异步电动机调速控制线路
- 格式:ppt
- 大小:629.50 KB
- 文档页数:35
一、双速电机控制原理调速原理根据三相异步电动机的转速公式:n1=60f/p三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。
根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。
这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。
下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。
∴转速比=2/1=2双速电机的变速原理是:电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。
如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。
1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数;2、在定子槽内嵌有两个不同极对数的独立绕组;3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。
(一)双速电机定子接线图三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。
图(a)△接(低速)图(b)YY接(高速)图25-1 三相双速异步电动机定子绕组接线图图(a)为双速异步电动定子绕组的△接法,三相绕组的接线端子U1、V1、W1与电源线连接,U2、V2、W2三个接线端悬空,三相定子绕组接成△形。
2—17 绕线式异步电动机起动和调速控制线路绕线式异步电动机的特点是:它的转子上绕有绕组,并且通过转子上的集电环〔俗称滑环〕在转子绕组中串接附加的电抗。
当转子回路中的电抗改变时,电动机的力矩特性将改变,适当地调节转子回路中的电阻,可以得到理想的起动状态。
用绕线式异步电动机可以得到很大的起动转距,同时起动时的电流也减少很多。
所以在对起动转距,调速特性要求较高的机械中〔如卷扬机、桥式起动机等〕,常常使用绕线式异步电动机。
绕线式异步电动机的缺点是:电动机比较复杂、造价也高、耐用性能较差、效率也稍低。
绕线式异步电动机的起动方法有如下三种:一、转子绕组串接电阻;二、转子绕组串接频敏变阻器;三、用凸轮控制器。
下面分别详细介绍绕线式电动机的三种起动方法:一、转子绕组串接电阻起动控制线路转子绕组串接电阻控制绕线式异步电动机的线路又分为:用按钮开关、用时间继电器、用电流继电器三种不同的控制线路,下面依次介绍如下:1、用按钮开关控制绕线式异步电动机的控制线路。
用按钮开关控制绕线式电动机的控制线路如图21701所示:图21701的工作原理简述如下:图中:KM1、KM2、KM3、KM4、四个接触器除KM1作接通电源用外,其余三个均是短路转子回路中的起动电阻用的。
SB1为停顿按钮;SB2为起动按钮,SB3、SB4、SB5均为切除电阻用的按钮开关。
起动电动机时,按下SB2,KM1获电吸合并自锁,电动机转子绕组内串入R1、R2、R3全部电阻起动。
按下SB3,KM2获电吸合并自锁,其主触头KM1闭合,短路R1,电动机加速运转;同理,按SB4、SB5分别短路R2及R3,电动机一级、一级加速运转。
并且当KM3闭合时,其常闭触头KM3切断KM2的线圈回路;KM4闭合时,其常闭触头KM4切断KM3、〔包括KM2〕的线圈回路。
当电动机全速运转时,只有KM1、KM4两个接触器获电工作,其余均断开。
接触器,KM2、KM3、KM4的常闭触头串联在KM1线圈回路中的作用是,保证电动机在转子回路中电阻全部参加的条件下才能起动。
三相异步电动机的调速控制-变极调速变极调速一般仅适用于笼型异步电动机。
变极电动机一般有双速、三速、四速之分,双速电动机定子装有一套绕组,而三速、四速电动机为两套绕组。
