2008年浙江省高考数学试卷及答案(文科)
- 格式:doc
- 大小:336.00 KB
- 文档页数:11
2008年普通高等学校统一考试(浙江卷)数学(文科)试题第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A = (A){}1|-≥x x (B) {}2|≤x x(C) {}20|≤<x x(D) {}21|≤≤-x x(2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π(B )π(C)23π(D) 2π(3)已知a ,b 都是实数,那么“22a b >”是“a >b ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(4)已知{a n }是等比数列,2512,4a a ==,则公比q=(A)21-(B)-2(C)2(D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a(6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含4x 的项的系数是(A )-15(B )85(C )-120(D )274(7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是 (A )0(B )1 (C )2(D )4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3(B )5(C )3(D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得 (A )αα⊂⊂b a , (B )b a ,α⊂∥α(C )αα⊥⊥b a ,(D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c = ,AC b = .若点D 满足2BD DC = ,则AD=( )A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B C D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120 ,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.12 16三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =, ∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.AC CD CG AD ==,DG =,EG ==,CE =则222cos 2CG GE CE CGE CG GE +-∠==πarccos CGE ∴∠=-⎝⎭.19.解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+ .20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。
俯视图侧视图正视图3342008年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合33{|0},{|||},""""122x P x Q x x m P m Q x =≤=-≤∈∈-那么是的( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.公差不为0的等差数列{}n a 中, 2200520072009330a a a -+=,数列{}n b 是等比数列,且20072007b a=,则20062008b b =( )A .4B .8C .16D .36 3. 若纯虚数z 满足2(2i)4(1i)z b -=-+(其中i 是虚数单位,b 是实数),则b =( ) A .2- B .2 C .-4 D .44.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 123B. 363C. 273D. 65.已知直线0=++C By Ax (其中0,222≠=+C C B A )与圆422=+y x 交于N M ,,O 是坐标原点,则OM ·ON =( ) A .- 1 B .- 1 C . - 2 D .2 6.设0(sin cos )a x x dx π=+⎰,则二项式61()a x x-,展开式中含2x 项的系数是( )A. 192-B. 192C. -6D. 67.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )8.关于x 的方程2(1)10(0,)x a x a b a a b +++++=≠∈R 、的两实根为12,x x,若A B C D12012x x <<<<,则b a的取值范围是( )A .4(2,)5--B .34(,)25--C .52(,)43--D .51(,)42--第Ⅱ卷(非选择题)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9. 右图是2008年北京奥运会上,七位评委为某奥运项目打出 的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数为 ;方差为 .10.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则4()3f 的值为_______.11. 在如下程序框图中,已知:0()x f x xe =,则输出的是_________ _.12. 设椭圆()222210x y a b ab+=>>的两个焦点分别为12,F F ,点P 在椭圆上,且120PF PF ⋅=,123tan 3PF F ∠=,则该椭圆的离心率为 .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12O M O P ⋅=.设R 为l 上任意一点,则RP 的最小值 .14. (不等式选讲选做题)若关于x 的不等式1x x a +-<(a ∈R )的解集为∅,则a 的取值范围是 .15. (几何证明选讲选做题)如图,⊙O 1与⊙O 2交于M 、N 两点,直线AE 与这两个圆及MN 依次交于A 、B 、C 、D 、E .且AD =19,BE =16,BC =4,则AE = .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知在ABC V 中,A B C ∠∠∠﹑﹑所对的边分别为a ﹑b﹑c ,若cos cos A b Ba= 且sin cos CA=(Ⅰ)求角A 、B 、C 的大小;(Ⅱ)设函数()()sin cos 222C f x x x A ⎛⎫=+-+ ⎪⎝⎭,求函数()f x 的单调递增..区间,并指出它相邻两对称轴间的距离.7 9 8 4 4 6 4 79 3否 是开始 输入f 0 (x ) 0=i )()(1'x f x f i i -= 结束1+=i ii =2009输出 f i (x )17. (本小题满分13分)在2008年北京奥运会某项目的选拔比赛中, A 、B 两个代表队进行对抗赛, 每队三名队员, A 队队员是123,A A A 、、B 队队员是123,B B B 、、按以往多次比赛的统计, 对阵队员之间胜负概率如下表, 现按表中对阵方式出场进行三场比赛, 每场胜队得1分, 负队得0分, 设A 队、B 队最后所得总分分别为ξ、η, 且3ξη+=.(Ⅰ)求A 队得分为1分的概率;(Ⅱ)求ξ的分布列;并用统计学的知识说明哪个队实力较强.18. (本小题满分13分)已知椭圆22221(0)xya b a b+=>>的左焦点为F ,左右顶点分别为A C 、,上顶点为B ,过C B F ,,三点作圆P ,其中圆心P 的坐标为()n m ,. (Ⅰ)当0m n +≤时,椭圆的离心率的取值范围. (Ⅱ)直线AB 能否和圆P 相切?证明你的结论. 19. (本小题满分13分)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1).将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小; (III )求二面角B -A 1P -F 的余弦值. 20. (本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4, 公差为2的等差数列.(Ⅰ)求证:数列{}n a 是等比数列; (Ⅱ) 若()n n n b a f a =⋅,当2k =时,求数列{}n b 的前n 项和n S ;(III )若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由. 21. (本小题满分14分)已知函数F (x )=|2x -t |-x 3+x +1(x ∈R ,t 为常数,t ∈R ).对阵队员A队队员胜 A 队队员负1A 对1B 2313 2A 对2B 2535 3A 对3B 3735(Ⅰ)写出此函数F (x )在R 上的单调区间;(Ⅱ)若方程F (x )-k =0恰有两解,求实数k 的值.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分. 文科共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
2008年浙江省高考数学卷第一篇:2008年浙江省高考数学卷2008年浙江省高考数学卷命题思路浙江省2008年高考数学命题组2008年是浙江省自主命题的第五年,也是浙江省新课改高考方案实施前的最后一年。
今年数学卷的命制在延续往年命题风格的基础上,体现了“平和中见关怀、沉稳中显活力、自然中现宗旨”的特点。
文理两卷相同或相近的试题仍保持一定的量,理科试卷难度与去年相仿,文科试卷难度比去年略有降低。
全卷给人以自然、流畅,质朴、和谐、灵动的深刻印象。
一、平和中见关怀“平和”体现在试题立意鲜明,题目不偏不怪,题干简约,叙述清晰,纯净淡雅,平易近人。
全卷从文字叙述、字母表示到图形表达都简洁明快,自然清新,阅读量小,把时间充分留给学生思考解答。
整份试题的命制,着意背景公平,贴近学生平时的学习实际,给学生以亲切之感。
客观题知识点考查清楚明确,不堆砌组合,体现了起点低,坡度稳的特点;解答题设问清楚,多问把关,分散难点,体现了入口宽,梯度明的特点,有利于学生稳定情绪,增强自信,逐步深入,体现了命题者对学生的殷切关怀之情。
二、沉稳中显活力“沉稳”体现在对支撑高中数学学科知识体系的重点知识重点考,体现在坚持全面考查基础知识,基本技能和基本思想方法,体现在既关注考查数学的通性通法,又注重对能力的考查和思维水平的提升,全卷结构稳定,知识点分布合理,22道试题涵盖了高中数学的主体内容和其中的数学思想方法。
“活力”体现在对重点内容的考查常考常新,试题既似曾相识,又推陈出新,耐人咀嚼。
纵览整卷,沉稳中彰显活力,处处闪耀出命题者的智慧之光:如理科第10题立意新颖,构思精巧,别出心裁,对学生的空间想象能力和抽象思维能力的考查达到了较高要求,耐人寻味。
理科第17题(文科第10题)看似平淡,却极富创意,考生需要有较高的理性思维能力。
理科第19题(文科第19题)的概率应用题,仍以学生熟知的摸球为背景,但不乏新意。
