有机高分子化合物简介例子
- 格式:doc
- 大小:138.50 KB
- 文档页数:5
有机高分孑化合物定义
有机高分子化合物,是指由碳、氢和其他元素组成的大分子化合物。
这些化合物通常具有复杂的结构和性质,广泛应用于各个领域。
有机高分子化合物具有很多种类,其中最常见的是聚合物。
聚合物是由许多单体结合而成的长链分子。
例如聚乙烯、聚丙烯、聚苯乙烯等。
这些聚合物具有优异的物理、化学性质,广泛应用于塑料、纤维、橡胶等领域。
还有许多其他类型的有机高分子化合物。
例如蛋白质、核酸、多糖等生物高分子化合物,具有重要的生物学功能,是生命活动的基础。
还有一些具有特殊性质的高分子化合物,例如液晶聚合物、超分子聚合物等,具有重要的应用前景。
有机高分子化合物的合成方法也非常丰富。
其中最常见的是聚合反应,例如加聚、缩聚等。
此外还有其他方法,例如环化反应、交联反应等。
有机高分子化合物具有重要的应用价值。
在医学领域,许多药物都是有机高分子化合物。
例如聚乙二醇、明胶等,用于制备控释药物、生物医用材料等。
在能源领域,高分子电解质、聚合物太阳能电池等也是有机高分子化合物的重要应用。
有机高分子化合物是一个广泛而复杂的领域。
通过不断的研究和发
展,将有机高分子化合物应用于各个领域,为人类的生产和生活带来了巨大的贡献。
什么是高分子化合物
高分子化合物,简称高分子,又称高分子聚合物,一般指相对分子质量高达几千到几百万的化合物。
绝大多数高分子化合物是许多相对分子质量不同的同系物的混合物,因此高分子化合物的相对分子质量是平均相对分子量。
高分子化合物是由千百个原子以共价键相互连接而成的,虽然它们的相对分子质量很大,但都是以简单的结构单元和重复的方式连接的。
例如,聚乙烯和聚丙烯是世界上应用最广泛的两大类商品塑料,年产量分别达到7亿吨和5亿吨,构成了世界近三分之二的塑料。
然而,聚乙烯和聚丙烯尽管有类似的烃组成,但彼此互不相容,限制了混合废物的处理,降低了回收产品的价值,制造了大量耐久不腐的塑料垃圾。
如需更多信息,建议查阅相关书籍或咨询化学领域的专家。
有机高分子化合物有哪些有机高分子化合物是由含有碳原子的大分子化合物。
它们的分子量通常很大,由许多重复的单元组成。
有机高分子化合物在许多领域都得到广泛应用,如塑料制品、橡胶制品、纤维材料等。
下面将介绍一些常见的有机高分子化合物。
1. 聚合物聚合物是由许多重复的单体通过化学键连接而成的高分子化合物。
聚合物广泛应用于塑料制品、橡胶制品、纤维材料、涂料等领域。
常见的聚合物有聚乙烯、聚丙烯、聚苯乙烯等。
2. 天然橡胶天然橡胶是一种由橡胶树分泌的胶乳提取得到的高分子化合物。
它主要由聚合物聚合而成,具有良好的弹性和耐磨性。
天然橡胶广泛应用于轮胎、胶鞋、胶水等领域。
3. 纤维素纤维素是一种由植物细胞壁中的纤维素聚合而成的高分子化合物。
它是植物中最主要的结构材料之一,具有良好的机械强度和耐水性。
纤维素广泛应用于纸张、纤维制品等领域。
4. 聚合酯聚合酯是一种由酸与醇反应聚合而成的高分子化合物。
它具有良好的可塑性和耐候性,广泛应用于塑料制品、纤维材料、涂料等领域。
常见的聚合酯有聚乙二酸丁二醇酯(PET)、聚碳酸酯(PC)等。
5. 聚氨酯聚氨酯是一种由异氰酸酯和聚醚或聚酯反应聚合而成的高分子化合物。
它具有良好的可塑性和耐磨性,广泛应用于塑料制品、涂料、胶粘剂等领域。
聚氨酯常用于制造泡沫塑料、弹性体等。
6. 聚酰胺聚酰胺是一种由酰胺单体通过聚合反应而成的高分子化合物。
它具有良好的机械强度和热稳定性,广泛应用于纤维材料、塑料制品、涂料等领域。