变极调速的原理和控制方法基本相同,这里以双速异步电动机为例进行分析。
1.双速异步电动机定子绕组的联结方式双速异步电动机是靠改变定子绕组的连接,形成两种不同的极对数,获得两种不同的转速。
双速异步电动机定子绕组常见的接法有△/YY和Y/YY两种。
双速电动机定子绕组接线图如图所示,通过改变定子绕组上每个线圈两端抽头的联结,图(a)由三角形改为双星形,图(b)由星形改为双星形,两种接线方式变换成双星形均使极对数减少一半,转速增加一倍。
双速异步电动机调速的优点是可以适应不同负载性质的要求,如需要恒功率调速时可采用三角形→双星形转换接法,需要恒转矩调速时采用星形→双星形转换接法,且线路简单、维修方便;缺点是只能有级调速且价格较高,通常使用时与机械变速配合使用,以扩大其调速范围。
注意:当定子绕组由三角形联结(各相绕组互为240°电角度)改变为双星形联结(各相绕组互为120°电角度)时,为保持变速前后电动机转向不变,在改变极对数的同时必须改变电源相序。
2.双速异步电动机控制线路下图所示为时间继电器控制的双速异步电动机自动控制线路。
图中SA为选择开关,选择电动机低速运行或高速运行。
当SA置于“低速”位置时,接通KM1线圈电路,电动机直接启动低速运行。
当 SA 置于“高速”位置时,时间继电器的瞬时触头闭合,同样先接通KM1线圈电路,电动机绕组三角形接法低速启动,当时间继电器延时时间到时,其延时断开的常闭触头KT断开,切断KM1线圈回路,同时其延时接通的常开触头KT闭合,接通接触器 KM2、KM3 线圈并使其自锁,电动机定子绕组换接成双星形接法,改为高速运行。
此时KM3的常闭触头断开使时间继电器线圈失电停止工作。
所以该控制线路具有使电动机转速自动由低速切换至高速的功能,以降低启动电流,适用于较大功率的电动机。
3.5三相异步电动机的变极调速线路三相鼠笼式异步电动机可以采用改变磁极对数调速。
可变极调速的电动机一般有双速、三速和四速之分。
双速电动机的定子只安装有一套绕组,而三速和四速的电动机则安装有两套绕组。
双速电动机对安装的一套定子绕组,通过改变它的联结方式来得到不同的磁极对数,如图所示。
左图是把定子绕组接成三角形,电动机磁极对数多,电动机低速。
右图是把同一套定子绕组接成双星形,磁极对数减少为原来的一半,电动机高速运行。
双速电动机调速控制线路的示意图如图所示。
图中采用了三个交流接触器,KM1用于控制电动机定子绕组接成三角形,KM2、KM3用于控制绕组接成双星形。
其中KM2控制绕组一端U2、V2、W2接到交流电源上,KM3用于把绕组另外一端接成星点。
图中还采用了断电延时型时间继电器KT,用于电动机高速运行时,先低速启动电机时间的控制。
若将SA置于“高速”档位→时间继电器KT线圈通电且瞬时动作触点KT-1瞬时闭合→KM1线圈通电→电动机M先接成三角形低速起动→KT延时时间到→延时动作触点KT-2断开→KM1线圈断电→延时动作触点KT-3同时闭合→KM2线圈通电→KM3线圈通电→M接成双星形高速运行本讲我们主要讲述了三相异步电动机的典型控制环节,包括电动机常用控制技术,以及电动机双向运行控制,降压启动控制,制动控制以及变极调速控制等。
各种控制电路都是采用各类主令电器、各种控制电器以及各种控制触点按一定逻辑关系的不同组合来实现。
掌握这些逻辑关系对于我们理解并掌握这些控制电路非常重要,也对于我们后续PLC的编程有很大帮助。
下面我们来总结一下这些逻辑关系:1.当几个条件中只要有一个条件满足接触器就可以得电,则所有条件采用并联接法;2.如果所有条件必须都具备,接触器才能得电,则所有条件应采用串联接法;3.要求第一个接触器得电后,第二个接触器才得电,可以将前者常开触点串接在第二个接触器线圈的控制电路中,或者第二个接触器控制线圈的电源从前者的自锁触点后引入;4.要求第一个接触器得电后,第二个接触器不允许得电,可以将前者的常闭触头串接在后者接触器的控制回路中;5.连续运转与点动的区别仅在于自锁触头是否起作用。