理科第21题(文科第21题)是以函数立意的解答题,体现了分类讨论的思想,关注学生思维的缜密性;理科第20题(文科第22题)关注解析几何的本质,体现数形结合的思想,尤其是第Ⅱ小题的设问,富有探究味,体现了新课程理念,对中学数学教学如何“摆脱题海”关注数学本质是个极好的导向。
2008年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•浙江)已知集合A={x|x>0},B={x|﹣1≤x≤2},则A∪B=()A.{x|x≥﹣1} B.{x|x≤2} C.{x|0<x≤2} D.{x|﹣1≤x≤2}【考点】并集及其运算.【分析】根据并集的求法,做出数轴,求解即可.【解答】解:根据题意,作图可得,则A∪B={x|x≥﹣1},故选A.【点评】本题考查集合的运算,要结合数轴发现集合间的关系,进而求解.2.(5分)(2008•浙江)函数y=(sinx+cosx)2+1的最小正周期是()A.B.πC.D.2π【考点】二倍角的正弦;同角三角函数基本关系的运用.【分析】先将原函数进行化简,再求周期.【解答】解:∵y=(sinx+cosx)2+1=sin2x+2,故其周期为.故选B.【点评】本题主要考查正弦函数周期的求解.3.(5分)(2008•浙江)已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”的既不充分也不必要条件.【解答】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.(5分)(2008•浙江)已知{a n}是等比数列,a2=2,a5=,则公比q=()A. B.﹣2 C.2 D.【考点】等比数列.【专题】等差数列与等比数列.【分析】根据等比数列所给的两项,写出两者的关系,第五项等于第二项与公比的三次方的乘积,代入数字,求出公比的三次方,开方即可得到结果.【解答】解:∵{a n}是等比数列,a2=2,a5=,设出等比数列的公比是q,∴a5=a2•q3,∴==,∴q=,故选:D.【点评】本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.5.(5分)(2008•浙江)已知a≥0,b≥0,且a+b=2,则()A.B.C.a2+b2≥2 D.a2+b2≤3【考点】基本不等式.【分析】ab范围可直接由基本不等式得到,a2+b2可先将a+b平方再利用基本不等式联系.【解答】解:由a≥0,b≥0,且a+b=2,∴,而4=(a+b)2=a2+b2+2ab≤2(a2+b2),∴a2+b2≥2.故选C.【点评】本题主要考查基本不等式知识的运用,属基本题.基本不等式是沟通和与积的联系式,和与平方和联系时,可先将和平方.6.(5分)(2008•浙江)在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的展开式中,含x4的项的系数是()A.﹣15 B.85 C.﹣120 D.274【考点】二项式定理的应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)的思路来完成.【解答】解:含x4的项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的5个括号中4个括号出x仅1个括号出常数∴展开式中含x4的项的系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项的系数.7.(5分)(2008•浙江)在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是()A.0 B.1 C.2 D.4【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式进行化简,再由x的范围求出的范围,再由正弦函数的图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=的交点个数是2个.故选C.【点评】本小题主要考查三角函数图象的性质问题.8.(5分)(2008•浙江)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()A.3 B.5 C.D.【考点】双曲线的定义.【专题】计算题.【分析】先取双曲线的一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线的右准线,则左焦点F1到右准线的距离为,右焦点F2到右准线的距离为,可得,即,∴双曲线的离心率.故选D.【点评】本题主要考查双曲线的性质及离心率定义.9.(5分)(2008•浙江)对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α【考点】空间点、线、面的位置.【专题】空间位置关系与距离.【分析】对两条不相交的空间直线a与b,有a∥b 或a与b是异面直线,从而得出结论.【解答】解:∵两条不相交的空间直线a和b,有a∥b 或a与b是异面直线,∴一定存在平面α,使得:a⊂α,b∥α.故选B.【点评】本题主要考查立体几何中线面关系问题,属于基础题.10.(5分)(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域的面积是()A.B.C.1 D.【考点】简单线性规划的应用.【专题】计算题;压轴题.【分析】欲求平面区域的面积,先要确定关于a,b的约束条件,根据恒有ax+by≤1成立,a≥0,b≥0,确定出ax+by的最值取到的位置从而确定关于a,b约束条件.【解答】解:∵a≥0,b≥0t=ax+by最大值在区域的右上取得,即一定在点(0,1)或(1,0)取得,故有by≤1恒成立或ax≤1恒成立,∴0≤b≤1或0≤a≤1,∴以a,b为坐标点P(a,b)所形成的平面区域是一个正方形,所以面积为1.故选C.【点评】本小题主要考查线性规划的相关知识.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2008•浙江)已知函数f(x)=x2+|x﹣2|,则f(1)=2.【考点】函数的概念及其构成要素.【分析】将x=1代入函数解析式即可求出答案.【解答】解:∵f(1)=12+|1﹣2|=1+1=2故答案为:2【点评】本题主要考查函数解析式,求函数值问题.12.(4分)(2008•浙江)若,则cos2θ=.【考点】诱导公式的作用;二倍角的余弦.【分析】由sin(α+)=cosα及cos2α=2cos2α﹣1解之即可.【解答】解:由可知,,而.故答案为:﹣.【点评】本题考查诱导公式及二倍角公式的应用.13.(4分)(2008•浙江)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】运用椭圆的定义,可得三角形ABF2的周长为4a=20,再由周长,即可得到AB的长.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆的方程和定义,考查运算能力,属于基础题.14.(4分)(2008•浙江)在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.15.(4分)(2008•浙江)如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于π.【考点】球的体积和表面积;球内接多面体.【专题】计算题.【分析】说明△CDB是直角三角形,△ACD是直角三角形,球的直径就是CD,求出CD,即可求出球的体积.【解答】解:AB⊥BC,△ABC的外接圆的直径为AC,AC=,由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,∴CD为球的直径,CD==3,∴球的半径R=,∴V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球的内接多面体,说明三角形是直角三角形,推出CD是球的直径,是本题的突破口,解题的重点所在,考查分析问题解决问题的能力.16.(4分)(2008•浙江)已知是平面内的单位向量,若向量满足•(﹣)=0,则||的取值范围是[0,1].【考点】平面向量数量积的运算.【专题】压轴题.【分析】本小题主要考查向量的数量积及向量模的相关运算问题,由向量满足•(﹣)=0,变化式子为模和夹角的形式,整理出||的表达式,根据夹角的范围得到结果.【解答】解:∵,即,∴且θ∈[0,π],∵为单位向量,∴,∴,∴.故答案为:[0,1]【点评】本题是向量数量积的运算,条件中给出两个向量的模和两向量的夹角,代入数量积的公式运算即可,只是题目所给的向量要应用向量的性质来运算,本题是把向量的数量积同三角函数问题结合在一起.17.(4分)(2008•浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件的六位数的个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成的空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成的空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查的是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有m n 种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.三、解答题(共5小题,满分0分)18.(14分)(2008•浙江)已知数列{x n}的首项x1=3,通项x n=2n p+nq(n∈N*,p,q为常数),且x1,x4,x5成等差数列.求:(Ⅰ)p,q的值;(Ⅱ)数列{x n}前n项和S n的公式.【考点】数列递推式;等差数列的前n项和;等比数列的前n项和;等差数列的性质.【专题】计算题;综合题.【分析】(Ⅰ)根据x1=3,求得p,q的关系,进而根据通项x n=2n p+np(n∈N*,p,q为常数),且x1,x4,x5成等差数列.建立关于p的方求得p,进而求得q.(Ⅱ)进而根据(1)中求得数列的首项和公差,利用等差数列的求和公式求得答案.【解答】解:(Ⅰ)∵x1=3,∴2p+q=3,①又x4=24p+4q,x5=25p+5q,且x1+x5=2x4,∴3+25p+5q=25p+8q,②联立①②求得p=1,q=1(Ⅱ)由(1)可知x n=2n+n∴S n=(2+22+…+2n)+(1+2+…+n)=.【点评】本题主要考查等差数列和等比数列的基本知识,考查运算及推理能力.19.(14分)(2008•浙江)一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从中任意摸出2个球,至少得到1个白球的概率是.求:(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率;(Ⅱ)袋中白球的个数.【考点】互斥事件的概率加法公式;古典概型及其概率计算公式.【专题】计算题.【分析】(Ⅰ)先做出袋中的黑球数,本题是一个古典概型,试验发生包含的事件是从袋中任意摸出两个球,共有C102种结果,满足条件的事件是得到的都是黑球,有C42种结果,根据概率公式得到结果.(Ⅱ)根据从中任意摸出2个球,至少得到1个白球的概率是,写出从袋中任意摸出两个球,至少得到一个白球的对立事件的概率,列出关于白球个数的方程,解方程即可.