊥GH于点Q,将△PQH绕点O逆时针旋转α(0°<α<180°),记旋转中的△PQH为△P′Q′H′,在旋转过程中,直线P′Q′,P′H′分别与直线GH交于点M,N,△P′MN能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.2017年重庆市沙坪坝区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)6的倒数是()A.6 B.﹣6 C.D.【解答】解:6的倒数是,故选:C.2.(4分)下列数学符号中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选C.3.(4分)计算(ab3)2的结果是()A.a2b6 B.a2b5 C.ab6D.ab5【解答】解:(ab3)2=a2b6.故选A.4.(4分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【解答】解:A、调查热播电视剧《人民的名义》的收视率适宜采用抽样调查方式;B、调查重庆市民对皮影表演艺术的喜爱程度适宜采用抽样调查方式;C、调查某社区居民对重庆万达文旅城的知晓率适宜采用抽样调查方式;D、调查我国首艘货运飞船“天舟一号”的零部件质量适宜采用普查方式;故选:D.5.(4分)若m=﹣1,n=2,则m2﹣2n+1的值是()A.6 B.0 C.﹣2 D.﹣4【解答】解:当m=﹣1,n=2时,原式=1﹣4+1=﹣2,故选C6.(4分)在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣2【解答】解:∵x+2≥0,∴m≥﹣2.故选B.7.(4分)如果△ABC与△DEF的相似比为1:5,则△ABC与△DEF的面积比为()A.1:25 B.1:5 C.1:2.5 D.1:【解答】解:∵△ABC与△DEF的相似比为1:5,∴△ABC与△DEF的面积比为1:25.故选A.8.(4分)如图,点A,B,C都在⊙O上,若∠BOC=100°,则∠BAC的度数是()A.40°B.50°C.80°D.100°【解答】解:∵所对的圆心角是∠BOC,圆周角是∠BAC,又∵∠BOC=100°,∴∠BAC=100°×=50°.故选B.9.(4分)估计÷2的运算结果在哪两个整数之间()A.3和4 B.4和5 C.5和6 D.6和7【解答】解:﹣÷2=4﹣1,∵5<<6,∴4<﹣1<5,∴÷2的运算结果在4和5之间,故选B.10.(4分)观察下列一组图形,图1中共有4个三角形,图2中共有8个三角形,…,按此规律,则图2017中三角形的个数是()A.2017 B.4034 C.6051 D.8068【解答】解:∵图1中三角形个数4=4×1,图2中三角形个数8=4×2,…∴图2017中三角形个数为4×2017=8068,故选:D.11.(4分)游歌乐山森林公园最佳路线推荐:如图,先从A沿登山步道走到C,再乘坐索道缆车到B,已知在A处观测B,测得仰角∠FAB=31°,且A,C的水平距离AD=150米,A,C的竖直距离CD=40米,索道BC的坡度i=2:3,则索道BC 的长约为(参考数据:sin31°≈0.5,tan31°≈0.6,≈3.6)()A.1200 B.1100 C.1000 D.900【解答】解:∵索道BC的坡度i=2:3,∴设BE=2x,则CE=3x.∵BF⊥AF,CD⊥AF,CE⊥BF,CD=40米,AD=150米,∴EF=CD=40米,CE=DF=3x,∴BF=BE+EF=(2x+40)米,AF=DF+AD=(3x+150)米,∵∠FAB=31°,∴=tan31°,即=0.6,解得x=250米,∴BC===x≈3.6×250=900(米).故选D.12.(4分)若关于x的不等式组,有且仅有五个整数解,且关于x的分式方程=3有整数解,则所有满足条件的整数a的值之和是()A.﹣4 B.﹣3 C.﹣1 D.0【解答】解:由不等式组可知:x≤4且x>,∵x有且只有5个整数解,∴﹣1≤<0,∴﹣4≤a<3由分式方程可知:x=,将x=代入x﹣1≠0,∴a≠1,∵关于x的分式方程有整数解,∴a+1能被2整除,∵a是整数,∴a=﹣3或﹣1∴所有满足条件的整数a之和为﹣4故选(A)二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)重庆市沙坪坝火车站综合交通枢纽改造工程总投资额约为760000万元,数字760000用科学记数法表示为7.6×105.【解答】解:数字760000用科学记数法表示为7.6×105,故答案为:7.6×105.14.(4分)计算:|﹣2|+(1﹣)0+()﹣1=5.【解答】解:原式=2+1+2=5,故答案为:515.(4分)如图,以等边△AOB的顶点O为圆心的弧与边AB相切,与边OA,OB分别交于C,D两点,若AB=2,则图中阴影部分的面积是﹣(结果保留π)【解答】解:连接OE,∵以等边△AOB的顶点O为圆心的弧与边AB相切,∴OE⊥AB,∵OA=OB,∴E为AB中点,即AE=BE=AB=1,∠AOE=∠BOE=30°,∴OA=2AE=2,根据勾股定理得:OE==,=×4﹣=﹣.