2008年高考陕西卷浙江省温州中学 (3)
- 格式:doc
- 大小:58.50 KB
- 文档页数:7
浙江数学(文科)试题 第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A = (A){}1|-≥x x (B) {}2|≤x x(C) {}20|≤<x x(D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A)2π (B)π(C)23π (D) 2π(3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (4)已知{a n }是等比数列,a n =2,a 3=41,则公比q =(A)21-(B)-2(C)2(D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a(6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是 (A)-15 (B)85 (C)-120 (D)274 (7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是 (A)0(B)1 (C)2(D)4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A)3(B)5(C)3(D)5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得 (A)αα⊂⊂b a , (B)b a ,α⊂∥α(C)αα⊥⊥b a ,(D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
绝密★启用前2008年普通高等学校招生全国统一考试(陕西卷)语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至 9页。
考试结束后,将本试卷和答题卡一并交回。
.第Ⅰ卷一、(12分,每小题3分)1、下列词语中加点的字,读音全都正确的一组是()A.刍.议(chú)条分缕.析(lǚ) 圈.养(quān) 愀.然不乐(qiǎo)B.倏.忽(shū) 越俎代庖.(páo)牛虻.(máng )自惭形秽.(huì)C.靛.蓝(diàn)毁家纾.难(shū)干涸.(hé)白头偕.老(xié)D.手帕.(pà)相互龃龉.(yǔ)麾.下(huī)探本溯.源(shuò)2.下列各项中,加点的成语使用不恰当的一项是()A.土耳其举重选手穆特鲁身高只有1.50米,多次参加世界男子举重56公斤级比赛,拿4金牌如探囊取物....,人送绰号“举重神童”。
B.冬天老年人要增加营养,也要适当运动,在户外锻炼时一定要量入为出....,以步行为宜,时间最好选在傍晚,还要注意保暖,防止着凉。
C.中国茶艺与日本茶道各有特点,但异曲同工....,都强调“和”的精神。
中日两国青少年也应以和为贵。
为中日睦邻友好多作贡献。
D.北京周边的旅游胜地,笔者去过不少。
但六月中下旬的绿树繁花中仍有冰挂高悬在危崖上,这一出人意表....的奇景却是第一次见到。
3.下列各句中,没有语病的一句是()A.葛振华大学毕业后回农村当起了村支书,他积极寻找本村经济的切入点,考虑问题与众不同,给村里带来一股清新的气息。
B.荞麦具有降低毛细血管脆性、改善微循环、增加免疫力的作用,可用于高血压、高血脂、冠心病、中风发作等疾病的辅助治疗。
C.王羽除了班里和学生会的工作外,还承担了广播站“音乐不断”、“英语角”栏目主持,居然没有影响学习成绩,真让人佩服。
D.阅览室图书馆经常出现“开天窗”现象,我们可以从这一现象反映两个问题,一是阅读者素质有待提高,一是管理历度有待加强。
2008年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.复数(2)12i i i+-等于( ) A .i B .i - C .1D .1-2.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()U A B ð中元素的个数为( ) A .1B .2C .3D .43.ABC △的内角A B C ,,的对边分别为a b c ,,,若120c b B ==,则a等于( )AB .2CD 4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64B .100C .110D .12050y m -+=与圆22220x y x +--=相切,则实数m 等于( )A B .C .-D .-6.“18a =”是“对任意的正数x ,21ax x+≥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知函数3()2x f x +=,1()fx -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( )A .2-B .1C .4D .108.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD9.如图,l A B A B αβαβαβ⊥=∈∈ ,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( ) A .m n θϕ>>, B .m n θϕ><, C .m n θϕ<<,D .m n θϕ<>,10.已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥,≤,≤.如果目标函数z x y =-的最小值为1-,则实数m 等于( ) A .7 B .5C .4D .311.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( )A .2B .3C .6D .9 12.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( ) A .11010 B .01100 C .10111 D .00011二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.(1)1lim2n a n n a∞++=+→,则a = .14.长方体1111ABCD A BC D -的各顶点都在球O 的球面上,其中1::AB AD AA =A B ,两点的球面距离记为m ,1A D ,两点的球面距离记为n ,则mn的值为 . 15.关于平面向量,,a b c .有下列三个命题:①若a b =a c ,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60.其中真命题的序号为 .(写出所有真命题的序号)16.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火A B abl αβ炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分)已知函数2()2sincos 444x x xf x =-. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ⎛⎫=+⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由. 18.