2.2 对数与对数函数训练案
- 格式:doc
- 大小:306.50 KB
- 文档页数:6
对数与对数函数知识梳理及练习一、学习目标1、理解对数的概念及其运算性质,会用换底公式能将一般对数转化成自然对数或常用对数;理解对数在简化运算中的作用。
2、掌握对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
3、知道对数函数是一类重要的函数模型。
4、了解指数函数y=ax与对数函数y=logax互为反函数(a>0,且a≠1)。
二、知识回顾1、对数及对数的运算性质(1)对数的概念一般地,对于指数式ab=N,我们把“以a为底N的对数b”记作logaN,即b=______(a>0,且a≠1)。
其中,数___叫做对数的底数,____叫做真数,读作“b等于以a为底N的对数”。
(2)对数的性质与运算法则①对数的运算法则如果a>0且a≠1,M>0,N>0,那么A.log a(MN)=___________;B.log a MN=___________;C.log a M n=_________(n∈R);D.log am M n=___________。
②对数的性质A.a log a N=___;B.log a a N=___(a>0,且a≠1)2.对数函数的图象与性质a >1 0<a <1 图象性质 ①定义域:___________②值域:____③过定点____,即x =___时,y =___④当x >1时,_____;当0<x <1时,______⑤当x >1时,_____;当0<x <1时,_____ ⑥在(0,+∞)上是_______ ⑦在(0,+∞)上是________指数函数y =ax 与对数函数y =logax 互为反函数,它们的图象关于直线________对称。
三、命题类型1、 对数的运算已知函数f (x )=⎩⎨⎧ log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝⎛⎭⎫log 312的值是( ) A .5 B .3 C .-1 D .72解:因为f(1)=log21=0,所以f(f(1))=f(0)=2。
黑龙江省鸡西市高中数学2.2 对数的运算复习教案新人教版必修1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(黑龙江省鸡西市高中数学2.2 对数的运算复习教案新人教版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为黑龙江省鸡西市高中数学2.2 对数的运算复习教案新人教版必修1的全部内容。
黑龙江省鸡西市高中数学 2.2 对数的运算复习教案 新人教版必修1.一、复习引入:对数的运算法则如果 a > 0,a 1,M > 0, N 〉 0 有: )()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=1。
对数换底公式:aN N m m a log log log = ( a 〉 0 ,a 1 ,m 〉 0 ,m 1,N>0)2.两个常用的推论:①1log log =⋅a b b a ,1log log log =⋅⋅a c b c b a② b mnb a n a mlog log =( a , b > 0且均不为1) 二、讲解范例:例1 已知 2log 3 = a , 3log 7 = b , 用 a , b 表示42log 56解:因为2log 3 = a ,则2log 13=a ,又∵3log 7 = b,∴312log 7log 2log 37log 42log 56log 56 log 33333342+++=++⋅+==b ab ab例2计算:①3log 12.05- ②4219432log 2log 3log -⋅解:①原式= 15315555531log 3log 52.0=== ②原式= 2345412log 452log 213log 21232=+=+⋅ 例3设),0(,,+∞∈z y x 且z y x 643== 1求证 zy x 1211=+; 2比较z y x 6,4,3的大小 证明1:设k z y x ===643 ∵),0(,,+∞∈z y x ∴1>k 取对数得:3lg lg kx = ,4lg lg ky =, 6lg lg k z =∴k k k k y x lg 2lg 23lg 2lg 24lg 3lg 2lg 24lg lg 3lg 211+=+=+=+2k y x lg )4lg 43lg 3(43-=-04lg 3lg 8164lglg lg 4lg 3lg 81lg 64lg <=-=k k ∴y x 43< 又:k z y lg )6lg 64lg 4(64-=-06lg 2lg 169lglg lg 6lg 2lg 64lg 36lg <⋅=-=k k ∴z y 64<∴z y x 643<<例4已知a log x=a log c+b ,求x 解法一: 由对数定义可知:b c a a x +=log b c a a a⋅=log b a c ⋅=解法二:由已知移项可得b c x a a =-log log ,即b cxa=log 由对数定义知:b a cx= b a c x ⋅=∴ 解法三:ba ab log = ba a a a c x log log log +=∴ba a c ⋅=log ba c x ⋅=∴三、课堂练习:①已知 18log 9 = a , b 18 = 5 , 用 a, b 表示36log 45解:∵ 18log 9 = a ∴a =-=2log 1218log 1818∴18log 2 = 1a ∵ b18 = 5 ∴ 18log 5 = b ∴a ba -+=++==22log 15log 9log 36log 45log 45log 181818181836 ②若8log 3 = p , 3log 5 = q , 求 lg 5解:∵ 8log 3 = p ∴3log 32 =p ⇒p 33log 2=⇒p312log 3= 又∵q=5log 3∴ 5log 2log 5log 10log 5log 5lg 33333+==pqpq313+=。
第二课时对数的运算1.下列等式成立的是( C )(A)log2(8-4)=log28-log24(B)=log2(C)log28=3log22(D)log2(8+4)=log28+log24解析:由对数的运算性质易知C正确.2.对于a>0且a≠1,下列说法中正确的是( C )①若M=N,则log a M=log a N;②若log a M=log a N,则M=N;③若log a M2=log a N2,则M=N;④若M=N,则log a M2=log a N2.(A)①③ (B)②④ (C)② (D)①②③④解析:①中当M=N≤0时,log a M,log a N都没有意义,故不正确;②正确;③中当M,N互为相反数且不为0时,也有log a M2=log a N2,此时M≠N,不正确;④中当M=N=0时,log a M2,log a N2都没有意义,故不正确.综上知选C.3.若lg m=b-lg n,则m等于( D )(A)(B)10bm(C)b-10n (D)解析:由题知lg m+lg n=b,即lg(mn)=b,解得10b=mn,所以m=.故选D.4.设lg 2=a,lg 3=b,则log512等于( C )(A) (B) (C)(D)解析:log512=====.故选C.5.设a,b,c都是正数,且3a=4b=6c,则( B )(A)=+(B)=+(C)=+(D)=+解析:设3a=4b=6c=t,则a=log 3t,b=log 4t,c=log 6t.所以=log t 3,=log t 4,=log t 6.所以+=log t 9+log t 4=2log t 6=.选B. 6.已知log 32=a,3b=5,则log 3由a,b 表示为( A )(A)(a+b+1) (B)(a+b)+1(C)(a+b+1) (D)a+b+1 解析:由3b=5得b=log 35,所以log 3=log 330=(log 33+log 32+log 35)=(1+a+b).故选A.7.若x 1,x 2是方程(lg x)2+(lg 2+lg 3)·lg x+lg 2·lg 3=0的两根,则x 1x 2等于( C ) (A)lg 2+lg 3 (B)lg 2·lg 3(C) (D)-6解析:由题知lg x 1+lg x 2=-(lg 2+lg 3)=-lg 6,则lg(x 1x 2)=-lg 6=lg ,故x 1x 2=,选C.8.