【解答】解:(Ⅰ)由题意知本题是一个古典概型,从中任意摸出1个球,得到黑球的概率是,袋中黑球的个数为.试验发生包含的事件是从袋中任意摸出两个球,共有C102种结果满足条件的事件是得到的都是黑球,有C42种结果,记“从袋中任意摸出两个球,得到的都是黑球”为事件A,则.(Ⅱ)从中任意摸出2个球,至少得到1个白球的概率是记“从袋中任意摸出两个球,至少得到一个白球”为事件B.设袋中白球的个数为x,则,得到x=5【点评】本题主要考查排列组合、概率等基础知识,同时考查逻辑思维能力和数学应用能力,考查对立事件的概率,考查古典概型问题,是一个综合题.20.(14分)(2008•浙江)如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=.(Ⅰ)求证:AE∥平面DCF;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?【考点】直线与平面平行的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∥平面DCF;(Ⅱ)过点B作BH⊥EF交FE的延长线于H,连接AH,说明∠AHB为二面角A﹣EF﹣C 的平面角,通过二面角A﹣EF﹣C的大小为60°,求出AB即可.【解答】(Ⅰ)证明:过点E作EG⊥CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∥平面DCF.(Ⅱ)解:过点B作BH⊥EF交FE的延长线于H,连接AH.由平面ABCD⊥平面BEFG,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF,所以∠AHB为二面角A﹣EF﹣C的平面角.在Rt△EFG中,因为EG=AD=.又因为CE⊥EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∠BEH=.因为AB=BH•tan∠AHB,所以当AB=时,二面角A﹣EF﹣G的大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用.【点评】本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.21.(15分)(2008•浙江)已知a是实数,函数f(x)=x2(x﹣a).(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;压轴题.【分析】(I)求出f'(x),利用f'(1)=3得到a的值,然后把a代入f(x)中求出f(1)得到切点,而切线的斜率等于f'(1)=3,写出切线方程即可;(II)令f'(x)=0求出x的值,利用x的值分三个区间讨论f'(x)的正负得到函数的单调区间,根据函数的增减性得到函数的最大值.【解答】解:(I)f'(x)=3x2﹣2ax.因为f'(1)=3﹣2a=3,所以a=0.又当a=0时,f(1)=1,f'(1)=3,则切点坐标(1,1),斜率为3所以曲线y=f(x)在(1,f(1))处的切线方程为y﹣1=3(x﹣1)化简得3x﹣y﹣2=0.(II)令f'(x)=0,解得.当,即a≤0时,f(x)在[0,2]上单调递增,从而f max=f(2)=8﹣4a.当时,即a≥3时,f(x)在[0,2]上单调递减,从而f max=f(0)=0.当,即0<a<3,f(x)在上单调递减,在上单调递增,从而综上所述,f max=.【点评】本题主要考查导数的基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力.22.(15分)(2008•浙江)已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(﹣1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA⊥l,MB⊥x轴(如图).(Ⅰ)求曲线C的方程;(Ⅱ)求出直线l的方程,使得为常数.【考点】轨迹方程;直线的一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上的点,进而可表示出|NP|,根据N到直线的距离和|NP|进而可得曲线C的方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上的点,则,N到直线的距离为.由题设得,化简,得曲线C的方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt△QMA中,因为=,.所以,∴,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.。
2008年浙江省⾼考数学试卷及答案(⽂科)绝密★考试结束前2008年普通⾼等学校招⽣全国统⼀考试(浙江卷)数学(⽂科)本试题卷分选择题和⾮选择题两部分。
全卷共5页,选择题部分1⾄3页,⾮选择题部分4⾄5页。
满分150分,考试时间120分钟。
请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考⽣务必将⾃⼰的姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊,如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表⽰台体的上、下⾯积,h 表⽰台体的⾼柱体体积公式V Sh =其中S 表⽰柱体的底⾯积,h 表⽰柱体的⾼锥体的体积公式13V Sh = 其中S 表⽰锥体的底⾯积,h 表⽰锥体的⾼球的表⾯积公式24S R π=球的体积公式343V R π=其中R 表⽰球的半径如果事件,A B 互斥,那么()()()P A B P A P B +=+⼀.选择题:本⼤题共10⼩题,每⼩题5分,共50分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
1.已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =A .{|1}x x ≥-B .{|2}x x ≤C .{|02}x x <≤D .{|12}x x -≤≤ 2.函数2(sin cos )1y x x =++的最⼩正周期是 A .2B .πC .32π D .2π3.已知a ,b 都是实数,那么“22b a >”是“a >b ”的 A .充分⽽不必要条件 B .必要⽽不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知{}n a 是等⽐数列,41252==a a ,,则公⽐q =A .21-B .2-C .2D .215.0,0a b ≥≥,且2a b +=,则 A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤6.在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 A .-15 B .85 C .-120 D .274 7.在同⼀平⾯直⾓坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是A .0B .1C .2D .4 8.若双曲线12222=-x 的两个焦点到⼀条准线的距离之⽐为3:2,则双曲线的离⼼率是A .3B .5C .3D .5 9.对两条不相交的空间直线a 和b ,必定存在平⾯α,使得 A .,a b αα?? B .,//a b αα? C .,a b αα⊥⊥ D .,a b αα?⊥10.若0,0≥≥b a ,且当??≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平⾯区域的⾯积等于(A )12(B )4π(C )1 (D )2π⾮选择题部分(共100分)注意事项:1.⽤⿊⾊字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2008年普通高等学校招生全国统一考试数学(文科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则AB =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤ (2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π(B )π (C )32π (D )2π(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (4)已知{}n a 是等比数列,41252==a a ,,则公比q = (A )21-(B )2- (C )2 (D )21(5)0,0a b ≥≥,且2a b +=,则 (A )12ab ≤(B )12ab ≥ (C )222a b +≥ (D )223a b +≤ (6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (9)对两条不相交的空间直线a 和b ,必定存在平面α,使得(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥A BCD (10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12 (B )4π (C )1 (D )2π 二.填空题:本大题共7小题,每小题4分,共28分。
特别聚焦:2008年浙江高考数学(文科)作者:俞小英来源:《数学金刊·高中版》2009年第04期总揽全局2008年文科数学试卷和2009年文科调测试题都具有“平和清新”的特点,难、中、易比例都大致相当,较2007年难度略有下降. 试卷层次分明,梯度合理,坚持多角度、多层次的考查. 试卷在遵循国家《考试大纲》、浙江《考试说明》的基础上,继承以往成功的命题经验,既全面考查了基础知识,又突出了重点内容;既关注了基本方法和基本技能的运用,又注重了对思维能力的考查.变化之处2008年文科数学试卷和2009年文科调测试题较前几年的试卷更强调能力立意的命题思想,形成了知识、方法、能力结合的立体框架结构. 在注重“双基”的同时,试卷十分强调对主干知识和重要数学思想的考查,如函数、三角、不等式和数形结合、分类讨论等方面常考常新,选择题的第10题在原来考查“线性规划”的基础上对知识进行了翻新.创新盘点2008年文科数学试卷和2009年文科调测试题在保持“稳”的同时不乏创“新”,体现在注重数学知识的基础性和综合性,强调对主干知识的考查. 这点在解答题的设计上有所体现,取消了对三角函数的考查,但其在选择题和填空题中的考查比例有所增加,共有13分.命题趋势从2008年试题结合2009年文科调测卷分析,2009年的命题趋势体现在以下三个方面:1.立足过往考卷,适度创新(1)题型、题量不变,仍是10个选择题、7个填空题、5个解答题,但分值会适当变化.(2)题序及考查的知识板块会有所调整,2008年高考试卷的解答题没有三角函数,而在2009年调测卷中三角函数又重返第1大题的位置;调测卷的解答题中没有了概率题,改为在选择题中放一题;数列放在调测卷解答题的第3题,其他的基本不变. 以上适当调动,值得关注.(3)题源更多元化,新课程改革的影子时有出现,如调测卷第9题考查了存在量词的概念,重视知识间的推理和推导.2.立足主干知识,以点带面这两份试卷均立足主干知识,重点依旧是函数、三角函数、立体几何、数列、导数、解析几何,特别突出了函数的主干地位,显现了其“工具性”的一面. 