(本小题满分12分)某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i 次击中目标得1~i (123)i =,,分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.(Ⅰ)求该射手恰好射击两次的概率;(Ⅱ)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望. 19.(本小题满分12分)三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A AAB ,2AC =,111AC =,12BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ; (Ⅱ)求二面角1A CC B --的大小. 20.(本小题满分12分)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.A 1 AC 1B 1BDC21.(本小题满分12分) 已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-.(Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围. 22.(本小题满分14分) 已知数列{}n a 的首项135a =,1321nn n a a a +=+,12n = ,,. (Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n a x x x ⎛⎫-- ⎪++⎝⎭≥,12n = ,,; (Ⅲ)证明:2121n n a a a n +++>+ .2008年普通高等学校招生全国统一考试(陕西卷)理科数学(必修+选修Ⅱ)参考答案一、1.D 2.B 3.D 4.B 5.C 6.A 7.A 8.B 9.D 10.B 11.C 12.C 二、13.1 14.1215.② 16.96 三、17.解:(Ⅰ)2()sin2sin )24x x f x =-sin 22x x =+π2sin 23x ⎛⎫=+ ⎪⎝⎭. ()f x ∴的最小正周期2π4π12T ==. 当πsin 123x ⎛⎫+=-⎪⎝⎭时,()f x 取得最小值2-;当πsin 123x ⎛⎫+= ⎪⎝⎭时,()f x 取得最大值2.(Ⅱ)由(Ⅰ)知π()2sin 23x f x ⎛⎫=+⎪⎝⎭.又π()3g x f x ⎛⎫=+ ⎪⎝⎭.∴1ππ()2sin 233g x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦π2sin 22x ⎛⎫=+ ⎪⎝⎭2cos 2x =.()2cos 2cos ()22x x g x g x ⎛⎫-=-== ⎪⎝⎭.∴函数()g x 是偶函数.18.(Ⅰ)设该射手第i 次击中目标的事件为(123)i A i =,,,则()0.8()0.2i i P A P A ==,,()()()0.20.80.16i i i i P A A P A P A ==⨯=.(Ⅱ)ξ可能取的值为0,1,2,3. ξ的分布列为00.00810.03220.1630.8 2.752E ξ=⨯+⨯+⨯+⨯=.19.解法一:(Ⅰ) 1A A ⊥平面ABC BC ⊂,平面ABC ,∴1A A BC ⊥.在Rt ABC △中,2AB AC BC ==∴=,:1:2BD DC =,3BD ∴=,又3BD AB AB BC==, DBA ABC ∴△∽△,90ADB BAC ∴∠=∠= ,即AD BC ⊥.又1A A AD A = ,BC ∴⊥平面1A AD ,BC ⊂ 平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)如图,作1AE C C ⊥交1C C 于E 点,连接BE , 由已知得AB ⊥平面11ACC A .AE ∴是BE 在面11ACC A 内的射影.由三垂线定理知1BE CC ⊥,AEB ∴∠为二面角1A CC B --的平面角.过1C 作1C F AC ⊥交AC 于F 点, 则1CF AC AF =-=,11C F A A ==160C CF ∴∠= .在Rt AEC △中,sin 6022AE AC ==⨯=在Rt BAE △中,tan 3AB AEB AE ===.AEB ∴∠= 即二面角1A CC B --为arctan解法二:(Ⅰ)如图,建立空间直角坐标系,则11(000)0)(020)(00A B C A C ,,,,,,,,,,:1:2BD DC = ,13BD BC ∴= .A 1 AC 1B 1BD CFE(第19题,解法一)(第19题,解法二)D ∴点坐标为03⎪⎪⎝⎭,,.∴2033AD ⎛⎫= ⎪ ⎪⎝⎭,,,1(0)(00BC AA ==,,.10BC AA =,0BC AD = ,1BC AA ∴⊥,BC AD ⊥,又1A A AD A = , BC ∴⊥平面1A AD ,又BC ⊂平面11BCC B ,∴平面1A AD ⊥平面11BCC B .(Ⅱ)BA ⊥ 平面11ACC A,取0)AB ==,m 为平面11ACC A 的法向量,设平面11BCC B 的法向量为()l m n =,,n ,则100BC CC == ,n n .200m m ⎧+=⎪∴⎨-+=⎪⎩,,l n ∴==,,如图,可取1m =,则=⎭n ,010cos ⨯+<>==,m n 即二面角1A CC B --为arccos5. 20.解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,. 设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭,将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,222282()048m m mk k m k ∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥ x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又12||||AB x x =-===.2168k +∴=2k =±.即存在2k =±,使0NA NB =.解法二:(Ⅰ)如图,设221122(2)(2)A x x B x x ,,,,把2y kx =+代入22y x =得2220x kx --=.由韦达定理得121212kx x x x +==-,.∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.22y x = ,4y x '∴=, ∴抛物线在点N 处的切线l 的斜率为44kk ⨯=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =.由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭ ,,,,则22221212224488k k k k NA NB x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭222212124441616k k k k x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1212144444k k k k x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+++ ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()221212121214()4164k k k x x x x x x k x x ⎡⎤⎡⎤=-++++++⎢⎥⎢⎥⎣⎦⎣⎦22114(1)421624k k k k k k ⎛⎫⎡⎤=--⨯++⨯-+⨯+ ⎪⎢⎥⎝⎭⎣⎦22313164k k ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭0=,21016k --< ,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB =.21.