已知x,y,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log xyz m=12,则log z m 的值为( B )(A) (B)60 (C) (D)解析:log m (xyz)=log m x+log m y+log m z=,而log m x=,log m y=,故log m z=-log m x-log m y=--=,即log z m=60.故选B.9.已知2lg(x+y)=lg 2x+lg 2y,则= .解析:因为2lg(x+y)=lg 2x+lg 2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,即(x-y)2=0.所以x=y,所以=1.答案:110.已知log34·log48·log8m=log416,则m= .解析:由题知··=log416=log442=2,所以=2,即lg m=2lg 3=lg 9,所以m=9.答案:911.已知=(a>0),则lo a= .解析:因为=(a>0),所以=,所以a=()3,故lo a=lo()3=3.答案:312.若lg a,lg b是方程2x2-4x+1=0的两根,则(lg)2= .解析:由题知则(lg)2=(lg a-lg b)2=(lg a+lg b)2-4lg a·lg b=22-4×=2.答案:213.求下列各式的值:(1)4lg 2+3lg 5-lg;(2)log220-log25+log23·log34;(3);(4)已知log189=a,18b=5,用a,b表示log3645的值.解:(1)原式=4lg 2+3lg 5+lg 5=4lg 2+4lg 5=4.(2)原式=log2+log23·=log24+log24=2log24=4.(3)原式====.(4)因为log189=a,18b=5,所以log185=b,于是log3645======.14.解下列关于x的方程:(1)lg=lg(x-1);(2)log4(3-x)+log0.25(3+x)=log4(1-x)+log0.25(2x+1).解:(1)原方程等价于解之得x=2.经检验x=2是原方程的解,所以原方程的解为x=2.(2)原方程可化为log4(3-x)-log4(3+x)=log4(1-x)-log4(2x+1).即log4=log4.整理得=,解之得x=7或x=0.当x=7时,3-x<0,不满足真数大于0的条件,故舍去.x=0满足,所以原方程的解为x=0.15.已知二次函数f(x)=(lg a)x2+2x+4lg a的最小值为3,求(log a5)2+log a2·log a50的值. 解:因为f(x)=(lg a)x2+2x+4lg a存在最小值3,所以lg a>0,f(x)min=f(-)=4lg a-=3,即4(lg a)2-3lg a-1=0,则lg a=1,所以a=10,所以(log a5)2+log a2·log a50=(lg 5)2+lg 2·lg 50=(lg 5)2+lg 2(lg 5+1)=(lg 5)2+lg 2lg 5+lg 2=lg 5(lg 2+lg 5)+lg 2=lg 5+lg 2=1.16.若2.5x=1 000,0.25y=1 000,则-等于( A )(A)(B)3(C)-(D)-3解析:因为x=log2.51 000,y=log0.251 000,所以==log1 0002.5,同理=log1 0000.25,所以-=log1 0002.5-log1 0000.25=log1 00010==.故选A.17.已知log2x=log3y=log5z<0,则,,的大小排序为( A )(A)<<(B)<<(C)<<(D)<<解析:x,y,z为正实数,且log2x=log3y=log5z<0,所以=2k-1,=3k-1,=5k-1,可得,=21-k>1,=31-k>1,=51-k>1.即1-k>0,因为函数f(x)=x1-k单调递增,所以<<.故选A.18.已知log a x=2,log b x=3,log c x=6,则log(abc)x的值为.解析:因为log a x=2,log b x=3,log c x=6,则a2=x,b3=x,c6=x,所以a=,b=,c=,所以abc==x,所以log(abc)x=log x x=1.答案:119.下列给出了x与10x的七组近似对应值:第组解析:由指数式与对数式的互化可知,10x=N⇔x=lg N,所以第一组、第三组对应值正确.又显然第六组正确,因为lg 8=3lg 2=3×0.301 03=0.903 09,所以第五组对应值正确.因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,所以第四组、第七组对应值正确.所以只有第二组错误.答案:二20.若a,b是方程2(lg x)2-lg x4+1=0的两个实根,求lg(ab)·(log a b+log b a)的值.解:原方程可化为2(lg x)2-4lg x+1=0.设t=lg x,则方程化为2t2-4t+1=0,所以t1+t2=2,t1·t2=.又因为a,b是方程2(lg x)2-lg x4+1=0的两个实根,所以t1=lg a,t2=lg b,即lg a+lg b=2,lg a·lg b=.所以lg(ab)·(log a b+log b a)=(lg a+lg b)·(+)=(lg a+ lg b)·=(lg a+lg b)·=2×=12,即lg(ab)·(log a b+log b a)=12.。
2.2.1 第2课时 对数运算[课时作业][A 组 基础巩固]1.2log 510+log 50.25= ( )A .0B .1C .2D .4 解析:2log 510+log 50.25=log 5102+log 50.25=log 5(102×0.25)=log 525=2.答案:C2.(lg 5)2+lg 2 lg 5+lg 20的值是( )A .0B.1 C .2D .3 解析:(lg 5)2+lg 2lg 5+lg 20=lg 5·(lg 5+lg 2)+lg 20=lg 5+lg 20=lg 100=2.答案:C3.2321+2log 2的值是( )A .12 2 B.9+ 2C .9 2D .84 2 解析:∵12+2log 23=log 22+log 29=log 292, 又∵a log a x =x ,∴原式=9 2.答案:C4.若log 513·log 36·log 6x =2,则x 等于( ) A . 9B.19 C .25 D .125解析:原式=lg 13lg 5×lg 6lg 3×lg x lg 6=-lg x lg 5=2 ∴-lg x =2lg 5=lg 52=lg 25,∴x =125. 答案:D5.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A .log a b ·log c b =log c aB .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a b +log a c解析:由对数的运算公式log a (bc )=log a b +log a c 可判断选项C ,D 错误.选项A ,由对数的换底公式知log a b ·log c b =log c a ⇒lg b lg a ·lg b lg c =lg a lg c⇒(lg b )2=(lg a )2,此式不恒成立.选项B ,由对数的换底公式知log a b ·log c a =lg b lg a ·lg a lg c =lg blg c =log c b ,故恒成立.答案:B6.方程log 3(x -1)=log 9(x +5)的解是________.解析:由题意知⎩⎪⎨⎪⎧ x -1>0,x +5>0,x -2=x +5,解之得x =4.答案:47.lg 3+2lg 2-1lg 1.2=________.解析:原式=lg 3+lg 22-lg 10lg 1.2=lg 3+lg 4-lg 10lg 1.2=lg 3×410lg 1.2=1.答案:18.计算log 225·log 322·log 59的结果为________.解析:原式=lg 25lg 2·lg 22lg 3·lg 9lg 5=2lg 5lg 2·32lg 2lg 3·2lg 3lg 5=6.答案:69.计算:(1)lg 2+lg 5-lg 8lg 50-lg 40+log 222;(2)lg 5(lg 8+lg 1 000)+2+lg 16+lg 0.06.解析:(1)原式=-lg 8lg 54+log 2(2)-1=lg 54lg 54-1=0.