聚酰胺常用于制造尼龙纤维和尼龙塑料等。
7. 聚酯酰胺聚酯酰胺是一种由酰胺和酯基组成的高分子化合物。
它具有良好的耐热性和耐溶剂性,广泛应用于高温环境下的塑料制品、纤维材料等领域。
聚酯酰胺常用于制造高温塑料和阻燃材料等。
8. 聚醛聚醛是一种由醛单体通过聚合反应而成的高分子化合物。
它具有良好的机械强度和耐磨性,广泛应用于塑料制品、纤维材料、电子元件等领域。
常见的聚醛有聚甲醛、聚乙二醇甲醚醛等。
有机高分子聚合物是由重复单体单元通过共价键连接而成的大分子化合物,其中"有机"表示这些分子中包含碳元素。
这些聚合物通常是由生物或石油化学原料制成,包括许多在日常生活中广泛应用的材料。
以下是一些常见的有机高分子聚合物:
1. 聚乙烯(Polyethylene,PE):由乙烯单体通过聚合反应形成的塑料。
聚乙烯具有良好的化学稳定性、电绝缘性和机械性能,广泛用于塑料袋、瓶子、容器等制品。
2. 聚丙烯(Polypropylene,PP):由丙烯单体聚合而成的塑料。
聚丙烯具有一定的硬度和耐高温性,常用于食品包装、纺织品和汽车部件等。
3. 聚氯乙烯(Polyvinyl Chloride,PVC):由氯乙烯单体聚合而成。
PVC具有耐化学腐蚀、绝缘性良好的特点,广泛用于建筑材料、电线电缆、医疗器械等领域。
4. 聚苯乙烯(Polystyrene,PS):由苯乙烯单体聚合而成。
PS常用于制造泡沫塑料(EPS、XPS)和一次性餐具等。
5. 聚醚酮(Polyetherketone,PEEK):具有高温稳定性和化学稳定性的高性能聚合物,常用于航空航天、医疗器械和电子工业。
6. 聚碳酸酯(Polycarbonate,PC):具有高抗冲击性、透明度和耐高温性,常用于制造眼镜、水杯、光盘等。
7. 聚酯(Polyester):包括PET(聚对苯二甲酸乙二醇酯)等,常用于制造纤维、瓶子、薄膜等。
8. 聚氨酯(Polyurethane,PU):具有良好的弹性和耐磨性,广泛用于制造泡沫、涂料、鞋底等。
这些有机高分子聚合物在各种领域中都有广泛的应用,从日常生活用品到高性能工程材料,都离不开这些材料的应用。
有机高分子化合物(英语: Organic Polymer Compounds),是由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物,属于混合物。
化合物简介有机高分子化合物是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。
一般把相对分子质量高于10000的分子称为高分子。
高分子通常由103~105个原子以共价键连接而成。
由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。
举例:纤维素、蛋白质、蚕丝、橡胶、淀粉等天然高分子化合物,以及以高聚物为基础的合成材料,如各种塑料、合成橡胶、合成纤维、涂料与粘接剂等。
有机高分子化合物可以分为天然有机高分子化合物(如淀粉、纤维素、蛋白质、天然橡胶等)和合成有机高分子化合物(如聚乙烯、聚氯乙烯等等),它们的相对分子质量可以从几万直到几百万或更大,但他们的化学组成和结构比较简单,往往是由无数(n)结构小单元以重复的方式排列而成的。
n称为聚合度。
物理意义有机高分子化合物是光子流过分子产生的负墒与扩散运动的平衡态。
共同特征1.组成上的特征高分子是以一定数量的结构单元重复组成,例如:聚乙烯单体可以相同,可以不同。
2.相对分子质量高分子的相对分子质量很大(相对分子质量低于1000的为小分子),如淀粉的相对分子质量由几万到几十万不等,核蛋白的相对分子质量可达几千万。