则S阴影故答案为.16.(4分)为积极响应沙坪坝区创建全国文明城区活动,某校举行了以“弘扬社会主义核心价值观”为主题的征文比赛,校德育处对全校每班的投稿篇数进行了统计,并绘制了如图所示条形统计图,则在本次征文比赛中,平均每班投稿篇数为8.【解答】解:根据题意得:=8(篇),答:平均每班投稿篇数为8篇;故答案为:8.17.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.【解答】解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.18.(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=2,BD=6,将△AOD沿AD翻折得到△AED,延长EA交BD于点F,交BC于点G.连接OG,则△FOG的面积是.【解答】解:作AH⊥CD于H,GN⊥AC于N.∵四边形ABCD是菱形.∴AC⊥BD,OA=OC=1,OB=OD=3,∴CD==,∴•AC•BD=CD•AH,∴AH=,DH==,∵∠CAG+2∠DAC=180°,∠ADC+2∠DAC=180°,∴∠CAG=∠ADC,∵∠ACG=∠ACD=∠CAD,∠AGC=∠ACG,∴AG=AC=2,∵∠ANG=∠AHD,∴△AGN∽△DAH,∴==,∴GN=,AN=,∵OF∥GN,∴=,∴OF=,∴S=•OF•ON=••=.△OFG故答案为.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,∠C=90°,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.【解答】解:∵l1∥l2,∠1=26°,∴∠1=∠ABD=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为20%,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)计算:(1)2a(a﹣b)﹣(a﹣b)2;(2)(1+)÷.【解答】解:(1)原式=2a2﹣2ab﹣(a2﹣2ab+b2)=a2﹣b2(2)原式=×=a+222.(10分)如图,直线y=kx+1(k≠0)与双曲线y=(k≠0)交于A,B两点,与x轴,y轴交于点D,E,tan∠ADO=1,过点A作AC⊥x轴于点C,若点O是CD的中点,连结OA.(1)求该双曲线的解析式;(2)求cos∠OAC的值.【解答】解:(1)在y=kx+1中令x=0,解得y=1,则E的坐标是(0,1),则OE=1.∵tan∠ADO==1,∴OD=OE=1,又∵O是CD的中点,∴OC=OD=1,CD=2.∵tan∠ADC==1,∴AC=2,∴A的坐标是(1,2).把(1,2)代入y=得k=2,则反比例函数的解析式是y=;(2)在Rt△AOC中,AC===,则cos∠OAC===.23.(10分)沙坪坝区三峡广场水系工程改造将于2017年5月竣工,某施工单位在某工段改造中,计划购进A,B两种不同标号的水泥,其中A种标号40吨,B种标号20吨,共需28000元,已知A种标号水泥的售价比B种标号水泥的售价高100元/吨.(1)求A,B两种标号水泥的售价;(2)在实际购买时,销售商为支持沙区城市建设,将A,B两种标号水泥的售价均降低a%进行销售,同时因为实际需要,施工单位决定在原计划的基础上多购买0.4a吨A种标号水泥,这样购买水泥的总费用恰好比原计划减少1000元,求a的值.【解答】解:(1)设B种标号水泥的售价为x元/吨,则A种标号水泥的售价为(x+100)元/吨,根据题意得:40(x+100)+20x=28000,解得:x=400,x+100=500.答:A种标号水泥的售价为500元/吨,B种标号水泥的售价为400元/吨.(2)根据题意得:28000×a%﹣0.4a×500(1﹣a%)=1000,整理得:a2+40a﹣500=0,解得:a1=10,a2=﹣50(舍去).答:a的值为10.24.(10分)已知△ABC和△DEB都是等腰直角三角形,∠BAC=∠EDB=90°.(1)如图1,若点E,B,C在同一直线上,连接AE,当∠AEC=30°,BC=4时,求EB的长;(2)如图2,将图1中的△DEB绕点B顺时针旋转,当点C在ED的延长线上时,EC交AB于点H,求证:∠EAH=2∠HCB.【解答】(1)解:如图1中,作AH⊥BC于H.∵AB=AC,∠BAC=90°,AH⊥BC,∴AH=BH=HC=2,在Rt△AEH中,∵∠AHE=90°,AH=2,∠AEH=30°,∴EH==2,∴EB=EH﹣BH=2﹣2.(2)证明:如图2中,连接AD.