解:(Ⅰ)222222()2(1)2()()()k x c x kx kx x ckf x x c x c +-+--+'==++,由题意知()0f c '-=, 即得220c k c ck --=,(*)0c ≠ ,0k ∴≠.由()0f x '=得220kx x ck --+=,由韦达定理知另一个极值点为1x =(或2x c k=-). (Ⅱ)由(*)式得21k c =-,即21c k=+. 当1c >时,0k >;当01c <<时,2k <-.(i )当0k >时,()f x 在()c -∞-,和(1)+∞,内是减函数,在(1)c -,内是增函数. 1(1)012k kM f c +∴===>+, 221()02(2)kc k m f c c c k -+-=-==<++,由2122(2)k k M m k -=++≥及0k >,解得k(ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数.2()02(2)k M f c k -∴=-=>+,(1)02k m f ==<22(1)1112(2)22k k k M m k k -++-=-=-++≥恒成立.综上可知,所求k的取值范围为(2))-∞-+∞ ,. 22.解法一:(Ⅰ)1321n n n a a a +=+ ,112133n n a a +∴=+,1111113n n a a +⎛⎫∴-=- ⎪⎝⎭, 又1213n a -=,11n a ⎛⎫∴- ⎪⎝⎭是以23为首项,13为公比的等比数列.∴112121333n n n a --== ,332n n na ∴=+. (Ⅱ)由(Ⅰ)知3032nn na =>+, 21121(1)3nx x x ⎛⎫-- ⎪++⎝⎭ 2112111(1)3n x x x ⎛⎫=-+-- ⎪++⎝⎭2111(1)1(1)n x x x a ⎡⎤=--+⎢⎥++⎣⎦2112(1)1n a x x=-+++ 2111n n n a a a x ⎛⎫=--+ ⎪+⎝⎭n a ≤,∴原不等式成立.(Ⅲ)由(Ⅱ)知,对任意的0x >,有122221121121(1)31(1)3n a a a x x x x x x ⎛⎫⎛⎫+++--+-- ⎪ ⎪++++⎝⎭⎝⎭ ≥21121(1)3nx x x ⎛⎫++-- ⎪++⎝⎭2212221(1)333n n nx x x ⎛⎫=-+++- ⎪++⎝⎭.∴取22111222113311333313n n n x n n n ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 则2212111111133n n n n n n a a a n n n +++=>+⎛⎫+-+- ⎪⎝⎭≥. ∴原不等式成立.解法二:(Ⅰ)同解法一. (Ⅱ)设2112()1(1)3n f x x x x ⎛⎫=-- ⎪++⎝⎭, 则222222(1)2(1)2133()(1)(1)(1)n n x x x x f x x x x ⎛⎫⎛⎫-+--+- ⎪ ⎪⎝⎭⎝⎭'=--=+++ 0x > ,∴当23n x <时,()0f x '>;当23n x >时,()0f x '<, ∴当23n x =时,()f x 取得最大值212313n n nf a ⎛⎫== ⎪⎝⎭+. ∴原不等式成立.(Ⅲ)同解法一.B 卷选择题答案:1.D 2.C 3.A 4.B 5.C 6.A 7.D8.C 9.C 10.B 11.B 12.D。
2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页. 满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k k n kn n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( )A .1B .1-CD .2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()U UA B BA 痧=( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0 B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n--C .32(14)3n --D .32(12)3n -- 7.若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5CD8.若cos 2sin αα+=tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2CD10.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线A B P α(第10题)2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.在ABC △中,角A B C ,,所对的边分别为a b c ,,.若)cos cos c A a C -=,则cos A = .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ==则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = . 16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,AD =2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?ACD (第14题)D A BEFC(第18题)19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x⊥轴(如图).(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a是实数,函数())f x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N . 记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.1 12.8 1314. 9π2 15.1 16.40 17.1三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在Rt EFG △中,因为EG AD ==2EF =,所以60CFE ∠=,1FG =. 又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是sin 2BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -. 