三相异步电动机控制线路的工作原理篇一:嘿,朋友!你知道三相异步电动机吗?这玩意儿在咱们生活和工业里那可太重要啦!今天咱们就来好好聊聊三相异步电动机控制线路的工作原理,保证让你大开眼界!想象一下,三相异步电动机就像是一个超级大力士,而控制线路就是指挥这个大力士干活的“大脑”。
你说这大脑得多厉害,才能让大力士乖乖听话,出对力,干好事呀?咱们先来说说最简单的直接启动控制线路。
这就好比你要出门,直接打开门就走,简单粗暴!三相电源直接接到电动机的定子绕组上,电动机就“轰”地转起来啦!可这也有问题呀,这么大的电流冲击,就像洪水猛兽一样,对电网和电动机本身都不太友好,是不是?那咋办呢?就得有请降压启动控制线路登场啦!比如说星三角降压启动,这就像是让大力士先慢慢热身,然后再全力出击。
刚开始的时候,电动机定子绕组接成星形,电压降低了,电流也小了,等到转起来稳定了,再切换成三角形,全力运转。
这多巧妙,你说是不是?还有一种自耦变压器降压启动,这就好比给大力士找了个“助力器”。
通过自耦变压器先把电压降低,启动完成后再切除变压器,让电动机正常工作。
在控制线路里,各种接触器、继电器就像是一个个小士兵,听从指挥,准确无误地执行任务。
比如说,当需要启动电动机时,接触器“啪”地吸合,电路接通;需要停止时,接触器又“咔”地断开,电动机就乖乖停下。
“哎呀,这控制线路咋这么复杂呀?”有人可能会这么抱怨。
其实呀,只要你耐心琢磨,就会发现其中的乐趣和奥秘。
就像解一道超级难的谜题,一旦解开,那种成就感简直爆棚!咱们再来说说正反转控制线路。
这就像是让大力士既能向前跑,又能向后退。
通过改变三相电源的相序,就能实现电动机的正反转。
你想想,如果工厂里的传送带只能往一个方向转,那得多不方便呀!还有调速控制线路,这就像是让大力士能根据不同的任务,调整自己的速度。
有的时候需要快,有的时候需要慢,全看工作的需求。
总之,三相异步电动机控制线路的工作原理就像是一场精心编排的舞蹈,每个元件都在自己的位置上发挥着关键作用,共同演绎出完美的“电机运转之舞”。
•匕■・(«漫其修远兮.吾将上下而求索・百度文库第三章异步交流电动机常用控制电路1点动控制电气原理:点动控制线路中,因电动机工作时间较短,一般不加热继电器。
因松开启动按钮,电动机即可停车,无需加装停止按钮。
2长动控制电气原理:相对于点动控制,长动控制的自锁触头必须是长开、与启动按钮并联。
因电动机是连续工作,必须加装热继电器以实现过载保护。
3正反转控制电气原理:为实现电动机转向的改变,在主电路中通过KM1、KM2改变三项电流相序。
显然,若KMK KM2同时闭合,将造成主回路的短路。
因此,KM1、KM2间必须进行互锁, 既不允许该两个接触器的吸引线圈同时得电。
接触器间的互锁可以通过接触器本身的辅助触头实现,也可以通过按钮实现。
为安全起见,生产机械中常采用双重连锁。
4自动循环往复控制电气原理:启动时,和上电源开关QS,按下正转按钮SB2, KM1线圈接通并自锁,主触点接通主电路,电动机正转,带动运动部件前进。
当运动部件遇到左端的位置A时,机械挡铁碰到SQ1,其触点断开,切断KM1线圈电路,使其主、辅触点复位,KM1的动断触点闭修远兮.百将上下而求索•百度文库合及SQ1的动合触点闭合使接触器KM2线圈接通并自锁,电动机定子绕组电源相序不变,电动机进行反接制动,转速迅速下降,然后反向启动,带动运动部件进行反向运动。
当运动部件运动到右端位置时,英上的挡铁撞压行程开关SQ2, SQ2动作,其动断触点断开使KM2 线圈断电,SQ2的动合触点闭介使KM1线圈电路接通,电动机先进行反接制动再反向启动, 带动运动部件前进。
这样,即实现往复运动。
5三相异步电动机的变级调速控制特点——2/4极双速电动机——髙、低速运行。
应用——在机床中方》一改变泄子绕组的极对数;——改变转子电路中的电阻;——变频调速:——串极调速。
如图1-56为改变电阻的方式第四章M7130磨床一、功能:机械加工中,当对零件表而的光洁度要求较髙时,就需要用磨床进行加工,磨床是用砂轮的周边或端而对工件的表而进行机械加工的一种精密机床。