(2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3·lg 5·lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3lg 2+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知2x =3y =6z ≠1,求证:1x +1y =1z .证明:设2x =3y =6z =k (k ≠1),则x =log 2k =lg k lg 2,y =log 3k =lg k lg 3,z =log 6k =lg k lg 6∴1x +1y =lg 2+lg 3lg k =lg 6lg k =1z .[B 组 能力提升]1.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.3b -C.3a b +D.a -2b解析:∵log 89=a ,∴a =lg 9lg 8=2lg 33lg 2,b =lg 5lg 2=1-lg 2lg 2,∴lg 2=1b +1,∴lg 3=32a lg 2=3a 2×1b +1=3ab +.答案:C2.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b )2的值等于() A .2 B.12 C .4 D .14解析:由韦达定理知⎩⎪⎨⎪⎧ lg a +lg b =2,lg a ·lg b =12,∴(lg a b )2=(lg a -lg b )2=(lg a +lg b )2-4lg a lg b =22-4×12=2.答案:A3.设lg a +lg b =2lg(a -2b ),则log 4a b 的值是________.解析:依题意,得a >0,b >0,a -2b >0,原式可化为ab =(a -2b )2,即a 2-5ab +4b 2=0,则⎝ ⎛⎭⎪⎫a b 2-5⎝ ⎛⎭⎪⎫a b +4=0,∴a b =4或a b =1.∵a -2b >0,a b >2,∴a b =4,∴log 4a b =1. 答案:14.已知x ,y ,z 都是大于1的正数,m >0,且log x m =24,log y m =40,log xyz m =12,求log z m 的值.解析:log m (xyz )=log m x +log m y +log m z =112,而log m x =124,log m y =140, 故log m z =112-log m x -log m y =112-124-140=160,即log z m =60.5.已知ab =8,a 2log b =4,求a 、b 的值.解析:由a 2log b =4两边取对数得log 2(a 2log b )=log 24⇒(log 2a )(log 2b )=2,①由ab =8得log 2(ab )=log 28⇒log 2a +log 2b =3.②由①②得⎩⎪⎨⎪⎧ log 2a =1,log 2b =2或⎩⎪⎨⎪⎧log 2a =2,log 2b =1, 解得⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧ a =4,b =2.。
2.2.2对数函数及其性质教案(1)2.2.2对数函数及其性质(一)教学目标(一)教学知识点1.对数函数的概念;2.对数函数的图象与性质.(二)能力训练要求1.认知对数函数的概念;2.掌握对数函数的图象、性质;3.培养学生数形结合的意识.(三)德育渗透目标1.重新认识事物之间的广泛联系与相互转变;2.用联系的观点看看问题;3.了解对数函数在生产生活中的简单应用.教学重点对数函数的图象、性质.教学难点对数函数的图象与指数函数的关系.教学过程一、复习引入:1、对数的概念:如果ax=n,那么数x叫作以a为底n的对数,记作logan=x(a>0,a≠1)2、指数函数的定义:函数y=ax(a>0,且a≠1)叫作指数函数,其中x就是自变量,函数的定义域就是r.3、我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数y就是对立次数x的函数,这个函数可以用指数函数y=2则表示.现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个??细胞,那么,分裂次数x就是要得到的细胞个数y的函数.根据对数的定义,这个函数可以写成对数的形式就是x?log2y.如果用x则表示自变量,y则表示函数,这个函数就是y?log2x.带出新课--对数函数.二、新授内容:1.对数函数的定义:函数y?logax(a?0且a?1)叫做对数函数,定义域为(0,??),值域为(??,??).x第1页共11页例1.求下列函数的定义域:(1)y?logax2;(2)y?loga(4?x);(3)y?loga(9?x2).分析:此题主要利用对数函数y?logax的定义域(0,+∞)解.求解:(1)由x>0得x?0,∴函数y?logax2的定义域就是?x|x?0?;2(2)由4?x?0得x?4,∴函数y?loga(4?x)的定义域是?x|x?4?;2(3)由9?x?0得-3?x?3,∴函数y?loga(9?x2)的定义域是?x|?3?x?3?.2.对数函数的图象:通过列表、描点、连线作y?log2x与y?log1x的图象:232.532.5221.51-11.510.51110.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5思索:y?log2x与y?log1x的图象存有什么关系?23.练习:教材第73页练习第1题.1.图画出来函数y=log3x及y=log1x的图象,并且表明这两个函数的相同性质和相同性质.3解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:y=log3x的图象是上升的曲线,y=log1x的图象3就是上升的曲线,这表明前者在(0,+∞)上就是增函数,后者在(0,+∞)上就是减至函数.4.对数函数的性质由对数函数的图象,观察得出对数函数的性质.32.52a>132.520<a<11.51.5图象1-111110.50.50-0.512345678-101-0.512345678-1-1-1.5-1.5-2-2-2.5-2.5性定义域:(0,+∞)第2页共11页质值域:r过点(1,0),即当x=1时,y=0x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是增函数三、讲解范例:基准2.比较以下各组数中两个值的大小:x?(0,1)时y?0x?(1,??)时y?0在(0,+∞)上是减函数⑴log23.4,log28.5;⑵log0.31.8,log0.32.7;⑶loga5.1,loga5.9(a?0,a?1).解:⑴考查对数函数y?log2x,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log23.4?log28.5.⑵考查对数函数y?log0.3x,因为它的底数0<0.3<1,所以它在(0,+∞)上就是减至函数,于是log0.31.8?log0.32.7.小结1:两个同底数的对数比较大小的一般步骤:①确认所必须考查的对数函数;②根据对数底数推论对数函数多寡性;③比较真数大小,然后利用对数函数的多寡性推论两对数值的大小.⑶当a?1时,y?logax在(0,+∞)上就是增函数,于是loga5.1?loga5.9;当0?a?1时,y?logax在(0,+∞)上就是减至函数,于是loga5.1?loga5.9.小结2:分类探讨的思想.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.四、练1。