其相对分子质量的计算如下:高分子的相对分子质量=链节的量×聚合度"高分子"由n值不同的结构单元组成,因此实际测得的相对分子质量为平均相对分子质量。
3.如何组成在高分子化合物的结构中原子间、链节间是以共价键结合。
淀粉、纤维素是C—C、C—O单键,蛋白质是脱水缩合C—C、C—N单键,聚乙烯是C—C单键,这些键可以自由旋转,所以高分子是蜷曲的长链,弹性就可以证明这一点,小分子化合物就不会具备这种性质。
长链分子组成物质的类型①线型结构(直链或带支链):如淀粉、纤维素、聚乙烯等。
合成有机高分子化合物•合成有机高分子化合物:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。
是由一类相对分子质量很高的分子聚集而成的化合物,也称为高分子、大分子等。
一般把相对分子质量高于10000的分子称为高分子。
包括天然和合成有机高分子化合物。
常见合成有机高分子化合物:聚乙烯、聚氯乙烯等•有机高分子化合物的合成:高分子化合物大部分是由小分子通过聚合反应制得的。
(1)加聚反应:不饱和单体通过加聚反应生成高分子化合物。
①聚乙烯类(塑料、纤维)②聚二烯类(橡胶)(2)缩聚反应:单体聚合成高分子的同时有小分子生成的聚合反应。
①聚酯类②聚氨基酯类③酚醛树脂类对高分子化合物的理解:(1)通常把生成高分子化合物的低分子化合物(反应物)叫做单体(如乙烯是聚乙烯的单体),高分子化合物中化学组成相同、可重复的最小单位叫做链节(如一CH2一CH2一是聚乙烯的链节),高分子链中含有链节的数目叫做聚合度,通常用n表示。
注意单体与链节是不同的,单体是反应前的低分子化合物;链节不是物质,不能独立存在,是反应后有机高分子化合物中的片段。
(2)低分子有机物的相对分子质量都有一个确定的数值,而高分子化合物的相对分子质量只是一个平均值。
它是以低分子有机物作原料,经聚合反应得到各种相对分子质量不等的物质的混合物。
•单体与高分子化合物的互推规律:聚合时找准结合点,反推单体时找准分离处,“结合点必为分离处”。
1.由单体推断高聚物的方法(1)单烯烃型单体加聚时,“断开双键,键分两端,添上括号,n写后面”。
如(2)二烯烃型单体加聚时,“单变双,双变单,破两头,移中间,添上括号.n写后面”。
如(3)分别含有一个双键的两种单体聚合时,“双键打开,中间相连,添上括号,n写后面”。
如2.由高聚物推导单体的方法(1)加聚产物单体的判断方法①凡链节主链只有两个碳原子(无其他原子)的聚合物,其合成单体必为一种,将两个半键闭合即可。
天然有机高分子材料
•有机物:
含有碳元素的化合物称为有机化合物(一氧化碳、二氧化碳、碳酸钙等除外),简称有机物。
有机高分子:
有些有机物的相对分子质量比较大,通常称它们为有机高分子化合物,简称有机高分子。
如淀粉、蛋白质、纤维素、塑料、橡胶等。
【有机高分子模型】
有机高分子材料:
用有机高分子化合物制成的材料就是有机高分子材料。
有机高分子材料分为:
(1)天然有机高分子材料:例如:棉花、羊毛、天然橡胶等。
(2)合成有机高分子材料:例如:塑料、合成橡胶、合成纤维等,简称合成材料。
•常见的天然有机高分子材料及其特点:
1、棉花:棉花的主要成分是纤维素,纤维素含量高达90%以上。
棉纤维能制成多
种规格的织物,用它制成的衣服具有耐磨并能在高温下熨烫,良好的吸湿性、透气性和穿着舒适的优点。
2、羊毛:羊毛主要南蛋白质构成,是纺织工业的重要原料,织物具有弹性好、吸
湿性强、保暖性好等优点。
3、蚕丝:蚕丝是蚕结茧时形成的长纤维,也是一种天然纤维,其主要成分是蛋白
