ANSYS 热分析教材
- 格式:ppt
- 大小:1.48 MB
- 文档页数:39
Ansys热分析教程Ansys 热分析教程第⼀章简介⼀、热分析的⽬的热分析⽤于计算⼀个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多⼯程应⽤中扮演重要⾓⾊,如内燃机、涡轮机、换热器、管路系统、电⼦元件等。
⼆、ANSYS的热分析?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元法计算各节点的温度,并导出其它热物理参数。
ANSYS热分析包括热传导、热对流及热辐射三种热传递⽅式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类?稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析?热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第⼆章基础知识⼀、符号与单位项⽬国际单位英制单位ANSYS代号长度m ft时间s s质量Kg lbm温度℃oF⼒N lbf能量(热量)J BTU功率(热流率)W BTU/sec热流密度W/m2BTU/sec-ft2⽣热速率W/m3BTU/sec-ft3导热系数W/m-℃BTU/sec-ft-oF KXX对流系数 W/m2-℃BTU/sec-ft2-oF HF密度Kg/m3lbm/ft3DENS⽐热J/Kg-℃BTU/lbm-oF C●对于⼀个封闭的系统(没有质量的流⼊或流出〕式中:Q——热量;W——作功;——系统内能;——系统动能;——系统势能;●对于⼤多数⼯程传热问题:;●通常考虑没有做功:,则:;●对于稳态热分析:,即流⼊系统的热量等于流出的热量;●对于瞬态热分析:,即流⼊或流出的热传递速率q等于系统内能的变化。
三、热传递的⽅式1、热传导热传导可以定义为完全接触的两个物体之间或⼀个物体的不同部分之间由于温度梯度⽽引起的内能的交换。
ANSYS基础教程—热分析关键字:ANSYS ANSYS教程ANSYS热分析信息化调查找茬投稿收藏评论好文推荐打印社区分享本文简述了进行稳态热分析的过程.有两方面的目的:重申第4章所介绍的典型分析步骤;介绍热荷载与边界条件.包括的主题有:概述、分析过程、专题讨论。
A. 概述·热分析用于确定结构中温度分布、温度梯度、热流以及其它类似的量.·热分析可能是稳态的或瞬态的.–稳态是指荷载条件已被“设置”成稳定状态,几乎不随时间变化. 如: 铁获得了预先设置的温度.–瞬态* 指条件随时间变化而变化. 如: 铸造中金属从熔融状态变为固态的冷却过程.·热荷载条件可能是:温度模型区温度已知.对流表面的热传递给周围的流体通过对流。
输入对流换热系数h和环境流体的平均温度Tb热通量* 单位面积上的热流率已知的面.热流率* 热流率已知的点.热生成率* 体的生热率已知的区域.热辐射* 通过辐射产生热传递的面. 输入辐射系数, Stefan-Boltzmann常数, “空间节点”的温度作为可选项输入.绝热面“完全绝热”面,该面上不发生热传递.B. 分析过程·稳态热分析过程和静力分析类似:–分析过程·几何尺寸(模型)·划分网格–求解·荷载条件·求解–后处理·查看结果·检查结果是否正确·通过(Main Menu > Preferences)把图形用户界面的优先级设置成热分析. 前处理几何尺寸(模型)·既可用ANSYS建立模型,也可用其它方法建好模型后导入.·模型建好后,以上两种建模方法的具体过程将不再显示.-划分网格·首先定义单元属性: 单元类型, 实常数, 材料属性.-单元类型·下表给出了常用的热单元类型.·每个结点只有一个自由度: 温度常用的热单元类型-材料属性–必须输入导热系数, KXX.–如果施加了内部热生成率,则需指定比热(C).–ANSYS提供的材料库(/ansys57/matlib)包括几种常用材料的结构属性和热属性, 但是建议用户创建、使用自己的材料库.–把优先设置为“热分析”,使材料模型图形用户界面只显示材料的热属性.-实常数–主要应用于壳单元和线单元.·划分网格.–存储数据文件.–使用MeshTool划分网格. 使用缺省的智能网格划分级别6可以生成很好的初始网格.·至此完成前处理,下面开始求解.求解荷载·指定的温度–热分析的自由度约束–Solution > -Loads-Apply > Temperature–或D命令系列(DA, DL, D)·热流–这些是面荷载–Solution > -Loads-Apply > Convection–或SF命令系列(SFA, SFL, SF, SFE)·绝热面–“完全绝热”面,该面上不发生热传递.–这是缺省条件, 如,没有指定边界条件的任何一个面都被自动作为绝热面处理.·其它可能的热荷载:–热通量(BTU / (hr-in2)–热流(BTU / hr)–热生成率(BTU / (hr-in3)–热辐射(BTU / hr)求解·首先存储数据库文件.·然后输入SOLVE命令或点击菜单Solution > -Solve-Current LS.–结果被写入结果文件, jobname.rth, 该结果文件同时也写入内存中的数据库文件.·至此完成求解过程. 下面进入后处理部分.后处理查看结果·典型的等值线绘图包括温度等值线,温度梯度等值线和热通量等值线–General Postproc> Plot Results > Nodal Solu…(或Element Solu…)–或用PLNSOL(或PLESOL)·对3-D 实体模型绘制云图时,选项isosurfaces(等值面)是非常有用的. 用/CTYPE命令或Utility Menu > PlotCtrls> Style > Contours > Contour Style.·检查结果是否正确·温度是否在预期的范围内?–在指定温度和热流边界的基础上,估计预期的范围.·网格大小是否满足精度?–和受力分析一样,可以画出非均匀分布的温度梯度(单元解) 并找出高梯度的单元. 这些区域可作为重新定义网格时的参考.–若节点温度梯度(平均的)和单元温度梯度(非平均的)之间的差别很大,则可能是网格划分太粗糙.。