对数及对数运算【学习目标】1.理解对数的概念,能够进行指数式与对数式的互化; 2.了解常用对数与自然对数的意义;3.能够熟练地运用对数的运算性质进行计算;4.了解换底公式及其推论,能够运用换底公式及其推论进行对数的计算、化简与证明. 5.能将一般对数转化成自然对数或常用对数、体会换底公式在解题中的作用. 【要点梳理】 要点一、对数概念 1.对数的概念如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数.要点诠释:对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R .2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =.3.两种特殊的对数通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =⋅⋅⋅)为底的对数叫做自然对数, log ln e N N 简记作.4.对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则已知()log log 010a a M N a a M N >≠>,且,、(1)正因数的积的对数等于同一底数各个因数的对数的和;()log log log a a a MN M N =+推广:()()121212log log log log 0a k a a a k k N N N N N N N N N =+++>、、、(2)两个正数的商的对数等于被除数的对数减去除数的对数;log log log aa a MM N N=- (3)正数的幂的对数等于幂的底数的对数乘以幂指数;log log a a M M αα=要点诠释:(1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log 2(-3)(-5)=log 2(-3)+log 2(-5)是不成立的,因为虽然log 2(-3)(-5)是存在的,但log 2(-3)与log 2(-5)是不存在的.(2)不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a (M ±N )=log a M ±log a N , log a (M·N )=log a M·log a N ,log aNM N M a a log log =. 要点三、对数公式 1.对数恒等式:log log a b Na a Na N Nb ⎫=⇒=⎬=⎭2.换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0, a≠1, M>0的前提下有: (1))(loglog R n M M n aa n∈=令 log a M=b , 则有a b =M , (a b )n =M n ,即nbn M a =)(, 即n aM b nlog=,即:n aa M M n log log =. (2))1,0(log log log ≠>=c c aMM c c a ,令log a M=b ,则有a b =M , 则有)1,0(log log ≠>=c c M a c b c即M a b c c log log =⋅, 即a M b c c log log =,即)1,0(log log log ≠>=c c aMM c c a 当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:)1,0,1,0(log 1log ≠>≠>=b b a a ab b a .【典型例题】类型一、对数的概念例1.求下列各式中x 的取值范围:(1)2log (5)x -;(2)(1)log (2)x x -+;(3)2(1)log (1)x x +-. 【答案】(1)5x >;(2)1,2x x >≠且;(3)1x >-且0,1x x ≠≠ 【解析】(1)由题意50x ->,5x ∴>,即为所求.(2)由题意20,10,11,x x x +>⎧⎨->-≠⎩且即2,1,2,x x x >-⎧⎨>≠⎩且1,2x x ∴>≠且. (3)由题意2(1)0,10,11,x x x ⎧->⎨+>+≠⎩且解得1x >-且0,1x x ≠≠.【总结升华】在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.举一反三: 【变式1】函数21log (2)x y x -=+的定义域为 .类型二、指数式与对数式互化及其应用 例2.将下列指数式与对数式互化: (1)2log 164=;(2)13log 273=-;(3)3x =;(4)35125=;(5)1122-=;(6)2193-⎛⎫= ⎪⎝⎭. 【解析】运用对数的定义进行互化.(1)4216=;(2)31273-⎛⎫= ⎪⎝⎭;(33x =;(4)5log 1253=;(5)21log 12=-;(6)13log 92=-. 【总结升华】对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x 的值: (1)161log 2x =-(2)log 86x = (3)lg1000=x (4)2-2ln e x =【变式2】计算:222log 4;log 8;log 32并比较.类型三、利用对数恒等式化简求值 例3.不用计算器计算:7log 203log lg25lg47(9.8)+++-【答案】132【解析】原式323log 3lg(254)21=+⨯++23lg1032=++ 3132322=++=【总结升华】对数恒等式log a Na N =中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求log log log a b c b c Na ⋅⋅的值(a ,b ,c ∈R +,且不等于1,N>0)类型四、积、商、幂的对数例4. z y x a a a log ,log ,log 用表示下列各式35(1)log ;(2)log ();(3)log a a a a xy x y z【解析】(1)log log log log a a a a xyx y z z =+-; (2)3535log ()log log 3log 5log a a a a a x y x y x y =+=+;(3)1log log log ()log log log 2a a a a a a yz x y z ==--; (4)log a211log ()log 2log log log 23a aa a a x y x y z -=+-.【总结升华】利用对数恒等式、对数性质及其运算性质进行化简是化简对数式的重要途径,因此我们必须准确地把握它们.在运用对数的运算性质时,一要注意真数必须大于零;二要注意积、商、幂的对数运算对应着对数的和、差、积得运算.举一反三:【变式1】求值(1)1log 864log 325log 21025-+ (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2类型五、换底公式的运用例5.已知18log 9,185ba ==,求36log 45.【答案】2a ba+- 【解析】解法一:18log 9,185b a ==,18log 5b ∴=,于是181818183618181818log 45log (95)log 9log 5log 4518log 36log (182)1log 221log 9a b a ba ⨯+++=====⨯+-+. 解法二:18log 9,185ba ==,18log 5b ∴=,于是181********18181818log 45log (95)log 9log 5log 45.18log 362log 18log 92log 9a ba ⨯++====-- 解法三:18log 9,185ba ==,lg9lg18,lg5lg18ab ∴==,362lg 45lg(95)lg9lg5lg18lg18log 4518lg362lg18lg92lg18lg182lg 9a b a ba a ⨯+++∴=====---. 解法四:18log 9a =,189.a∴=又185,4559181818bbaa b+=∴=⨯==.令36log 45x =,则364518x a b+==,即218181836()18,()18,339xx a bx a b ++==∴= 21818log .9x a b ∴=+21818log 18log 92a b a bx a++∴==--.【总结升华】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质.(2)题目中有指数式和对数式时,要注意指数式与对数式的互化,将它们统一成一种形式. (3)解决这类问题要注意隐含条件“log 1a a =”的灵活运用.举一反三:【变式1】求值:(1))2log 2)(log 3log 3(log 9384++;(2)32log 9log 278⋅;(3)31log 529-.类型六、对数运算法则的应用 例6.计算(1)34331654()log log 8145-++(2)7lg142lglg 7lg183-+- (3))36log 43log 32(log log 42122++(4)353log 21log 235++-【思路点拨】根据对数和批数的运算性质计算即可. 【答案】(1)278;(2)0;(3)3;(4)44. 