质。
蚕丝质轻而细长,织物光泽好、穿着舒适、手感滑顺、导热性差、吸湿透气性好。
中国是世界上最早使用丝织物的国家。
4、天然橡胶:天然橡胶是指从橡胶树上采集的天然胶乳,经过凝同、干燥等加工
工序制成的弹性固状物。
天然橡胶是一种以聚异戊二烯为主要成分的天然高分子化
合物。
分子式是(C5H8)n,其成分中91%~94%是橡胶烃(聚异戊二烯),其余为蛋白质、脂肪酸、糖类等非橡胶物质,是应用最广的通用橡胶。
天然有机高分子化合物
天然有机高分子化合物是最古老、最重要的高分子类型之一,世
界上99.9%以上的有机物都是有机高分子化合物。
天然有机高分子化合物是从植物、动物或者微生物的活性体提取的,其分子结构非常复杂。
例如,植物中的天然有机高分子化合物包括木质素、脂肪酸、糖、蛋
白质和纤维素等;动物中的有机高分子化合物如此多彩杂质,包括脂质、蛋白质、核酸以及一些细胞外生物物质等等。
微生物中的天然有
机高分子化合物属于最丰富的,其中不仅包含各类糖、可溶性蛋白质
和多种脂质等,还包括腐殖质、细胞壁物质、烯醇、脂多糖等。
天然有机高分子化合物在材料、食品、医药、农药等领域都发挥
着巨大的作用。
在材料领域,有机高分子化合物可以用于制作柔软绝
缘材料,涂料等;在食品领域,它可以用于改变食品的口感、味道、
结构等;在医药领域,有机高分子化合物可以作为药物的载体和控释剂,比如作为胶囊的外壳材料,以提高药物的作用效果;在农药领域,有机高分子化合物可以用于调节农药的配制和性质,以及增加药效。
由于天然有机高分子化合物具有复杂的结构和高效率的性能,它
们一直是化学家和材料工程师一直探讨和应用的热门主题,而且在许
多领域都有很多的独特的应用,使其成为技术突破的基础。
因此,研
究人员正在探索天然有机高分子化合物,以开发新型应用,以满足人
们日益增长的需求。
天然高分子有机化合物
天然高分子有机化合物是一类具有高分子结构的有机化合物,具有天然来源、可再生资源、生物相容性、生物降解性、低毒性等优点,因此在科学研究和工业应用中备受关注。
其中,天然高分子包括多糖、蛋白质、核酸、木质素等,具有广泛的应用领域。
多糖是一类由单糖分子组成的高分子物质,包括淀粉、纤维素、海藻酸等。
淀粉是植物细胞中储存能量的主要物质,广泛应用于食品、医药、化妆品等领域;纤维素是植物细胞壁的主要成分,可用于生产纸张、建筑材料、生物燃料等;海藻酸是海藻细胞壁的主要成分,具有凝胶化、保湿、降血脂等功能,被广泛应用于食品、医药、化妆品等领域。
蛋白质是生物体内最重要的高分子物质之一,由氨基酸分子组成,包括天然蛋白质和基因工程蛋白质。
天然蛋白质广泛应用于食品、医药、化妆品等领域,如乳清蛋白、胶原蛋白、鱼胶原蛋白等;基因工程蛋白质是通过遗传工程技术制备的蛋白质,如重组人胰岛素、重组人生长激素等,具有广阔的医药应用前景。
核酸是生物体内负责存储遗传信息的高分子物质,包括DNA和RNA。
DNA是存储遗传信息的主要物质,广泛应用于基因工程、生物制药等领域;RNA则参与到蛋白质的合成过程中,是重要的生
物催化剂,广泛应用于基因治疗、疫苗制备等领域。
木质素是植物细胞壁的次生代谢产物,具有稳定性、耐候性、抗菌性等特点,被广泛应用于木材保护、涂料、染料等领域。
总的来说,天然高分子有机化合物是具有广泛应用前景的一类化合物,具有天然来源、可再生资源等优点,具有重要的科学研究和工业应用价值。
高二(下)化学39(杭州学军中学陈进前编制)
8-1-1 有机高分子化合物简介
[教学目标]
1.知识目标
(1)初步了解有机高分子化合物的结构特点和基本性质.