函数多与其他知识综合,如与导数结合考查函数的最值,与三角函数结合考查函数的性质,与数列、不等式结合考查不等式的性质等. 立足主干还体现在强调“双基”上,以基础知识为考查重点.3.立足能力考查,重在思维这两份试卷的题目都不偏不怪,强调通性通法,以考查能力为主,注重对数学思维的考查.2008年试卷的小题均以考查基础知识、常规方法为主;解答题的难度呈螺旋式上升,整体难度较大,特别是第21题综合了函数、不等式和导数知识,涉及分类讨论思想,想得高分不容易.2009年调测卷的试题多以能力立意为主,如第2、3、5、8、10、15、17题强调考生的解题能力;第18题考查三角函数,解题方法多样化,可从不同的角度化解三角函数,而求解最值可从数形结合或纯代数方法两个不同的角度思考;第22题沿袭2008年高考模式,仍以解析几何压轴,而且仍以抛物线为载体,着重考查同学们的数学思维水平和解题技巧.由此可得出以下启示:2009年的高考命题会沿袭2008年试卷和2009年调测卷的风格. 因此在复习时,同学们要以主干知识为复习备考的重点,如学习函数应注重基础知识,提炼思想方法;学习导数应发挥其工具作用,强化综合运用. 同时,同学们还应多关注新课标新增的知识点,如算法、统计、导数、空间向量、零点等知识.一、选择题:本大题共10小题,每小题5分,共50分.1. 已知集合A={xx>0},B{x-1≤x≤2},则A∪B等于()A.{xx≥-1} B.{xx≤2}C.{x-1≤x≤2}2.函数y=(sinx+cosx)2+1的最小正周期是()A. B.π C. D.2π3.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知{an}是等比数列,a2=2,a5=,则公比q等于()A.- B.-2 C. 2 D.5.已知a≥0,b≥0,且a+b=2,则()A.ab≤ B.ab≥ C.a2+b2≥2 D.a2+b2≤36.在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是()A.-15 B. 85 C.-120 D. 2747.在同一平面直角坐标系中,函数y=cos+(x∈[0,2π])的图象和直线y=的交点个数是()A. 0 B. 1 C. 2 D. 48.若双曲线-=1的两个焦点到一条准线的距离之比为3∶2,则双曲线的离心率为() A. 3 B. 5 C. D.9.对两条不相交的空间直线a与b,必存在平面α,使得()A. a⊂α,b⊂α B. a⊂α,b//αC. a⊥α,b⊥α D. a⊂α,b⊥α10.若a≥0,b≥0,且当x≥0,y≥0,x+y≤1时,恒有ax+by≤1,则以a,b为坐标的点P(a,b)所形成的平面区域面积是() A. B. C. 1 D.二、填空题:本大题共7小题,每小题4分,共28分.11.已知函数f(x)=x2+x-2,则f(1)=_______.12.若sin+θ=,则cos2θ=_________.13.已知F1,F2为椭圆+=1的两个焦点,过F1的直线交椭圆于A,B两点,若F2A+F2B=12,则AB=______.14.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_______.15.如图1,已知球O的面上四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于______.16.已知a是平面内的单位向量,若向量b满足b·(a-b)=0,则b的取值范围是________.17.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________(用数字作答).三、解答题:本大题共5小题,共72分.18.已知数列{an}的首项为x1=3,通项为xn=2np+nq(n∈N+,p,q为常数),且x1,x4,x5成等差数列,求:(Ⅰ)p,q的值;(Ⅱ)数列{xn}前n项和Sn的公式.19.一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是. 求:(Ⅰ)从中任意摸出2个球,得到的都是黑球的概率;(Ⅱ)袋中白球的个数.20.如图2,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,∠BCF=∠CEF=90°,AD=,EF=2,(Ⅰ)求证:AE//平面DCF;(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?21.已知a是实数,函数f(x)=x2(x-a).(Ⅰ)若f ′(1)=3,求a的值及曲线y=f(x)在点(1, f(1))处的切线方程;(Ⅱ)求f(x)在区间[0,2]上的最大值.22.已知曲线C是到点P-,和到直线y=-距离相等的点的轨迹. l是过点Q(-1,0)的直线,M是C上(不在l 上)的动点;A,B在l上,MA⊥l,MB⊥x轴(如图3).(Ⅰ)求曲线C的方程;(Ⅱ)求出直线l的方程,使得为常数.。
绝密★启用前2008年普通高等学校招生全国统一考试(全国卷Ⅰ)文科综合本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分。
第Ⅰ卷l至7页,第Ⅱ卷8至12页,共300分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答。
在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷(选择题共140分)本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项符合题目要求。
张某承包了O.5公顷耕地.种植结构变化如图1。
当地1月平均气温3℃。
完成1~2题。
1.张某承包的耕地可能位于A.珠江三角洲B.太湖平原C.华北平原D.松嫩平原2.导致种植结构变化的主要因素是A.市场需求B.生产经验C.自然条件D.国家政策下表为我国某城市人口资料。
读下表完成3~4题。
3.该城市自1982年至2000年A.人口自然增长率很高,人口增长迅速B.人口出生率增高,人口老龄化问题得到缓解C.人口出生率大幅度降低,人口死亡率大幅度增高D.人口增长率很高,有大量青壮年人口迁入4.该城市是A.南京B.深圳C.西安D.沈阳产业重心是区域产业产值空间分布的重心。
图2示意中国三次产业重心的经、纬度变化(不含台湾、香港、澳门的统计资料)。
完成5~7题。
5.圈中①、②、③线依次代表A.第一产业、第二产业、第三产业B.第二产业、第三产业、第一产业C.第一产业、第三产业、第二产业D.第三产业、第一产业、第二产业6.从产业重心的纬度变化看A.三次产业重心均向北移动B.第一产业重心移动最快C.第二产业重心移动最快D.第三产业重心移动最快7.自1985年至2003年,产业重心移动的趋势是A.第二产业向东南B.第二产业向东北C.第一产业向东南D.第三产业向东南图3中a是经线,Q点为晨昏线与该经线的交点。
2008年全国高考文科数学试卷及答案2008年全国普通高等学校招生统一考试数学试卷(文史类) 考生注意:1.答卷前,考生务必将姓名、高考准考证号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟.请考生用钢笔或圆珠笔将答案直接写在试卷上.一.填空题本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式|x?1|?1的解集是.2.若集合A?{x|x?2}、B?{x|x?a}满足A?B?2,则实数a?.3.若复数z满足z?i(2?z),则z?.4.若函数f(x)的反函数f?1(x)?log2x,则f(x)?.?????????5.若向量a、b满足|a|?1,|b|?2,且a与b的夹角为,则|a?b|?.36.若直线ax?y?1?0经过抛物线y2?4x的焦点,则实数a?.7.若z是实系数方程x?2x?p?0的一个虚根,且|z|?2,则p?.8.在平面直角坐标系中,从五个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)中任取三个,这三点能构成三角形的概率是.9.若函数f(x)?(x?a)(bx?2a)是偶函数,且它的值域为(??,4],则该函数的解析f(x)?.10.已知总体的各个体的值小到大依次为2,3,3,7,a,b,12,,,20,且总体的中位数为.若要使该总体的方差最小,则a、b的取值分别是.11.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是?ABC围成的区域上的点,那么当w?xy取得最大值时,点P 的坐标是.二.选择题本大题共有4 题,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个,一律得零分.2x2y2??1上的点.若F1、F2是椭圆的两个焦点,则|PF1|?|PF2|等于12.设P椭圆2516 A .4 B.5C.8D.10 13.给定空间中的直线l及平面?.条件“直线l与平面?内两条相交直线都垂直”是“直线l 与平面?垂直”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.若数列{an}是首项为1,公比为a?值是A.1B.2C.3的无穷等比数列,且{an}各项的和为a,则a的215D.2415.如图,在平面直角坐标系中,?是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D 的定圆所围成的区域,A、B、C、D是该圆的四等分点.若点P(x,y)、点P?(x?,y?)满足x?x?且y?y?,则称P优于P?.如果?中的点Q满足:不存在?中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧? ?C.CD?D.DA A.?AB B.BC三.解答题本大题共有6题,解答下列各题必须写出必要的步骤.16.E是BC1的中点.求直线DE与平面如图,在棱长为2的正方体ABCD?A1BC11D1中,ABCD所成角的大小.17.如图,某住宅小区的平面图呈扇形AOC.小区的两个出入口设置在点A及点C处.小区里有两条笔直的小路AD、DC,且拐弯处的转角为120.已知某人从C沿CD 走到D用了10分钟,从D沿DA走到A 用了6分钟.若此人步行的速度为每分钟50米,求该扇形的半径OA的长.18.本题共有2个小题,第1小题满分5分,第2小题满分10分.已知函数f(x)?sin2x,g(x)?cos(2x?的图象分别交于M、N两点.??6),直线x?t与函数f(x)、g(x)?时,求|MN|的值;4? 求|MN|在t?[0,]时的最大值. 2 当t? 19.本题共有2个小题,第1小题满分8分,第2小题满分8分.已知函数f(x)?2?x1.2|x|若f(x)?2,求x的值;若2tf(2t)?mf(t)?0对于t?[1,2]恒成立,求实数m的取值范围.20.本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.x2?y2?1.已知双曲线C:2求双曲线C的渐近线方程;已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称?????????点.记??MP?MQ.求?