300MW机组锅炉汽包水位调节技术
- 格式:pdf
- 大小:132.03 KB
- 文档页数:1
汽包水位控制原则及调整一、汽包水位调节原则1在负荷较低时,主给水电动门未开,由给水旁路阀控制汽包水位。
当主蒸汽达到要求流量,全开主给水电动门,全关给水旁路阀。
反之,当主蒸汽减少到要求流量且持续一定时间后,将旁路给水阀投自动,关主给水电动门,给水由主路切换到旁路。
2锅炉汽包水位的调节是通过改变主给水调节阀的开度或给水泵的转速,在机组负荷小于25%时,采用单冲量调节;当机组负荷大于25%后,给水切换为三冲量调节,此时通过控制汽泵转速控制汽包水位,电泵备用。
单冲量,三冲量调节器互为跟踪,以保证切换无扰。
3锅炉正常运行中,汽包水位应以差压式水位计为准,参照电接点水位计和双色水位计作为监视手段,通过保持给水流量,减温水流量和蒸汽流量之间的平衡使汽包水位保持稳定。
4为了保证汽包水位各表计指示的正确性,每班就地对照水位不少于一次,同类型水位计指示差值≯30mm。
5两台汽动给水泵转速应尽可能一致,负荷基本平衡。
6两台汽动给水泵及一台电动给水泵均可由CCS自动调节水位,正常情况下汽包水位调节由自动装置完成,运行人员应加强水位监视。
7当汽包水位超过正常允许的变化范围,且偏差继续增大时应及时将自动切至手动方式运行。
手动调整时幅度不可过大,应防止由于大幅度调节而引起的汽包水位大幅度波动和缺、满水事故。
8经常分析主蒸汽流量、给水流量、主汽压力变化规律,发现异常及时处理。
二、遇有下列情况时应注意水位变化(必要时采用手动调节)1给水压力、给水流量波动较大时;2负荷变化较大时;3事故情况下;4锅炉启动、停炉时;5给水自动故障时;6水位调节器工作不正常时;7锅炉排污时;8安全门起、回座时;9给水泵故障时;10并泵及切换给水泵时;11锅炉燃烧不稳定时。
三、给水控制系统(CCS控制)1本机组装有两台50%汽动调速给水泵和一台30%电动调速泵。
2机组启动初期,由于是中压缸进汽启动方式,此阶段无法采集到蒸汽流量参数,水位自动调节只能采取单冲量模式,此模式以给水旁路调节阀自动调节水位为主,电泵勺管调节给水压力和汽包压力之差为副的调节手段。
300MW锅炉汽包水位测量偏差原因分析及消除摘要:文章分析了贵溪发电有限公司2*300MW机组自投产以来锅炉汽包差压式水位一直存在偏差的可能原因,提出了解决汽包差压式水位的措施,采取将汽侧取样口至单室平衡容器移装至汽包内部,修改完善差压水位信号的补偿修正逻辑,消除了汽包水位测量偏差的问题,减少了汽包水位测量误差,使机组给水自动、汽包水位保护能正常投入,为锅炉安全经济运行提供了保障。
关键词:锅炉汽包水位;偏差大;消除1引言贵溪发电有限公司二期2×300MW机组安装东方锅炉(集团)股份有限公司生产的亚临界自然循环燃煤锅炉DG1025/17.5-Ⅱ4。
2台锅炉为亚临界参数、四角切圆燃烧、自然循环汽包炉。
单炉膛п型露天布置,燃用烟煤,一次中间再热,平衡通风、固态排渣,全钢架、全悬吊结构,炉顶带金属防雨罩。
2×300MW机组DCS采用上海自动化仪表公司提供的MAXDNA控制系统。
汽包水位控制的优劣是火力发电厂自然循环和强制循环锅炉安全运行最重要的考核指标之一。
当汽包水位过高时,会引起汽轮机的水冲击,造成诸如汽轮机叶片破坏等重大设备损害;汽包水位过低,又会影响锅炉的水循环,造成局部水冷壁过热,甚至发生爆管。
所以,准确测量汽包水位对于火电厂的安全运行有着非常重要的意义。
目前,贵溪发电有限公司2*300MW机组的汽包水位测量采用差压式水位计,电接点水位计,双色水位计三种测量装置。
差压式水位计用于水位的自动调节、MFT水位保护逻辑。
2处理前存在的问题贵溪发电有限公司2*300MW机组自投产以来,一直存在汽包水位波动大,三个差压式水位计之间测量偏差大,给水自动不能正常投入,给机组安全经济运行带来严重挑战。