设AB a BE b CF c ===,,,DA BEFCHG则(000)C ,,,)A a ,,0)B ,,0)E b ,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(30)CB =,,,(00)BE b =,,, 所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE . 因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(0)EF c b =-,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而3()02b c b -+-=⎧=,, 解得34b c ==,.所以0)E ,,(040)F ,,. 设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,解得(1n =. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以||1|cos |2||||4BA n n BA BA n a <>===,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则||NP =N 到直线58y =-的距离为58y +.58y=+.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而||1|QB x =+.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++. ||QA =,22||2(112||||QB k x QA k x k++=+. 当2k =时,2||||QB QA =从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:ly kx k =+,则()B x kx k +,,从而||1|QB x =+.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以||QA =,2||12||QB x QA xk +=+. 当2k =时,2||||QB QA =从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分.(Ⅰ)解:函数的定义域为[0)+∞,,()f x '==(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,.(Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增,所以()3a g a f ⎛⎫==⎪⎝⎭若6a ≥,()f x 在[02],上单调递减,所以()(2))g a f a ==-.综上所述,00()06)6a g a a a a ⎧⎪⎪=<<⎨-,≤,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得62a +≤≤ 故a的取值范围为32a +≤≤22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想 ▁▂▃▄▅▆▇█▉▊▋▌▃ ▄ ▅ ▆ ▇ █ █ ■ ▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生 ▃ ▄ ▅ ▆ ▇ █ █ ■ ▓ 考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <. ②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+- 2121()(1)k k k k a a a a ++++=-++,所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立. (Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥),得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+≤,,,,≥ 所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥, 于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<,所以3n T <.。
浙江省温州中学高三2008学年第一学期期末考试数学试卷 2009.1.22一、选择题(本大题共10小题,每小题5分共50分.)1.若非空集合U B A 、、满足Φ==B A ,U B A ,则称)B ,A (为U 的一个分割,则集合}3,2,1{U =的不同分割有 ( ).A 5个 .B 6个 .C 7个 .D 8个 2.已知正态分布函数2)1x (2e21)x (f --=π,则 ( ).A )x (f 在R 上单调递减. .B )x (f y =的图像关于直线1x =对称. .C 0)x (f )x 1(f =-- .D 0)x (f )x 2(f =+-3.下列命题中,条件M 是条件N 的充要条件的为 ( ) .A 22bc ac N ,b a M >>:: .B c b d a N ,d c ,b a M ->->>:: .C bd ac N 0,d c ,0b a M >>>>>:: .D M |a b ||a ||b |,N ab 0-=+≤::4.若n m 、是两条不同的直线,γβα、、是三个不同的平面,则下列命题中是真命题的是( ) .A 若βαβ⊥⊂,m ,则α⊥m .B 若m//n n,,m ==γβγα ,则βα// .C 若αβ//m ,m ⊥,则βα⊥ .D 若βαγα⊥⊥,,则γβ//5.已知⎩⎨⎧≥<+-=1 x , x log 1 x , a 4x )13a ()x (f a是),(+∞-∞上的减函数,则a 的取值范围为( ).A )1,0( .B )31,0(.C )31,71[ .D )1,71[6.给出一个如图所示的程序框图,若要使输入的x 的值与输出的y 的值相等,则x 的可能值的个数为( ).A 1个 .B 2个 .C 3个 .D 4个7.设椭圆)0b a (1by a x 2222>>=+的离心率为e ,右焦点)0,c (F ,方程0c bx ax 2=-+的两个实数根分别为 21x ,x ,则点)x ,x (P 21( ).A 必在圆1y x 22=+内 .B 必在圆1y x 22=+上.C 必在圆1y x 22=+外 .D 与1y x 22=+的关系与e 有关8.已知复数nn n2n 21n C i C i iC Z +++= (其中i 为虚数单位),以下判断中正确的为( ) .A 不存在*N n ∈,使Z 为纯虚数 .B 对任意的*N n ∈,Z 为实数.C 存在无限个*N n ∈,使Z 为实数 .D 不存在*N n ∈,使Z 为实数9.已知OA (6,2)=,)4,2(=,1|B |=,点C 在直线OA 上的投影为D ,则||的最大值为 ( ) .A 1010+ .B 1010-.C 110+ .D 110-10.由9个正数组成的矩阵⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a 中,每行中的三个数成等差数列,且131211a a a ++,232221a a a ++,333231a a a ++成等比数列,给出下列判断:①第2列12a ,22a ,32a 必成等比数列;②第1列11a ,21a ,31a 不一定成等比数列;③23213212a a a a +≥+;④若9个数之和等于9,则1a 22≥.