的取值范围;已知点D、E、M的坐标分别为(?2,?1)、(2,?1)、(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为?DEM截直线l所得线段的长.试将s表示为直线l 的斜率k的函数.21.本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{an}:a1?1,a2?2,a3?r,an?3?an?2,与数列{bn}:.记b1?1,b2?0,b3??1,b4?0,bn?4?bnTn?b1a1?b2a2?b3a3???bnan.若a1?a2?a3???a12?64,求r的值;求证:当n是正整数时,T12n??4n;已知r?0,且存在正整数m,使得在T12m?1,T12m?2,?,T12m?12中有4项为100.求r的值,并指出哪4项为100.2007年全国普通高等学校招生统一考试数学试卷(文史类)答案要点一、填空题1.(0,2) 2.2 3.1?i 4.2 8.x5.79.?2x?4 26.-1 7. 4 4 510.a?,b? 11.(,5) 52二、选择题题号12 答案三、解答题D 13C 14 15 B D 16.解:过E作EF?BC,交BC于F,连接DF.∵EF?平面ABCD ∴?EDF是直线DE与平面ABCD所成的角.?? 4分题意,得EF?∵CF?1CC1?1.21CB?1,∴DF?5.?? 8分2∵EF?DF,∴tan?EDF?EF5?.??10分DF55.?? 12分5故直线DE与平面ABCD所成角的大小是arctan 17.解法一:设该扇形的半径为r米.题意,得?CD?500,DA?300,?CDO?60.?? 4分在?CDO中,CD?OD?2CD?OD?cos60?OC,?? 6分即500?(r?300)?2?500?(r?300)?解得r?2222?21?r2,?? 9分24900?445.11答:该扇形的半径OA 的长约为445米.?? 13分解法二:连接AC,作OH?AC,交AC于H.?? 2分题意,得CD?500,AD?300,?CDA?120.?? 4分在?ACD中,AC?CD?AD?2AD?CD?cos120?500 ?300?2?500?300?22?222?1?7002 2∴AC?700,?? 6分AC2?AD2?CD211cos?CAD??.?? 9分2AC?CD14在直角?HAO中,AH?350,cos?HAO?∴OA?11,14AH4900??445.cos?HAO11答:该扇形的半径OA的长约为445米.?? 13分18.解:|MN|?|sin(2??42?3|?.??5分?|1?cos32|MN|?|sin2t?cos(2t? ?3|sin(2t?∵t?[0,)?cos(2???)|.?? 2分46??33)|?|sin2t?cos2t|.??8分622?6)|.??11分?2],2t??6?[??,??],??13分66?∴|MN|的最大值为3.??15分19.解:当x?0时,f(x)?0;当x?0时,f(x)?2?条件可知2?xxx1.??2分2x12xxx?22?2?2?1?02?1?2.??6分,即,解得x2∵2?0,∴x?log2(1?2).??8分当t?[1,2]时,2(2?即m(2?1)??(2?1),2t∵2?0,∴m??(2?1).??13分2tt2t11t)?m(2?)?0,??10分22t2t2t4t ∵t?[1,2],∴?(1?22t)?[?17,?5],故m的取值范围是[?5,??).??16分20.解:所求渐近线方程为y?22x?0,y?x?0.??3分22设P的坐标为(x0,y0),则Q的坐标为(?x0,?y0).?????MP??????MQ??(xx 2320,y0?1)?(?0,?y0)??x20?y0?1??2x0?2.∵|x0|?2,∴?的取值范围是(??,?1].若P为双曲线C上第一象限内的点,则直线l的斜率k?(0,22).计算可得,当k?(0,1]时,s(k)?221?k21?k2;当k?(1,222)时,s(k)?2k?1k?k21?k2.?s?21?k2,0?k?1,∴表示为直线l的斜率k的函数是s(k)???1?k222k?1.???k?k21?k2,12?k?22. 21.解:a1?a2?a3???a12 ?1?2?r?3?4?r?(r?2) ?5?6?(r?4)?7?8?(r?6)?48?4r.∵48?4r?64,∴r?4.用数学归纳法证明:当n?Z?时,T12n??4n.①当n?1时,T12?a1?a3?a5?a7?a9?a11??4,等式成立.②假设n?k时等式成立,即T12k??4k,那么当n?k?1时,??4分??7分??9分??11分??15分??16分??2分??4分??6分T12(k?1)?T12k?a12k?1?a12k?3?a12k?5?a12k?7?a12k?9?a12k?11??8分??4k?(8k?1)?(8k?r)?(8k?4)?(8k?5 )?(8k?r?4)?(8k?8) ??4k?4??4(k?1),等式也成立.根据①和②可以断定:当当n?Z时,T12n??4n.??10分?T12m??4m.当n?12m?1,12m?2时,Tn?4m?1;当n?12m?3,12m?4时,Tn??4m?1?r;当n?12m?5,12m?6时,Tn?4m?5?r;当n?12m?7,12m?8时,Tn??4m?r;当n?12m?9,12m?10时,Tn?4m?4;当n?12m?11,12m?12时,Tn??4m?4.∵4m?1是奇数,?4m?1?r,?4m?r,?4m?4均为负数,∴这些项均不可能取得100.∴4m?5?r?4m?4?100,解得m?24,r?1,此时T293,T294,T297,T298为100.??15分??18分。
2008年普通高等学校招生全国统一考试浙江数学(文科)试题第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A =(A){}1|-≥x x (B) {}2|≤x x (C) {}20|≤<x x(D) {}21|≤≤-x x (2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π (B )π (C) 23π (D) 2π(3)已知a,b 都是实数,那么“a 2>b 2”是“a>b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)已知{n a }是等比数列,41,232==a a ,则公比q= (A)21- (B)-2 (C)2 (D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a (D) 322≤+b a (6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是 (A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2(D )4 (8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得(A )αα⊂⊂b a , (B )b a ,α⊂∥a (C )αα⊥⊥b a , (D)αα⊥⊂b a ,(10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试数学(文科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =(A ){|1}x x ≥- (B ){|2}x x ≤ (C ){|02}x x <≤ (D ){|12}x x -≤≤ (2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π (B )π (C )32π (D )2π(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (4)已知{}n a 是等比数列,41252==a a ,,则公比q = (A )21-(B )2- (C )2 (D )21(5)0,0a b ≥≥,且2a b +=,则 (A )12ab ≤(B )12ab ≥ (C )222a b +≥ (D )223a b +≤ (6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (9)对两条不相交的空间直线a 和b ,必定存在平面α,使得(A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥ABCD (10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12 (B )4π (C )1 (D )2π 二.填空题:本大题共7小题,每小题4分,共28分。
2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为( )A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需,解得0≤x≤1,所以,原函数定义域为[0,1].故选:D.【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)(1+)5的展开式中x2的系数( )A.10B.5C.D.1【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选:C.【点评】本题主要考查了利用待定系数法或生成法求二项式中指定项.4.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为( )A.30°B.45°C.60°D.120°【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.5.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.(5分)y=(sinx﹣cosx)2﹣1是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】GG:同角三角函数间的基本关系.【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选:D.【点评】同角三角函数的基本关系式揭示了同一个角的六种三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.单在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=( )A.64B.81C.128D.243【考点】87:等比数列的性质.【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选:A.【点评】本题主要考查了等比数列的通项及整体运算.8.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.9.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A.6种B.12种C.24种D.48种【考点】D4:排列及排列数公式.【专题】16:压轴题.【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选:B.【点评】排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K2:椭圆的定义.