3影响锅炉汽包水位偏差的因素分析3.1锅炉负荷因素影响水位变化的分析蒸汽是给水进入锅炉以后逐渐受热汽化而产生的。
当负荷变化时,将引起蒸发受热面中水的消耗量发生变化,而必然会引起汽包水位发生变化。
锅炉汽包水位自动调节锅炉发生爆炸事故的原因之一是由于汽包水位过高或过低所引起的,因此在锅炉中,控制汽包水位是非常关键的。
传统上,锅炉的汽包水位调节是手动完成的,而随着自动控制技术的不断发展,锅炉汽包水位的自动调节也成为了可能。
锅炉汽包水位的自动调节原理在锅炉中,汽包是水蒸气和水的混合物,由于水的密度大于水蒸气的密度,因此汽包水位的高低可以反映出锅炉内部的水位情况。
当汽包水位过高时,容易发生爆炸事故,当汽包水位过低时,会导致锅炉的正常工作受到影响。
因此,对于锅炉汽包水位的自动调节是非常重要的。
锅炉汽包水位的自动调节采用的是反馈控制系统。
该系统包括传感器、控制器和调节器三部分。
传感器主要用于测量锅炉汽包水位的值,控制器则将传感器测量的数据与预设的目标水位进行比较,得出调节量并发送给调节器。
调节器根据控制器发送的调节量来控制水位的上升或下降,从而实现锅炉汽包水位的自动调节。
锅炉汽包水位自动调节系统的优点相比于传统的手动调节方式,锅炉汽包水位自动调节系统具有以下几个优点:1.提高效率:自动化系统可以根据锅炉内部实时数据进行分析,对汽包水位进行精准调节,从而提高了锅炉工作效率。
2.减少人力成本:自动化系统的引入可以减少了锅炉操作员的劳动强度,避免由于人为操作失误所引起的事故风险。
3.提高安全性:自动化系统可以及时检测汽包水位,保持正常水位范围内,提高了锅炉工作的安全性,并可以有效地避免爆炸事故的发生。
4.提高稳定性:自动化系统可以实现连续性的自动控制,保持了稳定的工作状态,避免了频繁人工干预所引起的不稳定因素。
锅炉汽包水位自动调节的发展前景随着自动化技术的不断发展,锅炉汽包水位自动调节系统将会得到更广泛的应用。
未来的自动化系统将会更加精确、智能化,可以通过大数据分析以及人工智能技术对锅炉的运行状态进行实时监测,在锅炉发生问题时能够及时作出反应,提高锅炉的安全性和稳定性。
结论随着自动化技术的不断提高,自动化控制在锅炉行业中已经逐渐成为了趋势。
汽包水位控制讲义一、概述作为火电厂重要的监控参数之一,汽包水位的调整对生产运行有着重要的意义。
随着机组容量的增加,单位蒸发量对应的汽包容积越来越小,影响水位波动的因素越来越多,对于大型发电机组来说,如果不能及时的调整汽包水位,在很短时间内就会造成汽包满水或缺水事故的发生。
而在运行变工况的情况下,如启动初期、并网带负荷、负荷大范围波动、RB等情况下,汽包水位都会产生波动,因此应视运行情况及时调整汽包水位以确保机组安全。
二、水位测点设臵我公司二期300MW机组锅炉采用武锅生产的亚临界参数、中间再热自然循环汽包炉。
汽包内径为1743mm,筒身直段长20m,材料为13MNNIMO54,筒体壁厚145mm,汽包内部采用环形夹层结构,设臵116个旋流式分离器,直径为292mm,分两排布臵。
汽包正常水位在汽包中心线,允许波动±50mm。
汽包装有就地双色水位表、平衡容器式水位计,还装有酸洗、充氮、热工保护、加药、连排、紧急放水、炉水取样、放气、安全阀等装臵。
汽包水位测点的设臵包括:1、就地水位计在汽包左右两侧分别装设一台双色水位计。
通过监视器远传到控制室。
工作原理采用连通管原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。
就地水位计一般安装如图1所示。
对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。
从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,因此‘水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,随着温度、压力的不断升高,水位计中水位和汽包内水位的差值也随之增大,所以,在B-MCR工况下,就地水位计中水位是低于汽包实际水位。