【解析】(1)334()4433316542542727()log log ()log 0814534588-⨯-++=+⨯=+=(2)原式=2lg(27)2(lg 7lg 3)lg 7lg(32)⨯--+-⨯ =lg 2lg72lg72lg3lg72lg3lg 20+-++--= (3)原式=38log )6log 43log 5(log )6log 43log 5(log 2222222221==+-=++-(4)35353log 21log 2log 2log 2313533552725244++-=⋅-⋅=⨯-⨯=.举一反三:【变式1】计算下列各式的值 (1)()222lg5lg8lg5lg 20lg 23+++;(2)33(lg 2)3lg 2lg5(lg5)++.【变式2】已知1,(1,0)()44,(0,1)x x x f x x ⎧∈-⎪=⎨⎪∈⎩,则4(log 3)f = .【巩固练习】1.下列说法中错误的是( )A .零和负数没有对数B .任何一个指数式都可化为对数式C .以10为底的对数叫做常用对数D .以e 为底的对数叫做自然对数2.有以下四个结论:①lg (lg10)=0;②ln (lne )=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2,其中正确的是( )A .①③B .②④C .①②D .③④ 3.下列等式成立的有( )①1lg2100=-;②33log 2=;③2log 525=;④ln 1e e =;⑤lg 333=; A .①②B .①②③C .②③④D .①②③④⑤4.对数式2log (5)a a b --=中,实数a 的取值范围是( ) A .(),5-∞ B .()2,5 C .()()2,33,5 D .()2,+∞5.若0,1a a >≠,则下列说法正确的是( )①若M N =,则log log a a M N =;②log log a a M N =,则M N =;③22log log a a M N =,则M N =;④若M N =,则22log log a a M N =.A .①③B .②④C .②D .①②③④ 6.若lg lg x y a -=,则33lg()lg()22x y -=( ) A . 3a B .32a C .a D .2a 7.已知52a=,则52log 803log 10-=( ) A .432a a -- B .432a a -- C .a ―2 D .342a a-- 8.若56789log 6log 7log 8log 9log 10y =⋅⋅⋅⋅,则( )A .(0,1)y ∈B .(1,2)y ∈C .(2,3)y ∈D .(3,4)y ∈ 9.计算662log 3log 4+的结果是( ) A .6log 2 B . 2 C . 6log 3 D . 310.若312log 19x-=,则x = . 11.若2log 2,log 3,m na a m n a +=== ;12.若2510ab==,则11a b+= .13.设21023213(2)(9.6)(3)(1.5)48m =---+;7log 23log lg 25lg 473n =+++. 求m +n 的值.14.计算下列各式的值:(1)4log 200.59(ln 5)()24++(2)23log 1lg 3log 2lg 5-⋅-.对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数xy a =与对数函数log a y x =互为反函数()0,1a a >≠.【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数。
2.2.2 对数函数及其性质课后训练1.函数y =2+log 2x (x ≥1)的值域为( ).A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)2.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ).A .B .{x |0<x <3}C .{x |1<x <3}D .{x |2<x <3}3.函数y 12log (43)x -( ).A .(0,1] B.3,4⎛⎫+∞ ⎪⎝⎭ C.3,24⎛⎫ ⎪⎝⎭ D.3,14⎛⎤ ⎥⎝⎦ 4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( ).A .log 2x B.12x C .12log x D .2x -2 5.小华同学作出的a =2,3,12时的对数函数y =log a x 的图象如图所示,则对应于C 1,C 2,C 3的a 的值分别为( ).A .2,3,12 B .3,2,12 C.12,2,3 D.12,3,2 6.不等式13log (5+x )<13log (1-x )的解集为______. 7.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.8.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12⎛⎫ ⎪⎝⎭=0,则不等式f (log 4x )<0的解集是______.9.已知函数f (x )=log a (x +1),g (x )=log a (4-2x )(a >0,且a ≠1).(1)求函数f (x )-g (x )的定义域;(2)求使函数f (x )-g (x )的值为正数的x 的取值范围.10.分贝是计量声音强度相对大小的单位.物理学家引入了声压级(spl)来描述声音的大小:把声压P 0=2×10-5帕作为参考声压,把所要测量的声压P 与参考声压P 0的比值取常用对数后乘以20得到的数值称为声压级.声压级是听力学中最重要的参数之一,单位是分贝(dB).分贝值在60以下为无害区,60~110为过渡区,110以上为有害区.(1)根据上述材料,列出分贝值y与声压P的函数关系式.(2)某地声压P=0.002帕,试问该地为以上所说的什么区?(3)2011年春节联欢晚会中,赵本山、王小利、小沈阳等表演小品《同桌的你》时,现场多次响起响亮的掌声,某观众用仪器测量到最响亮的一次音量达到了90分贝,试求此时中央电视台演播大厅的声压是多少?参考答案1. 答案:C ∵x ≥1,∴log 2x ≥0,∴y ≥2.2. 答案:D 由log 2x >1,得x >2,∴M N ={x |2<x <3}.3. 答案:D 由题意列不等式组12log (43)0,(1)430.(2)x x -≥⎧⎪⎨⎪->⎩ 对于①有12log (4x -3)≥12log 1,解得x ≤1;对于②有4x >3,解得x >34.所以34<x ≤1. 4. 答案:A 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2,故f (x )=log 2x .5. 答案:C 直线y =1与函数y =log a x 的图象交点的横坐标是底数a ,则由图象得对应C 1的a 的值为12,对应C 3的a 的值为3,对应C 2的a 的值为2. 6. 答案:{x |-2<x <1} 原不等式等价于50,10,51,x x x x +>⎧⎪->⎨⎪+>-⎩解得-2<x <1.7. 答案:4 由log 2x ≤2,得0<x ≤4,所以A =(0,4].又A B ,则a >4,所以c =4.8. 答案:122x x ⎧⎫<<⎨⎬⎩⎭由题意可知,f (log 4x )<012-<log 4x <12124log 4-<log 4x <1241log 42⇔<x <2. 9. 答案:解:(1)由题意可知,f (x )-g (x )=log a (x +1)-log a (4-2x ),要使函数f (x )-g (x )有意义,自变量x 的取值需满足10,420,x x +>⎧⎨->⎩解得-1<x <2. 故函数f (x )-g (x )的定义域是(-1,2).(2)令f (x )-g (x )>0,得f (x )>g (x ),即log a (x +1)>log a (4-2x ),当a >1时,可得x +1>4-2x ,解得x >1.由(1)知-1<x <2,∴1<x <2;当0<a <1时,可得x +1<4-2x ,解得x <1,由(1)知-1<x <2,∴-1<x <1.综上所述,当a >1时,x 的取值范围是(1,2);当0<a <1时,x 的取值范围是(-1,1).10. 答案:解:(1)由已知,得y =20lg 0p p .又P 0=2×10-5,则y =20lg 5210p -⨯. (2)当P =0.002时,y =20lg 50.002210-⨯=20lg 102=40(分贝). 由已知条件知40分贝小于60分贝,所以该地区为无害区.(3)由题意,得90=20lg0p p ,则0p p =104.5, 所以P =104.5P 0=104.5×2×10-5=2×10-0.5≈0.63(帕).。