【专题】11:计算题;16:压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于 .【考点】MJ:二面角的平面角及求法;MK:点、线、面间的距离计算.【专题】11:计算题;16:压轴题.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:【点评】根据二面角的大小解三角形,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AOC为二面角A﹣BD﹣C的平面角,通过解∠AOC所在的三角形求得∠AOC.其解题过程为:作∠AOC→证∠AOC是二面角的平面角→利用∠AOC解三角形AOC,简记为“作、证、算”.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【考点】HR:余弦定理.【专题】11:计算题.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+2【点评】本题主要考查了射影定理及余弦定理.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题.【分析】(1)由a n+1=2a n+2n构造可得即数列{b n}为等差数列(2)由(1)可求=n,从而可得a n=n•2n﹣1利用错位相减求数列{a n}的和【解答】解:由a n+1=2a n+2n.两边同除以2n得∴,即b n+1﹣b n=1∴{b n}以1为首项,1为公差的等差数列(2)由(1)得∴a n=n•2n﹣1S n=20+2×21+3×22+…+n•2n﹣12S n=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣S n=20+21+22+…+2n﹣1﹣n•2n=∴S n=(n﹣1)•2n+1【点评】本题考查利用构造法构造特殊的等差等比数列及错位相减求数列的和,构造法求数列的通项及错位相减求数列的和是数列部分的重点及热点,要注意该方法的掌握.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【考点】C5:互斥事件的概率加法公式.【专题】11:计算题;35:转化思想.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴【点评】本题考查了用计数原理来求事件的概率,并且所求的事件遇过于复杂的,要主动去分析和应用对立事件来处理.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.。
2008年普通高等学校招生全国统一考试(浙江卷)文科数学试卷第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}{},21|,0|≤≤-=>=x x B x x A 则B A =(A){}1|-≥x x (B) {}2|≤x x (C) {}20|≤<x x(D) {}21|≤≤-x x (2)函数1)cos (sin 2++=x x y 的最小正周期是(A )2π (B )π (C)23π (D) 2π (3)已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)已知{a n }是等比数列,a 1=2,a 4=41,则公比q= (A)21- (B)-2 (C)2 (D)21 (5)已知则且,2,0,0=+≥≥b a b a(A)21≤ab (B) 21≥ab (C)222≥+b a(D) 322≤+b a (6)在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x 4的项的系数是(A )-15 (B )85 (C )-120 (D )274(7)在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x xy 的图象和直线21=y 的交点个数是 (A )0 (B )1 (C )2(D )4 (8)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5(9)对两条不相交的空间直线a 与b ,必存在平面α,使得(A )αα⊂⊂b a , (B )b a ,α⊂∥α(C )αα⊥⊥b a ,(D)αα⊥⊂b a , (10)若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21 (B)4π (C)1 (D)2π 第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
糖果工作室 原创 欢迎下载!第 1 页 共 10 页绝密★考试结束前2008年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a 是实数,1a ii-+是纯虚数,则a =( ) (A )1 (B )-1 (C )2 (D )-2 2.已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ( )(A )∅ (B ){}|0x x ≤ (C ){}|1x x >- (D ){}|01x x x >≤-或 3.已知a ,b 都是实数,那么“22b a >”是“a >b ”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 4.在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( ) (A )-15 (B )85 (C )-120 (D )274 5.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数 是( )(A )0 (B )1 (C )2 (D )4 6.已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n--41) (B )16(n--21) (C )332(n --41) (D )332(n--21) 7.若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线离心率( )(A )3 (B )5 (C )3 (D )5 8.若cos 2sin 5,αα+=-则tan α=( ) (A )21 (B )2 (C )21- (D )2- 9.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值 是( )(A )1 (B )2 (C )2 (D )2210.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题 1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( )A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1 B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( )A .3 B .6 C .9 D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )A .1B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ;B. 根据德国营养医学会的研究显示化学教案“啤酒肚”与男遗传基因有关化学教案就开始充要条件② .(写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.AB CD EA 1B 1C 1D 121.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ········································································· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分AB CDE A 1B 1C 1D 1 FH GEF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分1AC <>,n 等于二面角1A DE B --的平面角,11114cos 42A C A C A C<>==,n n n 所以二面角1A DE B --的大小为arccos 42. ················································· 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =.经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△ 222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
2008年浙江省宁波市某校高三联考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分) 1. 在区间(−∞, 1)上递增的函数是( )A y =log 2(1−x)B y =1−x 2C y =2xD y =−(x +1)22. 已知集合M ={a, 0},N ={x|x 2−3x <0, x ∈Z},若M ∩N ≠φ,则a 等于( ) A 1 B 2 C 1或2 D 83. 一公司有退休职工15人,中年职工30人,青年职工45人,现按分层抽样抽取6人,参加公司的民生实情座谈会,则青年职工小王被抽到的概率为( ) A 215 B 19 C 16 D 1154. 函数y =4sinx +3cosx 的最大值为( ) A 7 B 3 C 5 D 45. 过点O 引三条射线OA ,OB ,OC ,已知∠AOB =θ,∠AOC =β,∠BOC =α,且平面AOB ⊥平面BOC ,则有( )A cosα=cosθ⋅cosβB cosβ=cosθ⋅cosαC sinα=sinθ⋅sinβD sinβ=sinθ⋅sinα6. 已知不等式log x (4x)<0成立,则实数x 的取值范围是( ) A (14,12) B (0,12) C (0,14) D (14,1)7. 已知:x 10=a 0+a 1(1−x)+a 2(1−x)2+...+a 10(1−x)10,其中a 0,a 1,a 2,…,a 10为常数,则a 0+a 2+a 4+...+a 10等于( ) A −210 B −29 C 210 D 298. 过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则该椭圆的离心率的取值范围是( )A (14,94)B (23,1)C (12,23)D (0,12)9. 如果关于x 的方程√x −1=kx 在区间[1, 5]上有解,则有( ) A 0≤k ≤12 B 25≤k ≤12 C −12≤k ≤12 D 0≤k ≤2510. 已知函数y =f(x)是定义在R 上的函数,且图象关于点(0, 1)对称;函数y =g(x)是函数y =f(x)的反函数,则g(a)+g(2−a)的值为( ) A 2 B −2 C 0 D 随a 的取值而变化二、填空题(共7小题,每小题4分,满分28分) 11. 