其中正确的个数有 ( ).A 1个 .B 2个 .C 3个 .D 4个二、填空题(本大题共7小题,每小题4分,共28分)11.已知数列)N n (1n 73n a },a {*n n ∈++=,请判断命题N a ,N n P n *∉∈∀:的真假_____. 12.AB C ∆中,c b a 、、分别为C B A ∠∠∠、、的对边,bcosC CcosB =,且31cosA =,则=sinB _13.已知正三棱锥AB C P -的四个顶点在体积等于π36的球O 的表面上.若PC PB PA 、、两两互相垂直,则球心O 到平面ABC 的距离等于__________.14.已知函数x x )x (f 3+=,对任意的0)x (f )2mx (f ],2,2[m <+--∈恒成立,则x 的取值范围为.15.在集合*{x N |x 10}∈≤中取三个不同的数c b a 、、,则满足30c b a 12≤++≤的等差数列c b a 、、,有____________个.16.B 地在A 地的正东方向4)km (处,C 地在B 地的北偏东45的)km (处.有一直线型的马路l 过C 地且与线段BC 垂直,现欲在马路l 上造一个车站P .造一公里马路的费用为5(万元),则修筑两条马路PB PA 、的最低费用为__________(万元).17.已知集合}0x 21y 2x y |)y x,{(M ≥≥≤=且,})a 4()a y ()a x (|)y x ,{(N 222-≤-+-=,若M N ⊆,则a 的取值范围为________.三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分)已知函数2f (x)2cos x 2asinxcosx-1=+的图像关于直线8x π=对称.(Ⅰ)求a 的值;(Ⅱ)把函数)x (f y =的图像按向量a平移后与函数g(x)的图像重合,求a 的坐标.19.(本题满分14分)已知盒子A 中有m 个红球与m 10-个白球,盒子B 中有m 10-个红球与m 个白球(两个盒子中的球形状、大小都相同). (Ⅰ)分别从B A 、中各取一个球,ξ表示红球的个数. (ⅰ)请写出随机变量ξ的分布规律,并证明ξE 等于定值; (ⅱ)当ξD 取到最大值时,求m 的值.(Ⅱ)在盒子A 中不放回地摸取3个球.事件A :在第一次取到红球后,以后两次都取到白球.事件B :在第一次取到白球后,以后两次都取到红球,若)B (P )A (P =,求m 的值.20.(本题满分15分)如下组合体由直三棱柱111C B A ABC -与正三棱锥ACD B -组成,其中,B C AB ⊥.它的正视图、俯视图、从左向右的侧视图的面积分别为22+1,22+1,1. (Ⅰ)求直线1CA 与平面ACD 所成角的正弦; (Ⅱ)在线段1AC 上是否存在点P ,使⊥P B 1平面ACD .若存在,确定点P 的位置;若不存在,说明理由.121.(本题满分15分)已知点)0,1(F ,直线1x l -=:,动点P 到点F 的距离等于点P 到直线l 的距离,动直线PO 与直线l 交于动点N ,过N 且平行于x 轴的直线与动直线PF 交于动点Q . (Ⅰ)求证:动点Q P 、在同一条曲线C 上运动;(Ⅱ)曲线C 在x 轴上方点P 处的切线与直线l 交于点R ,M 为线段PQ 的中点. (ⅰ)求证:直线RM //x 轴;(ⅱ)若直线RM 平分PRF ∠,求直线PF 的方程.22.(本题满分14分)已知函数lnx exax )x (f 2-+=(其中a 为常数,e 为自然对数的底数). (Ⅰ)任取两个不等的正数21x x 、,0x x )x (f )x (f 2121<--恒成立,求:a 的取值范围;(Ⅱ)当0a >时,求证:0)x (f =没有实数解.温州中学高三2008学年第一学期期末考试数 学 试 卷一、选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共7小题,每小题4分,共28分)11、 12、 13、14、 15、 16、 17、 三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分)学号 班级 姓名 得分 …………………………………………密…………………………………………封………………………………………线…………………………………19.(本题满分14分) 20、(本题满分15分)21、(本题满分15分)22、(本题满分14分)温州中学高三2008学年第一学期期末考试数 学 试 卷二、填空题(本大题共7小题,每小题4分,共28分)11、 假12、313、 1 14、(-2,23) 15、 3416、17、 [5-+ 三、简答题(本大题共5小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(本题满分14分) 已知函数2f (x)2cos x 2sinxcosx-1a =+的图像关于直线8x π=对称.(Ⅰ)求a 的值;(Ⅱ)把函数)x (f y =的图像按向量b 平移后与函数g(x)=的图像重合,求:向量b 的坐标.()cos 2sin 2.......2).............................4()1) (682)1.......................................................8(0)()2114f x x a x x f a a f f a a φππ=+=+==+==⇒=+∴=解(1):分分分分另解: (2)())2()48f x x x ππ=+=+-------g(x)=()f x 向右移动8π个单位向上移动1个单位即可得()g x 图象(,1)8b π∴=-…………………………………….14分19.(本题满分14分)已知A 、B 两盒中都有红球、白球,且球的形状、大小都相同。
2008年高考陕西卷2008年普通高等学校招生统一考试陕西卷英语一、英语知识运用(共三大题,满分50分)(一)语音知识(共5小题,每小题1分,满分5分)从每小题的A、B、C、D四个选项中,找出其划线部分与所给单词的划线部分读音相同的选项,并在答题卡上将该选项涂黑。
1. passengerA. sugarB. organizeC. strangeD. together2. chemistryA. stomachB. achieveC. checkD. machine3. clubA. pollutionB. struggleC. usefulD. bury4. majorityA. baggageB. attractC. CanadianD. magazine5. areaA. theatreB. breatheC. breakD. heaven(二)语法和词汇知识(共15小题,每小题1分,满分15分)从每小题的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该选项涂黑。