专题:对数教学目标理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题.知识梳理1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a =典例精讲【例1】将下列指数式化为对数式,对数式化为指数式: (1)712128-=; (2)327a =; (3)1100.1-=;(4)12log 325=-; (5)lg 0.0013=-; (6)ln100=4.606.解:(1)21log 7128=-; (2)3log 27a =; (3)lg 0.11=-;(4)51()322-=; (5)3100.001-=; (6) 4.606100e =.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)ln e .解:(1)设lg 0.001x =,则100.001x =,即31010x -=,解得3x =-. 所以,lg 0.0013=-. (2)设4log 8x =,则48x =,即2322x =,解得32x =. 所以,43log 82=. (3)设ln e x =,则xe e =,即12xe e =,解得12x =. 所以,1ln 2e =.【例3】求证:(1)log n a a n =; (2)log log log a a a M M N N-=.证明:(1)设log n a a x =,则n x a a =,解得x n =. 所以log n a a n =.(2)设log a M p =,log a N q =,则p a M =,q a N =. 因为p p qqM a aN a-==,则log log log aa a M p q M N N=-=-.所以,log log log a a aM M N N-=.点评:对数运算性质是对数运算的灵魂,其推导以对数定义得到的指对互化关系为桥梁,结合指数运算的性质而得到. 我们需熟知各种运算性质的推导.【例4】试推导出换底公式:log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).证明:设log c b m =,log c a n =,log a b p =,则m c b =,n c a =,pa b =.从而()n p m c b c ==,即np m =. 由于log log 10c c n a =≠=,则m p n=.所以,log log log c a c b b a=.点评:换底公式是解决对数运算中底数不相同时的核心工具. 其推导也密切联系指数运算性质,牢牢扣住指对互化关系.巩固练习1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 1000 4.设13log 82x=,则底数x 的值等于( ).A. 2B. 12C. 4D.145.已知432log [log (log )]0x =,那么12x -等于( ).A.13B.123C.122D.1336.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:3log 81= ; 6lg 0.1= .※能力提高8.求下列各式的值:(1)22log8; (2)9log 3.9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.回顾总结专题:对数函数的性质教学目标通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点.掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y =a x 与对数函数y =log a x 互为反函数. (a > 0, a ≠1)知识梳理1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.3.当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.4. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.5. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.典例精讲【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.解:(1)∵ 0.9log y x =在(0,)+∞上是减函数,且0.90.80.7>>, ∴ 0.90.91log 0.8log 0.7<<. 又 0.80.8log 0.9log 0.81<=, 所以0.80.90.9log 0.9log 0.8log 0.7<<. (2)由 333log 1log 2log 3<<,得30log 21<<. 又22log 3log 21>=,441log log 103<=,所以4321log log 2log 33<<.【例2】求下列函数的定义域:(1)2log (35)y x =-;(2)0.5log (4)3y x =-.解:(1)由22log (35)0log 1x -≥=,得351x -≥,解得2x ≥.所以原函数的定义域为[2,)+∞.(2)由0.5log (4)30x -≥,即30.50.5log (4)3log 0.5x ≥=,所以3040.5x <≤,解得1032x <≤. 所以,原函数的定义域为1(0,]32.【例3】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,求实数a 的取值范围. 解:∵ [2,1]x ∈--, ∴ 132x ≤+≤当1a >时,log 1log (3)log 2a a a x ≤+≤,即0()log 2a f x ≤≤. ∵ |()|2f x <, ∴{1log 22a a ><, 解得2a >.当01a <<时,log 2log (3)log 1a a a x ≤+≤,即log 2()0a f x ≤≤. ∵ |()|2f x <, ∴{01log 22a a <<>-, 解得202a <<.综上可得,实数a 的取值范围是2(0,)(2,)2+∞ .点评:先对底数a 分两种情况讨论,再利用函数的单调性及已知条件,列出关于参数a 的不等式组,解不等式(组)而得到参数的范围. 解决此类问题的关键是合理转化与分类讨论,不等式法求参数范围.【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.解:当1a >时,原不等式化为2704102741x x x x +>⎧⎪->⎨+>-⎪⎩,解得144x <<.当01a <<时,原不等式化为 2704102741x x x x +>⎧⎪->⎨+<-⎪⎩,解得4x >.所以,当1a >时,x 的取值范围为1(,4)4;当01a <<时,x 的取值范围为(4,)+∞.点评:结合单调性,将对数不等式转化为熟悉的不等式组,注意对数式有意义时真数大于0的要求. 当底数a 不确定时,需要对底数a 分两种情况进行讨论【例1】讨论函数0.3log (32)y x =-的单调性.解:先求定义域,由320x ->, 解得32x <. 设332,(,)2t x x =-∈-∞,易知为减函数.又∵ 函数0.3log y t =是减函数,故函数0.3log (32)y x =-在3(,)2-∞上单调递增. 【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<解:在同一坐标系中分别画出40.4,3,log x x y y y x ===的图象,分别作出当自变量x 取3,0.4,0.3时的函数值.观察图象容易得到:30.44log 0.30.43<<. 故选C.【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系? 解:在指数函数x y a =的图象上任取一点00(,)M x y ,则00x y a =. 由指对互化关系,有00log a y x =.所以,点00'(,)M y x 在对数函数log a y x =的图象上. 因为点00(,)M x y 与点00'(,)M y x 关于直线y x =对称,所以指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象关于直线y x =对称.点评:两个函数的对称性,由任意点的对称而推证出来. 