电厂锅炉汽包水位的三冲量调节锅炉是化工生产中重要的动力设备。
汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。
汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成锅炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏锅炉甚至爆炸。
这就要求汽包液位在一定范围内,适应各种工况的运行。
影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。
当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。
水位自动调节用水位信号去调节给水阀开度,当水位升高,关小给水阀,降低给水流量;当水位降低,开大给水阀,增大给水流量。
为了使使水位稳定,将主汽流量和给水流量参与调节。
这就是锅炉汽包液位的三冲量调节系统。
这种调节系统由于引进了液位、给水流量及蒸汽流量三个参数,叫做三冲量调节系统。
原理下图中所示的三冲量系统,汽包液位是被控变量,是主冲量信号,蒸汽流量和给水流量是辅助冲量信号。
系统将蒸汽流量和给水流量前馈到汽包液位调节系统中去,一旦蒸汽流量或给水流量发生波动,不是等到影响到液位才进行调节,而是在这两个流量改变之时就能通过加法器立即去改变调节阀开度进行校正,故大大提高了液位这个被调参数的调节精度。
在稳定状态下,液位测量信号等于给定值,液位调节器的输出,蒸汽流量及给水流量等三个信号,通过加法器得到的输出电流为:I0 = K1 I1 - K2 I2 + K3 I3式中,I1 为液位调节器的输出电流;I2 为蒸汽流量变送器的电流;I3 为给水流量变送器的电流;K1 、K2 、K3 分别为加法器各通道的衰减系数。
设计K2 I2 = K3 I3此时I0 正是调节阀处于正常开度时所需要的电流信号。
假定在某一时刻,蒸汽负荷突然增加,蒸汽流量变送器的输出电流I2 相应增加,加法器的输出电流I0 就减少,从而开大给水调节阀。
但是与此同时出现了假液位现象,液位调节器输出电流I1 将增大。
300MW锅炉汽包水位的调整锅炉汽包水位的调整直接关系到整个机组的运行安全,调整操作不当将造成两种事故,一种是汽包满水事故(高三值锅炉MFT,机组掉闸),严重超过上限水位,使蒸汽带水严重,温度急剧下降,发生水冲击,损坏蒸汽管道和汽轮机组;另一种是汽包缺水事故(低三值锅炉MFT);即水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。
1 汽包水位的变化机理1.1 锅炉启动过程中的汽包水位变化锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化,当0.8t/h或1.7t/h的油枪增投至2支及以上时,炉水开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,当水冷壁内水循环流速加快后,大量汽水混合物进人汽包进行分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。
当到达冲转参数(主蒸汽压力3.5-4.2 MPa,主蒸汽温度320-360℃)、关闭30%旁路的过程中,蒸发量下降,很多已生成的蒸汽凝结为水,汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。
在挂闸冲转后水位的变化相反。
机组并网后负荷50 -70MW给水主、旁路阀切换时,由于给水管路直径的变大使给水流量加大,汽包水位上升很快。