已知cos(α+π3)=sin(α−π3),则tanα=________.12. 已知M(3, −2),N(−5, 2),且MN →=2MP →,则点P 的坐标为________. 13. 在等比数列{a n }中,若a 1+a 2+a 3=74,a 2=12,则1a 1+1a 2+1a 3=________.14. 已知曲线f(x)=x 3+ax 2+bx +1,(a, b ∈R)在(1, 2)处的切线方程是y =4x −2,则函数y =f(x)的极大值为________.15. 在直三棱柱ABC −A 1B 1C 1中,AC =BC =AA 1=2,∠ACB =90∘,F 、G 分别为AA 1、AB 的中点,则FG 与AC 1所成的角为________.16. 已知A(2, 1),B(5, 5),C(0, 4),动点P(x, y)在△ABC 内部或边界上,则定点Q(6, 3)到点P(x, y)的最小距离为________.17. 把1,2,3,4,5,6这6个数分成A ,B ,C 三组,每组两个数,则1,3分在A 组的概率为________.三、解答题(共5小题,满分72分)18. 已知函数f(x)=Asin(ωx +ϕ),(A >0,ω>0,0<ϕ<π2)图象关于点B(−π4,0)对称,点B 到函数y =f(x)图象的对称轴的最短距离为π2,且f(π2)=1. (1)求A ,ω,ϕ的值;(2)若0<θ<π,且f(θ)=13,求cos2θ的值.19. 在四棱锥P −ABCD 中,PD ⊥平面ABCD ,∠CDA =∠DAB =90∘CD =1,AD =2,AB =4,且∠APD =30∘,M 为PB 的中点. ①求证:PB ⊥平面AMC ;②求直线AM 与平面PAD 所成的角; ③求点A 到平面PBC 的距离.20. 在等比数列{a n }中,a 2+a 5=18,a 3⋅a 4=32,且a n+1<a n (n ∈N ∗) (1)求数列{a n }的通项公式;(2)若T n =lga 1+lga 2+...+lga n ,求T n 的最大值及此时n 的值.21. 已知函数f(x)=ax 3+bx +c 为R 上的奇函数,且当x =1时,有极小值−1;函g(x)=−12x 3+32x +t −3t (t ∈R,t ≠0)(1)求函数f(x)的解析式;(2)若对于任意x ∈[−2, 2],恒有f(x)>g(x),求t 的取值范围.22. 曲线C 是中心在原点,焦点为F(√5,0)的双曲线的右支,已知它的一条渐近线方程是y =12x .(1)求曲线C 的方程;(2)已知点E(2, 0),若直线l 与曲线C 交于不同于点E 的P ,R 两点,且EP →⋅ER →=0,求证:直线l 过一个定点,并求出定点的坐标.2008年浙江省宁波市某校高三联考数学试卷(文科)答案1. C2. C3. D4. C5. B6. D7. D8. C9. A10. C11. 112. P(−1, 0)13. 13414. 215. π216. 217. 11518. 解:(1)∵ 点B到函数y=f(x)图象的对称轴的最短距离为π2,且点B是函数f(x)=Asin(ωx+ϕ),(A>0,ω>0,0<ϕ<π2)的对称中心∴ T4=π2,∴ T=2π∴ 2πω=4×π2=2π,∴ ω=1又∵ 点B(−π4,0)是函数f(x)的对称中心∴ f(−π4)=Asin(−π4+ϕ)=0,∴ sin(ϕ−π4)=0∵ 0<ϕ<π2,∴ −π4<ϕ−π4<π4,∴ ϕ−π4=0,∴ ϕ=π4又f(π2)=Asin(π2+π4)=√22A =1,∴ A =√2∴ A =√2,ω=1,ϕ=π4(2)∵ f(θ)=√2sin(θ+π4)=sinθ+cosθ=13 ∴ (sinθ+cosθ)2=1+2sinθcosθ=19∴ 2sinθcosθ=−89<0,∵ 0<θ<π ∴ sinθ>0, ∴ cosθ<0∴ sinθ−cosθ=√(sinθ−cosθ)2=√1−2sinθcosθ=√1+89=√173∴ cos2θ=(cosθ+sinθ)(cosθ−sinθ)=13×(−√173)=−√17919. 解:①因∠PDC =∠PDA =∠CDA =90∘故以D 为原点,DA 为x 轴,DC 为y 轴,DP 为Z轴建立空间坐标系因∠ADP =30∘,AD =2,∴ PD =2√3,又∠DAB =90∘,从而有D(0, 0, 0),A(2, 0, 0),B(2, 4, 0) C(0, 1, 0),P(0, 0, 2√3) ∴ M(1, 2, √3)则PB →=(2,4,−2√3),AC ¯=(−2,1,0),AM →=(−1,2,√3) 从而PB →⋅AC →=0,PB →⋅AM →=0, ∴ PB ⊥AC ,PB ⊥AM ,而AC ∩AM =A 故PB ⊥平面AMC…②平面PAD 的法向量为DC ¯=(0,1,0) cos <AM →,DC →>=AM →DC →|AM →||DC →|=2√2×1=√22即AM 与DC 所成的角为45∘,故PM 与平面PAD 所成的角为45∘…③设平面PBC 的法向量为n →=(x,y,z),CP →=(0,−1,2√3),CB →=(2,3,0)由CP →⋅n →=0有y =2√3z ,CR →⋅n →=0有2x +3y =0 取z =√33,则y =2,x =−3,∴ n ¯=(−3,2,√33) 又BA →=(0, −4, 0)则cos <BA →,n →>=|BA|→⋅|n|→˙=4×2√10√3=−√3010则AB 与平面PBC 的所成角的正弦值为√3√10 从而点A 到平面PBC 的距离为d =|BA ¯|√3√10=2√305…20. 解:(1)由于{a n }为等比数列,且a n+1<a n , ∴ a 2a 5=a 3a 4=32,∴ {a 2+a 5=18a 2a 5=32,∴ {a 2=16a 5=2.则q 3=a 5a 2=18,q =12,则a n =a 2q n−2=26−n .…(2)T n =lga 1+lga 2+...+lga n =lg(a 1a 2...a n )=lg25+4+⋯+(6−n)=11−n 2⋅nlg2=12(−n 2+11n)lg2, 二次函数y =−n 2+11n 的对称轴为n =5.5,又n ∈z ,故当n =5或n =6时,T n 最大,最大值为T 5=T 6=15lg2.… 21. 解:(1)由f(−x)=−f(x)得:c =0, 由{f′(1)=3a +b =0f(1)=a +b =−1⇒{a =12b =−32 ∴ f(x)=12x 3−32x经检验在x =1时,f(x)有极小值−1, ∴ f(x)=12x 3−32x(2)设ℎ(x)=f(x)−g(x)=x 3−3x −t +3t,则ℎ′(x)=3x 2−3,令ℎ′(x)=3x 2−3>0得x >1或x <−1, 令ℎ′(x)=3x 2−3<0得−1<x <1所以ℎ(x)在区间[−2, −1]及[1, 2]上的增函数,在区间[−1, 1]上的减函数, ∴ ℎ(x)min =min{ℎ(−2),ℎ(1)}=ℎ(1)=−2−t +3t使对于任意x ∈[−2, 2],恒有f(x)>g(x),则ℎ(1)=−2−t +3t >0 解得t <−3或0<t <1∴ t ∈(−∞, −3)∪(0, 1)22. 解:(1)设曲线C 的方程为x 2a 2−y 2b 2=1(x ≥a,a >0,b >0)∵ 一条渐近线方程是y =12x ,c =√5∴ a =2b ,a 2+b 2=c 2=5 ∴ a =2,b =1故所求曲线C 的方程是x 24−y 2=1(x ≥2)…(2)设P(x 1, y 1),R(x 2, y 2),①当直线l 的斜率存在时,设直线l 的方程为y =kx +m 由(y =kx +m x 24−y 2=1 ,此时1−4k 2≠0 ∴ {x 1+x 2=8km1−4k 2>0⋅…由EP →⋅ER →=0⇒(x 1−2)(x 2−2)+y 1y 2=(x 1−2)(x 2−2)+(kx 1+m)(kx 2+m)=0∴ (1+k 2)x 1x 2+(km −2)(x 1+x 2)+m 2+4=0 (1+k 2)⋅−4m 2−41−4k 2+(km −2)⋅8km1−4k2+m 2+4=0 整理有3m 2+16km +20k 2=0⇒m =−10k 3,或m =−2k…当m =−2k 时,直线L 过点E ,不合题意 当m =−10k 3,则直线l 的方程为y =kx −10k 3=k(x −103)则直线l 过定点(103,0)…②当直线l 的斜率不存在时,x 1=x 2,y 1=−y 2, 由EP →⋅ER →=0,有x 12−4x 1+4−y 12=0,又x 124−y 12=1从而有x 1=x 2=103.此时直线L 过点(103,0) 故直线l 过定点(103,0)…。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(浙江卷)(文科) 测试题 2019.91,在同一平面直角坐标系中,函数}[)2,0)(232cos(ππ∈+=x x y 的图象和直线21=y 的交点个数是(A )0(B )1(C )2(D )42,若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3(B )5(C )3(D )53,对两条不相交的空间直线a 与b,必存在平面α,使得 (A )αα⊂⊂b a ,(B )b a ,α⊂∥α (C )αα⊥⊥b a ,(D)αα⊥⊂b a ,4,若,0,0≥≥b a 且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a,b 为坐标的点P(a,b)所形成的平面区域的面积是(A)21(B)4π(C)1(D)2π5,已知数列的首项,通项,且成等差数列。
求:(Ⅰ)p,q 的值;(Ⅱ) 数列前n 项和的公式。
6,一个袋中装有大小相同的黑球、白球和红球,已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是52;从中任意摸出2个球,至少得到1个白球的概率是97.求:(Ⅰ)从中任意摸出2个球,得到的数是黑球的概率; (Ⅱ)袋中白球的个数。
{}n x 13x =()2*,,n n x p np n N p q =+∈为常数{}n x n S7,如图,矩形ABCD 和梯形BEFC 所在平面互相垂直, ,∠BCF=∠CEF=90°,AD=.2,3=EF (Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60°?8,已知a 是实数,函数.(Ⅰ)若f 1(1)=3,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 在区间[0,2]上的最大值。
9,已知曲线C 是到点)83,21(-P 和到直线85-=y 距离相等的点的轨迹,l 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,x MB l MA ⊥⊥, 轴(如图)。