这种对称性实质是反函数的图象特征,即函数x y a =与log (0,1)a y x a a =>≠互为反函数,而互为反函数的两个函数图象关于直线y x =对称.巩固练习1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).A B C D3.下列函数中哪个与函数y =x 是同一个函数( ) A.log (0,1)a xy a a a =>≠ B. y =2xxC. log (0,1)x a y a a a =>≠D. y =2x4.函数12log (1)y x =-的定义域是( ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<< 6.函数3log y x =的定义域为 . (用区间表示)7.比较两个对数值的大小:ln 7 ln 12 ; 0.5log0.7 0.5log 0.8.※能力提高8.求下列函数的定义域:(1) ()()34log 11x f x x x -=++-; (2)21log (45)y x =--.9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.※探究创新10.若,a b 为不等于1的正数,且a b <,试比较log a b 、1log ab、1log bb.1.函数1lg1x y x+=-的图象关于( ). A. y 轴对称B. x 轴对称C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞xy1 1oxy o 1 1oy x11 oy x1 13.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.2B. 2C. 22D. 44.图中的曲线是log a y x =的图象,已知a 的值为2,43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A. 2,43,15,310B.2,43,310,15 C.15,310,43,2 D. 43,2,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+ B. 22log 1y x =- C. 21log y x= D.20.2log (4)y x =-6. 函数2()lg(1)f x x x =+-是 函数. (填“奇”、“偶”或“非奇非偶”) 7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高 8.已知6()log ,(0,1)af x a a x b=>≠-,讨论()f x 的单调性.※探究创新10. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且.(1)求函数()()f x g x -的定义域; (2)判断()()f x g x -的奇偶性,并说明理由;(3)求使()()0f x g x ->成立的x 的集合.对数与对数运算(2)教学目标通过阅读材料,了解对数的发现历史以及对简化运算的作用;理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题知识梳理1. 对数的运算法则:log ()log log a a a M N M N =+ ,log log log aa a M M N N=-,log log na a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a=. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log nna a N N =,log log mn a a n N N m=,log log log 1a b c b c a = 等.0 x C 1C 2C 4C 3 1y典例精讲【例1】化简与求值:(1)221(lg 2)lg 2lg 5(lg 2)lg 212++-+ ;(2)2log (4747)++-.解:(1)原式=2211(lg 2)lg 2lg 5(lg21)22++- =211lg 2lg 2lg 5(lg21)42+--=2111lg 2lg 2lg 5lg 21422+-+ =1lg 2(lg 22lg 52)14+-+=1lg 2(lg 1002)10114-+=+=.(2)原式=1222log (4747)⨯++-=221log (4747)2++-=221log (4747247)2++-+-=21log 142.【例2】若2510a b ==,则11a b+= . (教材P 83 B 组2题)解:由2510a b ==,得2log 10a =,5log 10b =. 则251111lg 2g 5lg 101log 10log 10a b +=+=+==.【例3】 (1)方程lg lg(3)1x x ++=的解x =________;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 . 解:(1)由lg lg(3)1x x ++=,得lg[(3)]lg10x x +=, 即(3)10x x +=,整理为23100x x +-=.解得x =-5或x =2. ∵ x >0, ∴ x =2.(2)设lg x t =,则原方程化为20t at b ++=,其两根为1122lg ,lg t x t x ==. 由121212lg lg lg()lg10b t t x x x x b +=+=== ,得到1210b x x = .点评:同底法是解简单对数方程的法宝,化同底的过程中需要结合对数的运算性质. 第2小题巧妙利用了换元思想和一元二次方程根与系数的关系.【例4】(1)化简:532111log 7log 7log 7++;(2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅= ,求实数m 的值. 解:(1)原式=77777log 5log 3log 2log (532)log 30++=⨯⨯=. (2)原式左边=2222222222log 4log 5log 2006log log 3log log 3log 4log 2005log 2006mm ⋅⋅⋅=, ∴ 422log 4log 2m ==, 解得16m =.点评:换底时,一般情况下可以换为任意的底数,但习惯于化为常用对数. 换底之后,注意结合对数的运算性质完成后阶段的运算.巩固练习1.1logn n++(1n n +-)等于( ). A. 1B. -1C. 2D. -2 2.25log()(5)a -(a ≠0)化简得结果是( ). A. -aB. a 2C. |a |D. a3.化简3lg 2lg 5log 1++的结果是( ).A.12B. 1C. 2D.104.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ). A .1 B.32C. 2D.36.计算2(lg 5)lg 2lg 50+⋅= . 7.若3a =2,则log 38-2log 36= . ※能力提高 8.(1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值; (2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.※探究创新10.(1)设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.(2)若a 、b 、c 都是正数,且至少有一个不为1,1x y z y z x z x y a b c a b c a b c ===,讨论x 、y 、z 所满足的幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况. 知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x=,3y x =,1/2y x=,1y x -=这五个常用幂函数的图象.2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.解:设y x α=,代入点(27,3),得327α=,解得13α=,所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y xm Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已知到今年为止,平改坡剩余面积为原来的22.