(2)常识性介绍高分子材料在国民经济发展和现代科学技术中的重要作用。
(3)了解烃、烃的衍生物等有机化合物跟天然有机高分子化合物、合成有机高分子化合物的主要差别。
(4)理解“结构单元”“链节”“聚合度”“单体”等基本概念。
2.能力和方法目标
通过有机高分子化合物的学习,学会判断跟有机高分子化合物有关的“结构单元”“链节”“聚合度”“单体”等方法。
通过有机高分子化合物的结构特点、基本性质的学习,提高解决某些实际问题的能力。
3.情感和价值观目标
通过有机高分子化合物的学习,进一步强化“结构决定性质、性质决定用途”的观点.通过有机高分子化合物的学习,了解有机高分子化合物在社会生产和日常生活中的应用,增强学生对化学为提高人类生活质量作出重大贡献的认识,提高化学学习的兴趣.[重点与难点]
教学难点是乙酸的酯化反应。
[教学过程]
由教师质疑,师生共同释疑讨论。
教师提问:
1.什么叫高分子化合物?你学过哪些高分子化合物?能否说出这些实物的主要组成成份,并写出它们的分子式?
要求学生答出:相对分子质量很大(至少在10000以上)的化合物叫高分子化合物,简称高分子。
要求学生写出:聚乙烯(食品袋)、聚氯乙烯(服装袋)、酚醛树脂(电木)、聚异戊二烯(硬橡皮或橡皮筋)的分子式,并能说出它们的名称。
2.判断上述高分子化合物中哪些是天然高分子?哪些是人工合成高分子?
要求学生答出:天然高分子有淀粉、纤维素、蛋白质。
合成高分子有电木、聚乙烯、聚氯乙烯、人工合成橡胶等。
3.天然的或人工合成的高分子化合物它们有哪些主要的共同特征呢?(学生回答或教师自问自答)
(1)组成上:高分子是以一定数量的结构单元重复组成,例如:聚乙烯
单体可以相同,可以不同(由同学回想哪些高分子的单体相同?哪些高分子的单体不同?)
(2)相对分子质量:高分子的相对分子质量很大(相对分子质量低于l000的为小分子)如淀粉相对分子质量由几万到几十万不等,核蛋白相对分子质量可达几千万。
其相对分子质量的计算如下:
高分子的相对分子质量=链节的量×聚合度
有n值不同的结构单元组成,因此实际测得的相对分子质量为平均相对分子质量。
4.这样大的长链分子是怎样组成物质的呢?
(1)教师演示,学生观察思考:教师用力拉一下食品袋或橡皮筋,然后放松,问学生观察到什么现象?(弹性),又问为什么会具有弹性呢?(可以让学生阅读课本中有关的段落或由教师讲解)
要求答出:在高分子化合物的结构中原子间、链节间是以共价键结合。
淀粉、纤维素是C ——C、C——O单键,蛋白质是C——C,C——N单键,聚乙烯是C——C单键,这些键可以自由旋转,所以高分子是蜷曲的长链,弹性就可以证明了这一点,小分子短就不会具备这种性质。
(2)长链分子又怎样组成物质的呢?橡皮筋和硬橡皮的区别?(结合课本第173页图5-1,高分子结构型式示意图)
①线型结构(直链或带支链),如淀粉、纤维素、聚乙烯等。
它们分子间主要是靠分子间作用力结合。
其强度是化学键和分子间力的共同表现。
因此相对分子质量越大,链越长,这些作用力也越大,强度就强。
这是它们不同于小分子物质的特点。
②体型结构(网状结构),这种结构表现为链上有能够反应的官能团。
高分子链之间除分子间力外,还可以产生化学键(产生交联),因而使得这类化合物具有强度高、耐磨、不易溶解等不同于线型结构高分子的性质。
橡皮筋是橡胶中(主要成份是聚异戊二烯)加了少量3%的硫,由于交联较少,仍保留有线型结构的特点,而硬橡皮则是在橡胶中加入了30%的硫,由于交联多,因而具有了典型的网状结结构。
此外如酚醛树脂也是体型结构的高分子化合物。
5.有机高分子化合物有哪些基本的性质呢?
教师演示,让学生观察并思考,总结出高分子化合物性质。
(1)溶解性:
观察思考:教师演示实验〔8-1,8-2〕
学生观察得出:有些高分子化合物有一定的溶解性。
教师提问:①高分子及小分子在溶解过程中有什么不同?
要求答出:
高分子:溶剂渗入-胀大-分离-溶胶,溶解速度慢。
小分子:溶剂渗入-水合-分离-溶液,溶解速度快。
②线型高分子与体型高分子在溶解性上有什么不同?