绝密★考试结束前2008年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式 台体的体积公式11221()3V h S S S S =++其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh = 其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径 如果事件,A B 互斥 ,那么()()()P A B P A P B +=+一.选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|0}A x x =>,{|12}B x x =-≤≤,则A B =A .{|1}x x ≥-B .{|2}x x ≤C .{|02}x x <≤D .{|12}x x -≤≤ 2.函数2(sin cos )1y x x =++的最小正周期是 A .2πB .πC .32π D .2π3.已知a ,b 都是实数,那么“22b a >”是“a >b ”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知{}n a 是等比数列,41252==a a ,,则公比q =A .21-B .2-C .2D .215.0,0a b ≥≥,且2a b +=,则 A .12ab ≤B .12ab ≥C .222a b +≥D .223a b +≤6.在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 A .-15 B .85 C .-120 D .274 7.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是A .0B .1C .2D .4 8.若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C .3D .5 9.对两条不相交的空间直线a 和b ,必定存在平面α,使得 A .,a b αα⊂⊂ B .,//a b αα⊂ C .,a b αα⊥⊥ D .,a b αα⊂⊥10.若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 (A )12(B )4π(C )1 (D )2π非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色自拟的签字笔或钢笔描黑。
二.填空题:本大题共7小题,每小题4分,共28分。
11.已知函数2()|2|f x x x =+-,则(1)f =__________。
12.若3sin()25πθ+=,则cos 2θ=_________。
13.已知21F F 、为椭圆192522=+yx的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB = 。
14.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos。
15.如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA=AB=BC=3,则球O 点体积等于 。
16.已知a 是平面内的单位向量,若向量b 满足()0b a b -= ,则||b的取值范围是 。
17.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)。
三.解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题14分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值;(Ⅱ)数列{}n x 的前n 项的和n S 的公式。
19.(本题14分)一个袋中装有大小相同的黑球、白球和红球。
已知袋中共有10个球。
从袋中任意摸出1个球,得到黑球的概率是52;从袋中任意摸出2个球,至少得到1个白球的概率是97。
求:(Ⅰ)从中任意摸出2个球,得到的都是黑球的概率;(Ⅱ)袋中白球的个数。
20.(本题14分)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,90,AD=3,EF=2。
∠BCF=∠CEF=︒(Ⅰ)求证:AE//平面DCF;(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为︒60?21.(本题15分)已知a是实数,函数2=-。
()()f x x x a(Ⅰ)若'(1)3f=,求a的值及曲线()f处的切线方程;y f x=在点(1,(1))(Ⅱ)求()f x在区间[]2,0上的最大值。
22.(本题15分)已知曲线C 是到点P (83,21-)和到直线85-=y 距离相等的点的轨迹。
是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x⊥⊥ 轴(如图)。
(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得QAQB 2为常数。
数学(文科)试题参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 答案ABDDCACDBC二.填空题.11.2 12.725- 13.8 14.3315.9π2(关键是找出球心,从而确定球的半径。
由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。
所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半。
) 16.[01], 17.40三.解答题18.本题主要考查等差数列和等比数列的基本知识,考查运算及推理能力.满分14分. (Ⅰ)解:由13x =,得23p q +=,又4424x p q =+,5525x p q =+,且1542x x x +=,得5532528p q p q ++=+,解得1p =,1q =.(Ⅱ)解:2(222)(12)nn S n =+++++++ 1(1)222n n n ++=-+.19.本题主要考查排列组合、概率等基础知识,同时考查逻辑思维能力和数学应用能力.满分14分.(Ⅰ)解:由题意知,袋中黑球的个数为21045⨯=.记“从袋中任意摸出两个球,得到的都是黑球”为事件A ,则242102()15C P A C ==.(Ⅱ)解:记“从袋中任意摸出两个球,至少得到一个白球”为事件B , 设袋中白球的个数为x ,则2102107()1()19x C P B P B C -=-=-=,得到5x =.20.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG C F ⊥交C F 于G ,连结D G , 可得四边形B C G E 为矩形,又A B C D 为矩形,所以A D E G∥,从而四边形A D G E 为平行四边形, 故AE D G ∥.因为A E ⊄平面D C F ,D G ⊂平面D C F ,所以A E ∥平面D C F . (Ⅱ)解:过点B 作BH EF ⊥交F E 的延长线于H ,连结A H . 由平面A B C D ⊥平面B E F C ,A B B C ⊥,得AB ⊥平面B E F C ,从而AH EF ⊥.所以A H B ∠为二面角A E F C --的平面角. 在R t E F G △中,因为3EG AD ==,2E F =,所以60CFE ∠= ,1F G =.又因为C E E F ⊥,所以4C F =,从而3B E C G ==.于是33sin 2BH BE BEH =∠= .因为tan A B B H A H B =∠ ,所以当A B 为92时,二面角A E F C --的大小为60 .方法二:如图,以点C 为坐标原点,以C B C F ,和C D 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设A B a B E b C F c ===,,,则(000)C ,,,(30)A a ,,,(300)B ,,,(30)E b ,,,(00)F c ,,.(Ⅰ)证明:(0)A E b a =- ,,,(300)C B = ,,,(00)B E b =,,, 所以0CB CE = ,0CB BE =,从而C B A E ⊥,C B B E ⊥,所以C B ⊥平面A B E .因为C B ⊥平面D C F ,所以平面ABE ∥平面D C F . 故A E ∥平面D C F .(Ⅱ)解:因为(30)E F c b =-- ,,,(30)C E b =,,,DAB EFCHGDA BEFCyz x所以0EF CE = ,||2E F = ,从而23()03()2b c b c b -+-=⎧⎪⎨+-=⎪⎩,,解得34b c ==,.所以(330)E ,,,(040)F ,,.设(1)n y z =,,与平面AEF 垂直,则0n AE = ,0n EF = ,解得33(13)n a=,,.又因为B A ⊥平面B E F C ,(00)BA a =,,,所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =.所以当A B 为92时,二面角A E F C --的大小为60 .21.本题主要考查函数的基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:2()32f x x ax '=-, 因为(1)323f a '=-=,所以0a =. 又当0a =时,(1)1f =,(1)3f '=,所以曲线()y f x =在(1(1))f ,处的切线方程为320x y --=. (Ⅱ)解:令()0f x '=,解得10x =,223a x =.当203a ≤,即0a ≤时,()f x 在[02],上单调递增,从而m ax (2)84f f a ==-.当223a ≥,即3a ≥时,()f x 在[02],上单调递减,从而max (0)0f f ==.当2023a<<,即03a <<时,()f x 在203a ⎡⎤⎢⎥⎣⎦,上单调递减,在223a ⎡⎤⎢⎥⎣⎦,上单调递增,从而m ax 8402023a a f a -<⎧=⎨<<⎩,≤,,.综上所述, m ax 84202a a f a -⎧=⎨>⎩,≤,,.22.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分. (Ⅰ)解:设()N x y ,为C 上的点,则2213||28N P x y ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为21()2y x x =+.(Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k M A k ⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x Q A Q M M A kx k +=-=++ .2|1||2|||21x kx Q A k++=+ ,222||2(1)112||||Q B k kx Q A k x k+++=+.当2k =时,2||55||Q B Q A =,从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过(10)-,垂直于l 的直线11:(1)l y x k=-+.因为||||QA MH =,所以2|1||2|||21x kx Q A k++=+ ,ABOQyxl M糖果工作室 原创 欢迎下载! 第 11 页 共 11 页 222||2(1)112||||Q B k k x Q A k x k+++=+ .当2k =时,2||55||Q B Q A =, 从而所求直线l 方程为220x y -+=. A B O Qyx l M Hl1。