(1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年? (3)若通过技术创新,至少保留24a m 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则 101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则2(1)2na x a -=,即110211()()22n =,解得n =5.所以,到今年为止,该工程已经进行了5年. (3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数. 体现了代入法、方程思想等数学方法的运用.第18练 §2.3 幂函数※基础达标1.如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于( ).A. 16B. 2C.116D.122.下列函数在区间(0,3)上是增函数的是( ). A. 1y x=B. 12y x = C. 1()3x y = D. 2215y x x =--3.设120.7a =,120.8b =,c 3log 0.7=,则( ). A. c <b <a B. c <a <b C. a <b <c D. b <a <c12±四个值,与曲线4.如图的曲线是幂函数ny x =在第一象限内的图象. 已知n 分别取2±,1c 、2c 、3c 、4c 相应的n 依次为( ).42510c 4c 3c 2c 1A .112,,,222-- B. 112,,2,22--C. 11,2,2,22-- D. 112,,,222--5.下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x-= D.13y x =6.幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .7.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t tf x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.一、对勾函数b y ax x=+)0,0(>>b a 的图像与性质性质:1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2[]2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4. 图像在一、三象限当0x >时,由基本不等式知b y ax x=+≥ab 2(当且仅当b x a=取等号),即)(x f 在x=ab 时,取最小值ab 2由奇函数性质知: 当x<0时,)(x f 在x=ab -时,取最大值ab 2-5. 单调性:增区间为(∞+,a b),(a b-∞-,)减区间是(0,a b ),(a b -,0)。
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
2.2.1对数与对数的运算(课时一)
一.选择题
1. 下列说法中错误的是:( )
A.零和负数没有对数 B .任何一个指数式都可以化为对数式 C.以10为底的对数叫做常用对数 D.以e 为底的对数叫做自然对数 2.下列指数式与对数式互化中错误的一组是 A . 0
1e =与ln10= B .2
1
8
3
1=
-
与3121log 8-=
C . 3log 92=与1
2
93= D .7log 71=与177=
3. log x 16=2,则x 等于( )
A.-4
B.4
C.256
D.2 4. []0)(log log log 237=x ,则2
1
-x
等于( ) A 、3
1
B 、
3
21 C 、
2
21 D 、
3
31
5. 方程的4
1
2
3log =x
解是( ) A .91=x B .3
3
=x C .3=
x D .9=x
二.填空题 6.求下列各式的值
(1)5log 25= (2)=16
1
log 2
(3)lg1000 = (4)ln1 = 7.若y =8log 2
,则y=___________。
(选做)8.2
5)(log 5
a -(a ≠0)化简得结果是___________。
三.解答题 10.解方程 (1)log 64x=3
2
-, (2) 03241=--+x x
11.若m a =2log , ,3log n a =求n
m a +2
2.2.1对数与对数的运算(课时二) 一.选择题
1.log 123+log 124等于( )
A .7
B .12
C .1
D .log 127
2.若102x
=25,则x 等于( )
A .lg 15
B .lg5
C .2lg5
D .2lg 15 3.计算1log 864log 325log 2725-+等于( )
A .14
B .220
C .
2
D .22 4. 已知y x
==3
8
log 324,
,则x y +2的值为( ) A 、 3 B 、 8
C 、 4
D 、 log 48
5.设2a =5b
=m ,且11=2a b
+,则m 等于( )
A B .10 C .20 D .100 6.计算log 89·log 932的结果为( )
A .4 B.53 C.14 D.3
5
二.填空题 7.求下列各式的值
(1)2
3log (279)⨯______. (2)2
lg100 ______. (3)22log 6log 3-______. (4)552log 10log 0.25+ _____ (5)()22log log 16______.
8.化简:222212331log +log +log log 23432
++= ______.
9.若
5361
log log 6log =23
x ⋅⋅,则x =______.
三.解答题
10计算(1)()2
2
lg 22lg 2lg 5(lg 5)+∙+ (2)lg 243
lg9.
(选做)(3)7
lg142lg lg7lg183
-+-;
11、2log 3a =,3log 7b =, 用a ,b 表示42log 56.
2.2.2对数函数及其性质训练案
一.选择题
1.函数
的定义域为( )
A.),2(+∞
B.),2()2,1(+∞⋃-
C.)2,1(-
D.(]
2,1-
2.函数x y a )
1(log -= 是减函数,则实数a 的取值范围是( )
A.10<<
a B.1>a C.21≤≤a D.21<<a
3.函数x y 2log =在[1,2]上的值域是( )
A .R
B .[0,+∞)
C .(-∞,1]
D .[0,1] 4.曲线C 1,C 2,C 3,C 4分别是函数
,log 1x y a =,log 2x y a =,log 3x y a =,log 4x y a =
的图象,则a 1,a 2,a 3,a 4的大小关系是( )
A .a 4<a 3<a 2<a 1
B .a 3<a 4<a 1<a 2
C .a 2<a 1<a 3<a 4
D .a 3<a 4<a 2<a 1
5. 已知
x x f 26log )(=,那么)8(f 等于( )
A.34
B.8
C.18
D.2
1
6.已知13
2
log <a ,则实数a 的取值范围是( )
A.320<<a
B.132<<a
C.13
20><<a a 或 D.32>a 7.若
)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( )
A.31
B.22
C.4
2
D.21
8.函数)23(log 22
1+-=x x y
的递增区间是( )
A .(-∞,1)
B .(2,+∞)
C ()
D (3
2
).-∞,.,+∞3
2
)1(log 21)(2++-=x x
x f
二.填空 9.函数
)1(log 2
1-=x y 的定义域是________.
10.比较下列各组数中两个值得大小
2ln 3ln )1(与 2.0l o g 2.0l o g )2(43与 3l o g l o g
)3(3ππ与
11. 函数
)52(log )(22
1+-=x x x f 的值域是__________
12.已知函数
1()
(4)()2
(1)(4)x
x f x f x x ⎧≥⎪=⎨⎪+<⎩则2(log 3)f =_________
三.简答题
13.已知对数函数)(x f 的图像过点(4,2)试解不等式)()32(x f x f >-.
14.已知函数.103)(x log x)-(1log )(a <<++=a x f a 其中
(1)求函数)(x f 的定义域.(2)若函数)(x f 的最小值为—4求a 的值.。