目录第1章–介绍–概述–相关讲座&培训–其他信息来源第2章–基本概念第3章–稳态热传导(n o m a s s t r a n s p o r t o f h e a t)第4章–附加考虑非线性分析第5章–瞬态分析1-3 1-5 1-12 1-132-13-14-15-1第6章–复杂的,时间和空间变化的边界条件第7章–附加对流/热流载荷选项和简单的热/流单元第8章–辐射热传递–例题-使用辐射矩阵的热沉分析第9章–相变分析–相变分析例题-飞轮铸造分析第10章–耦合场分析6-1 7-18-1 8-43 9-1 9-14 10-1目录(续)第1章先决条件1章节内容概述12章节内容概述213章节内容概述310124章节内容概述43546章节内容概述6571章节内容概述7689章节内容概述1072相关讲座&培训2tT c h K Q qq E============t i m e t e m p e r a t u r e d e n s i t y s p e c i f i c h e a t f i l m c o e f f i c i e n t e m i s s i v i t y S t e f a n -B o l t z m a n n c o n s t a n t t h e r m a l c o n d u c t i v i t y h e a t f l o w (r a t e ) h e a t f l u x i n t e r n a l h e a t g e n e r a t i o n /v o l u m e e n e r g y ρεσ*&&&fA N S Y S()3223注,对于结构热容量,密度/G c和比热*G c经常使用该单位。
其中G c=386.4(l b m-i n c h)/(l b f-s e c2)A N S Y S(S I)3223–传导–对流–辐射•传导的热流由传导的傅立叶定律决定�•负号表示热沿梯度的反向流动(i .e ., 热从热的部分流向冷的).q K T n K T T n n n n n *=−∂∂=∂∂=h e a t f l o w r a t e p e r u n i t a r e a i n d i r e c t i o n n Wh e r e , = t h e r m a l c o n d u c t i v i t y i n d i r e c t i o n n= t e m p e r a t u r e t h e r m a l g r a d i e n t i n d i r e c t i o n n Tnq*dT d n•对流的热流由冷却的牛顿准则得出:•对流一般作为面边界条件施加qh T T h T T f S B f S B *()=−=h e a t f l o w r a t e p e r u n i t a r e a b e t w e e n s u r f a c e a n d f l u i d W h e r e , = c o n v e c t i v e f i l m c o e f f i c i e n t= s u r f a c e t e m p e r a t u r e = b u l k f l u i d t e m p e r a t u r e TB Ts•从平面i 到平面j 的辐射热流由施蒂芬-玻斯曼定律得出: •在A N S Y S 中将辐射按平面现象处理(i .e ., 体都假设为不透明的)。
•本章练习稳态热分析的模拟,包括:A. 几何模型B. 组件-实体接触C. 热载荷D. 求解选项E. 结果和后处理F. 作业6.1• 本节描述的应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural• 提示:在ANSYS 热分析的培训中包含了包括热瞬态分析的高级分析•对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得:[K(T)]{T}= {Q(T )}•假设:–在稳态分析中不考虑瞬态影响–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数•上述方程基于傅里叶定律:• 固体内部的热流(Fourier’s Law)是[K]的基础;• 热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析是很重要的。
•热分析里所有实体类都被约束:–体、面、线•线实体的截面和轴向在D esignModeler中定义• 热分析里不可以使用点质量(Point Mass)的特性•壳体和线体假设:–壳体:没有厚度方向上的温度梯度–线体:没有厚度变化,假设在截面上是一个常量温度• 但在线实体的轴向仍有温度变化• 唯一需要的材料特性是导热性(Thermal Conductivity )• Thermal Conductivity 在 Engineering Data 中输 入• 温度相关的导热性以表格 形式输入若存在任何的温度相关的材料特性,就将导致非线性求解。
… 材料特性Training ManualB. 组件-实体接触Training Manual•对于结构分析,接触域是自动生成的,用于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball的解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且是自动定义的,同时还给了一个相对较小的值来适应模型里的小间距。