6. The moment I got home, I found I my jacket on the playground.A. had leftB. leftC. have leftD. was leaving7. Not until the motorbike looked almost new repairing and cleaning it.A. he stoppedB. did he stopC. stopped heD. he did stop8. Tomorrow is Tom’s birthday. Have you got any idea the party is to be held?A. whatB. whichC. thatD. where9. –What sort of house do you want to have? Something big?--Well, it be big--that’s not important.A. mustn’tB. needn’tC. can’tD. won’t10. I ate sandwich while I was waiting for 20:08 train.A. the, aB. the, theC. a, theD. a, a11. The message is very important, so it is supposed as soon as possible.A. to be sentB. to sendC. being sentD. sending12. He doesn’t have furniture in his room --just an old desk.A. anyB. manyC. someD. much13. The man pulled out a gold watch, were made of small diamonds.A. the hands of whomB. whom the hands ofC. which the hands ofD. the hands of which14. around the Water Cube, we were then taken to see the Bird’s Nest for the 2008 Olympic Games.A. Having shownB. To be shownC. Having been shownD. To show15. –Did you go to the show last night?–Yeah. Every boy and girl in the area invitedA. wereB. have beenC. has beenD. was16. Ten years ago the population of our village was that of theirs.A. as twice large asB. twice as large asC. twice as much asD. as twice much as17. Though we don’t know what discussed, yet we can feel the topic .A. had changedB. will changeC. was changedD. has been changed18. –The floor is dirty. Can anyone clean it?–I do it all the time.A. Don’t mention it.B. Why you?C. Not sureD. Not me again.19. Elizabeth has already achieved success her wildest dreams.A. atB. beyondC. withinD. upon20. It’s going to rain. Xiao Feng, Will you please help me the clothes on the line?A. get offB. get backC. get inD. get on(三)完形填空(共20小题,每小题1.5分,满分30分)阅读下在短文,从短文后各题的A、B、C、D四个选项中,选出适合填入对应空白处的最佳选项,并在答题卡上将该选项涂黑。
2008年高考湖南卷---浙江省温州中学2008年高考湖南卷2008年普通高等学校招生全国统一考试(湖南卷)英语本试卷分四个部分,共14页。
时量120分钟。
满分150分。
第一部分:听力(共三节,满分30分)做听力部分时,请现在试题卷上作答。
听力部分结束前,你将有两分钟的时间将第1至第17小题的答案转涂到答题卡上,将第18至第20小题的答案转写到答题卡上。
第一节(共5小题;每小题1. 5分,满分7. 5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试题卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15B. £9. 15C. £9. 18答案是B。
1. How much does the man need to pay?A. $6B. $16C. $202. Where are the speakers going?A. A shopB. A restaurantC. The railway station3. When will the magazine probably arrive?A. WednesdayB. ThursdayC. Friday4. Whom did the man buy the books for?A. His fatherB. His motherC. His sister5. What is the probable relationship between the two speakers?. A. Teacher and student B. Mother and son C. Driver and passenger第二节(共12小题;每小题1.5分,满分18分)听下面4段对话。
每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试题卷的相应位置。
浙江省温州市2008届高三年级3月十二校联考语文试卷2008-3-10 考生须知:1.本试卷分试题卷和答题卷,满分150分,考试时间150分钟。
2.答题前,在答题卷密封区内填写学校、班级和姓名。
3.所有答案必须写在答题卷上,写在试题卷上无效。
第Ⅰ卷(42分)一(18分,每小题3分)l.下列句子中,没有错别字且注音正确的一项是A.我们第一代华侨,含辛茹苦,寄籍外洋,生儿育女,却翘首神州,不忘桑梓(zǐ)之情,当祖国需要的时候,他们都作了慷慨的奉献。
B.2008年奥运会期间,为了方便观众收看比赛,首都各大报纸届时将特别刊出转播时间表,人们可以案图索骥(jì)C.南京城在12月13日会拉响警报,汽车会鸣笛,渡轮也会鸣响,所有的声音会聚一处,仿佛30万个曾经鲜活的生命在风中呜咽(yān),给人警醒。
D.站在广场一隅,仿佛置身于净心的祥和安静之地;阳光灿烂,经蟠飞舞,身旁好似不时传来阵阵清晰而混(hún)沌的远古呼唤,令人思绪万千,浮想联篇。
2.依次填入下面横线处的词语,最恰当的一组是①国家发展改革委宣布从1月15日起启动临时价格措施,主要涉及粮食、食用植物油、肉类及其制品、牛奶、鸡蛋、液化石油气等。
②翻翻日历数着回家过年的日子,张丹丹和男友着要在年三十这天从北京赶回哈尔滨,带父母体验一顿西餐厅里的年夜饭。
③肥胖是一种臃肿的体态,更是一种疾病,它能导致糖尿病、高血压、癌症等诸多疾病,还会使人产生自卑心理。
A.干预合计不只 B.干涉核计不只C.干预核计不止 D.干涉合计不止3.下列各句中,加点的成语使用不恰当的一句是A.歌手李亚蓉在《我是你的》一书中,披露了娱乐圈多样化的潜规则,她用自己的经历告诉读者,在这个圈子里要做到一尘不染....绝非易事。