∵∠BDH=∠HAC,∠BHD=∠CHA,∴△BHD∽△CHA,∴=,∴=,∵∠AHD=∠CHB,∴△AHD∽△CHB,∴∠ADH=∠CBH=45°,∠DAH=∠BCH,∴∠ADB=90°+45°=135°,∴∠ADE=360°﹣90°﹣135°=135°,∴∠ADE=∠ADB,在△ADE和△ADB中,,∴△ADE≌△ADB,∴∠DAE=∠DAB,∵∠DAB=∠BCH,∴∠EAH=2∠HCB.五、解答题(本大题共2小题,共22分)25.(10分)一个形如的五位自然数(其中c表示该数万位和个位上的数字,b表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352是一个“M 数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P <>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.【解答】解:(1)=10000c+1000b+100a+10b+c=10001c+1010b+100a.∵a+c=b,∴=10001c+1010b+100a=11011c+1110a=370×(4c+3a)+9531c=370×(4c+3a)+1059c×9∵4c+3a能被9整除,∴370×(4c+3a)+1059c×9也能被9整除,∴任意一个“M数”都能被9整数;(2)“M数”与它各数位数字之和的差为:11011c+1110a﹣(a+2b+2c)=11011c+1110a﹣a﹣2b﹣2c=11011c+1110a﹣a﹣2(a+c)﹣2c=11007c+1107a=7×1572c+7×158a+a+3c=7(1572c+158a)+a+3c,∵“M数”与它各数位数字之和的差能被7整除,∴a+3c为7的倍数,当a+3c=21,且c=7、a=0时,与各数位数字之和的差能被自然数7整除的最大“M 数”为77077;当a+3c=7,且c=1、a=4时,与各数位数字之和的差能被自然数7整除的最小“M 数”15451.26.(12分)如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B 左侧),与y轴交于点C,连结BC.(1)求直线BC的解析式;(2)如图2,点D是CB上方抛物线上一动点,连结DC,DB,过点A作CB的平行线,交对称轴于点E,交DB的延长线于点F,连接CF,当△CDF的面积最大时,在对称轴上找一点R,使得DR+RE的值最小,求出此时点R的坐标;(3)如图3,将抛物线平移,与x轴,y轴分别交于点G,H,且满足点G与点B关于原点O对称,CH=CO,∠OHG的平分线交x轴于点P,PQ⊥GH于点Q,将△PQH绕点O逆时针旋转α(0°<α<180°),记旋转中的△PQH为△P′Q′H′,在旋转过程中,直线P′Q′,P′H′分别与直线GH交于点M,N,△P′MN能否成为等腰三角形?若能请直接写出所有满足条件的α的值;若不能,请说明理由.【解答】解:(1)如图1中,对于抛物线y=﹣x2+x+2,令y=0,得到﹣x2+x+2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),令x=0,得到y=2,∴C(0,2),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+2.(2)如图2中,连接OD,作DH⊥AF于H,RQ⊥AF于Q,DH交对称轴于R′.∵AF∥BC,=S△ABC=定值,∴S△BCF=S△BCD+S△BCF,∵S△CDF∴△BCD的面积最大时,△CDF的面积最大,设D(m,﹣m2+m+2),S△BCD=S△OBD+S△OCD﹣S△BCO=×4×(﹣m2+m+2)+×2×m﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,定值最大,此时D(2,3),∴m=2时,S△BCD易知∠CBO=∠BAF=∠QRE,∴cos∠QRE=cos∠CBO=,在Rt△RQE中,RQ=RE•cos∠QRE=RE,∴DR+RE=DR+RQ,∴当Q与H重合,且D、R、Q共线时,DR+RE定值最小.(此时R与R′重合)∵DH⊥AF,AF∥BC,∴DH⊥BC,∴直线DH的解析式为y=2x﹣1,∴R′(,2).(3)由题意可知H(0,4),G(﹣4,0),∴OH=OG,∴∠OHG=∠OGH=45°∵PH平分∠OHG,∴∠OHP=∠PHQ=22.5°,∠HPO=∠HPQ=∠H′P′Q′=67.5°①如图3中,当P′H′∥OH时,易证∠NMP′=∠MP′N=67.5°,此时旋转角α=22.5°.②如图4中,当P′M∥OG时,易证∠MNP′=∠MP′N=67.5°,此时旋转角α=45°.③如图5中,当P′M=P′N时,易知∠P′NM=∠P′MN=33.75°,∠OKP=33.75°+45°=78.75°,∴∠KOP′=180°=78.75°﹣67.5°=33.75°,此时旋转角α=123.75°.综上所述,当旋转角为22.5°或45°或123.75°时,△P′MN是等腰三角形.。