要求答出:
线型高分子能溶解在适当的溶剂中,并形成溶胶,而体型高分子则一般难于溶解,只能胀大(为什么?这是因为高分子之间除分子间力外还有交联而形成的许多化学键)。
(2)热塑性和热固性。
观察思考:教师演示实验〔8-3〕(或者让同学回忆塑料口袋封口操作的过程)
①在封口操作中的现象有哪些?说明了高分子的什么性能?
要求答出:封口时受热熔化,冷却又凝固,说明线型高分子材料具有热塑性。
②橡皮、电木等体型结构的高分子受热不会熔化又是为什么?
要求答出:体型结构的高分子在链之间有许多化学键互相交联,限制了高分子链的移动。
若温度升高,化学键断裂,高分子即破裂,所以体型结构的高分子材料具有热固性。
(3)电绝缘性?
教师提问:生活中常见的物质中哪些有电绝缘性?塑料等高分子材料有没有电绝缘性?
要求答出:链里原子间以共价键结合无自由移动的电子存在。
绝大部分有机高分子材料都具有电绝缘性。
课堂小结:
〔作业〕
1.课外调查:
①日常生活中所接触到的高分子化合物有哪些?
②举出在日常生活中你所遇到的高分子材料所表现出来的优良性能和缺点(如轻便、防水、易燃等等)
2.家庭实验:自找一份聚乙烯、聚氯乙烯材料,通过实验加以检验。
课堂练习
1.生物学家预言,21世纪是木材化工产品的世纪,利用木材得到纤维素,用纤维素不能得到的物质是()
(A)蛋白质(B)玻璃纸(C)苯酚(D)葡萄糖
2.合成结构简式为的高聚物,其单体应是()
①苯乙烯②丁烯③丁二烯④丙炔⑤苯丙烯
(A)①②(B)④⑤(C)③⑤(D)①③
3.橡胶属于重要的工业原料。
它是一种有机高分子化合物,具有良好的弹性,但强度较差。
为了增加某些橡胶制品的强度,加工时往往需要进行硫化处理。
即将橡胶原料与硫磺在一定条件下反应;橡胶制品硫化程度越高,强度越大,弹性越差。
下列橡胶制品中,加工时硫化程度较高的是()。
(A)橡皮筋(B)汽车外胎(C)普通气球(D)医用乳胶手套4.某种ABS工程树脂,由丙烯腈(CH2=CHCN,符号A)、1,3-丁二烯(CH2=CHCH
=CH2,符号B)和苯乙烯(,符号S)按一定配比共聚而得。
(1)A、B和S三种单体,碳氢比(C:H)值最小的单体是_____。
(2)经元素分析可知该ABS样品的组成为C a H b N c(a、b、c为正整数),则原料中A和B的物质的量之比是_____(用a、b、c表示)。
5.某高分子化合物的结构如下图所示。
它是由三种单体在一定条件下经缩聚反应而成,则这三种单体的结构简式分别是_________________、______________、______________。
解析题中已明确提示,该高分子化合物是有三种单体以上缩聚而成的。
联系中学化学课本中学过的酚醛缩聚成酚醛树脂来进行分析。
单体可以是苯酚、甲醛、苯胺。
课堂练习答案
1AC。
2.观察高聚物的的结构简式,是一种乙烯型和丁二烯型单体共聚而成的。
有了这个思路,可比较容易地发现单体是苯乙烯和1,3-丁二烯。
答案为D。
3.根据题示信息,橡胶制品的硫化程度越高,强度越大。
橡皮筋、汽车外胎、普通气球和医用乳胶手套是大家常见的橡胶制品,稍有生活常用的人都知道这四种橡胶制品中汽车外胎
的强度最大,所以用来制造汽车外胎的橡胶的硫化程度最高。
答案选B。
4.(1)比较三种单体的分子组成,可发现丙烯腈中碳氢比为1:1、1,3-丁二烯中碳氢比为2:3、苯乙烯中碳氢比为1:1,所以三种单体中碳氢比最小是1,3-丁二烯。
(2)根据ABS组成中的氮原子数可确定单体A的个数,再根据三种单体分子中碳氢比的关系(A、C中碳氢比都是1:1,B中碳氢比是2:3)可确定单体B的个数。
最后得到答案
为c:
3a
b。
5.C6H5—OH、C6H5—NH2、HCHO。