保护原创权益·净化网络环境- 1 -B.古人做学问讲究“博学”“转益多师”,今人求学也不可师心自用....。
C.老舍先生的《茶馆》聚国事家事、世态人情于一室,句句如探骊得珠....,让我们在啼笑中感知着民众的无奈以及时代的黑暗。
2008年普通高等学校招生全国统一考试(浙江卷)语文试题第I 卷(共42分)一、(18分.每小题3分)1.下列词语中加点字的读音,完全相同的一组是A.删.除膻.味籼.米潸.然泪下B.信笺.歼.灭缄.默间.不容发C.飙.升鱼鳔.剽.悍彪.炳青史D.血.缘戏谑.噱.头空穴.来风1.B【解析:A.删、膻、潸都读“shān”,籼读“xiān”;B.笺、歼、缄、间、都读“ji ān”;C.飙、彪念“biāo”,鳔念“biào”,剽念“piāo”;D.血、谑读“xuè”,噱、穴读“xué”。
】2.下列各句中,没有错别字的一项是A.书刊要装帧,门面要装潢,居室要装修,营造一个舒适温馨而又口味高雅的家可以说是工薪阶层中许多人的梦想。
B.舞台上,弟弟的朗颂声情并茂,姐姐的伴奏锦上添花;母亲心中的那丝担忧很快便烟消云散了。
C.2008年1月以来,中国居民物价指数CPI出现了明显的涨幅,不少低收入家庭倍感通货膨涨的压力。
D.在骄阳的曝晒下,牵牛花堰旗息鼓,美人蕉慵倦无力,矜持的牡丹也耷拉下了高贵的头颅,失去了先前的神采。
2.A【解析:B颂—诵,C涨—胀,D堰—偃。
】3.下列各句中,加点词语能被括号中的词语替换且不改变句意的一项是A.中国高等教育用不到十年的时间实现了从精英教育到大众教育的跨越,但大发展过程中,难免会泥沙俱下....,出现各种各样的问题。
(鱼龙混杂)B.她不属于学院派,自然少受那些清规戒律....的约束,其创作往往天马行空,充满神奇瑰丽的想象。
(金科玉律)C.最近,浙江手机上网资费全面下调,广大用户对此额手称庆....。
专家预测,未来通过手机收看体育赛事或许会成为一种潮流。
(弹冠相庆)D.NBA季后赛中,由于缺少了主力姚明,火箭队内线空虚,在防守上往往顾此失彼....,实力明显削弱。
(捉襟见肘)3.D【解析:A泥沙俱下:泥土和沙子一起随河水流下来,比喻人或事物不论好坏都一齐显现出来;B鱼龙混杂:鱼和龙混合搀杂在一起。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(浙江卷)(理科) 测试题 2019.91,若==+θθπ2cos ,53)2sin(则 .2,已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点若|F 2A|+|F 2B|=12,则|AB|= 。
3,在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。
若,c o s co s )3(C a A c b =-则cos A= .4,如图,已知球O 的面上四点,DA ⊥平面ABC 。
AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 。
5,已知a 是平面内的单位向量,若向量b 满足b ·(a-b)=0,则|b|的取值范围是 .6,用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻。
这样的六位数的个数是 (用数字作答)7,已知a 是实数,是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-28,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则 ( ) (A )∅ (B )(C ) (D )A B C D 、、、1a ii -+()()u u A C B B C A ={}|0x x ≤{}|1x x >-{}|01x x x >≤-或9,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件10,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( )(A )-15 (B )85(C )-120 (D )274测试题答案1,解析:本小题主要考查诱导公式及二倍角公式的应用。
由可知,;而。
2, 8解析:本小题主要考查椭圆的第一定义的应用。
2008年高考陕西卷2008年普通高等学校招生统一考试陕西卷英语一、英语知识运用(共三大题,满分50分)(一)语音知识(共5小题,每小题1分,满分5分)从每小题的A、B、C、D四个选项中,找出其划线部分与所给单词的划线部分读音相同的选项,并在答题卡上将该选项涂黑。
1. passengerA. sugarB. organizeC. strangeD. together2. chemistryA. stomachB. achieveC. checkD. machine3. clubA. pollutionB. struggleC. usefulD. bury4. majorityA. baggageB. attractC. CanadianD. magazine5. areaA. theatreB. breatheC. breakD. heaven(二)语法和词汇知识(共15小题,每小题1分,满分15分)从每小题的A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该选项涂黑。
6. The moment I got home, I found I my jacket on the playground.A. had leftB. leftC. have leftD. was leaving7. Not until the motorbike looked almost new repairing and cleaning it.A. he stoppedB. did he stopC. stopped heD. he did stop8. Tomorrow is Tom’s birthday. Have you got any idea the party is to be held?A. whatB. whichC. thatD. where9. –What sort of house do you want to have? Something big?--Well, it be big--that’s not important.A. mustn’tB. needn’tC. can’tD. won’t10. I ate sandwich while I was waiting for 20:08 train.A. the, aB. the, theC. a, theD. a, a11. The message is very important, so it is supposed as soon as possible.A. to be sentB. to sendC. being sentD. sending12. He doesn’t have furniture in his room --just an old desk.A. anyB. manyC. someD. much13. The man pulled out a gold watch, were made of small diamonds.A. the hands of whomB. whom the hands ofC. which the hands ofD. the hands of which14. around the Water Cube, we were then taken to see the Bird’s Nest for the 2008 Olympic Games.A. Having shownB. To be shownC. Having been shownD. To show15. –Did you go to the show last night?–Yeah. Every boy and girl in the area invitedA. wereB. have beenC. has beenD. was16. Ten years ago the population of our village was that of theirs.A. as twice large asB. twice as large asC. twice as much asD. as twice much as17. Though we don’t know what discussed, yet we can feel the topic .A. had changedB. will changeC. was changedD. has been changed18. –The floor is dirty. Can anyone clean it?–I do it all the time.A. Don’t mention it.B. Why you?C. Not sureD. Not me again.19. Elizabeth has already achieved success her wildest dreams.A. atB. beyondC. withinD. upon20. It’s going to rain. Xiao Feng, Will you please help me the clothes on the line?A. get offB. get backC. get inD. get on(三)完形填空(共20小题,每小题1.5分,满分30分)阅读下在短文,从短文后各题的A、B、C、D四个选项中,选出适合填入对应空白处的最佳选项,并在答题卡上将该选项涂黑。
A woman id her sixties lived alone in her little cottage with a pear tree at her door. She spent all her time taking care of the tree. But the children nearby drover her 21 by making fun of her. They would climb her tree and then run away with pears, 22 “Aunty Misery” at her.One evening, a passer by asked to 23 for the night. Seeing that he had an 24 Face, she let him in and gave him a nice 25 . The next morning the stranger, actually a sorcerer (巫师), thanked her by granting (允准) her 26 that anyone who climbed up her tree 27 not be able to come back down until she 28 it.When the children came back to steal her 29 , she had them stuck on the tree. They had to beg herlong 30 she gave the tree permission to let 31 go. Aunty Misery was free from the 32 at last.One day another man 33 her door. This one did not look trustworthy to her, 34 she asked who he was . “I am Death, I’ve come to take you 35 me.” said he.Thinking fast Aunty Misery said, “Fine, but I’d like to36 some pears from my dear tree to remember the 37it brought to me in this life. But I am too 38 to climb high to get the best fruit. Will you be so 39 as to do it fo r me?” With a deep sigh, Mr. Death climbed up the tree 40 and was immediately stuck to it. No matter how much he warned or begged, Aunty Misery would not allow the tree to let Death go.21. A. hopeless B. painful C. dull D. crazy22. A. calling B. shouting C. announcing D. whispering23. A. stay B. live C. hide D. lie24. A. interesting B. honest C. anxious D. angry25. A. gift B. kiss C. treat D. smile26. A. suggestion B. demand C. permission D. wish27. A. could B. should C. might D. must28. A. permitted B. promised C. answered D. declared29. A. branch B. food C. tree D. fruit30. A. after B. while C. since D. before31. A. it B. them C. him D. her32. A. trick B. question C. trouble D. difficulty33. A. stepped into B. left for C. stopped at D. walked around34. A. so B. but C. although D. because35. A. with B. off C. upon D. for36. A. choose B. pick C. shake D. hit37. A. honor B. pleasure C. hope D. excitement38. A. light B. short C. old D. thin39. A. proud B. kind C. fine D. smart40. A. disappointedly B. cheerfully C. unwillingly D. eagerly二、阅读理解(共25小题,阅读部分每小题2分,补全对话每小题1分,满分45分)(一)阅读下列五篇短文,从每小题后所给的A、B、C、D四个选项中,选出最佳选项并在答题卡上将该选项涂黑。