其它阶段只要给水量随负荷的上升及时增加,汽包水位的变化不太明显。
1.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位变化上述四大转动机械任意1台跳闸,相当于锅炉内燃烧减弱,水冷壁吸热量减少,汽泡减少,炉水体积缩小,使水位暂时下降。
从实际事故中观察,跳1台引风机后的10S内,给水自动以2 t/s的速度增加,汽包水位下降速率仍然高达5-6mm/s。
同时,汽压下降,饱和温度降低,炉水中汽泡数量又增加,水位又上升,即水位先低后高。
1.3 高加事故解列后汽包水位变化高加事故解列,即汽轮机的一、二、三段抽汽量突然快速为0。
300MW锅炉汽包水位控制浅析摘要:锅炉的汽包水位随燃烧调整而不断变化,水位过高,会使饱和蒸汽带水,蒸汽品质恶化,造成过热器积盐结垢,甚至满水事故;水位过低,会破坏锅内水循环,引起干锅。
一般三冲量水位自动调节虽可以投入自动,但在燃烧调整较剧烈情况下,效果并不令人满意。
下面通过阐述虚假水位的产生机理,深入分析各种工况所引起的变化,以及如何应对来避免类似事件的发生。
关键词:给水调节;燃烧调整;汽包;汽水循环;虚假水位电厂锅炉运行主要任务是使锅炉的蒸发量适应外界负荷的需要,同时要控制汽包水位、压力、温度、蒸汽品质都在合格范围内。
汽包水位是机组运行的一个重要参数,它反映了给水量与供汽量的动态平衡关系。
汽包水位过高或过低都会对机组的安全造成很大的威胁。
汽包水位高,会破坏汽水分离装置的正常工作,严重时会导致蒸汽带水,使过热器和汽轮机叶片结垢增加,影响机组寿命,更甚者使汽轮机发生水冲击,损坏叶片,发生重大设备损坏事故。
汽包水位低,会破坏水循环,导致水冷壁干烧,损坏水冷壁,严重干锅时还会使汽包损伤,产生裂纹。
所以汽包水位高低保护是机组的重要保护,正常运行时一定要投入和准确,没有汽包水位测量信号以及保护无法投入机组不准投入运行。
以我厂汽包数据为例:妈湾电厂锅炉汽包长度13106mm,内径Φ1778mm,汽包中心线标高58660 mm,正常标准水位在中心线下228.6 mm。
表1妈湾电厂锅炉水容积(m3)部件省煤器汽包水冷壁过热器再热器合计水压试验4998177101460正常运行491598162我厂锅炉为控制循环汽包炉,汽包水容积相对较小(正常水容积15M3),极小的扰动就可能造成汽包水位的大幅波动,若处理不当,极易造成事故,故此更应对汽包水位重点监视。
影响汽包水位的因素很多,但无外乎内扰和外扰。
简单的说,蒸汽压力和流量是同方向变化的属于内扰,反之是外扰。
汽包水位的稳定与锅炉负荷(或燃烧)的变化有着密切的关系,当负荷变化时,即产生的蒸发量变化时,将引起蒸发受热面中水的消耗量的变化,必将引起汽包水位的变化。
300MW火电机组给水控制的设计摘要:随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。
为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适合范围更宽,功能更为完备的自动控制系统。
这就产生了全程控制系统。
所谓全程控制系统是指在启停和正常运行时均能实现自动控制的系统。
给水控制系统是火力发电厂非常重要的控制子系统,稳定的汽包水位是汽包锅炉安全运行的重要指标。
火电厂给水系统构成复杂,汽包水位受到机组负荷,汽包压力、温度,给水量等多项参数的影响;不同负荷阶段,给水设备不同,又需要采取不同的控制方式。
关键词:全程控制系统无扰切换单级三冲量串级三冲量300 MW thermal power unit water control designAbstract:Along with the increase of generating unit capacity and parameter unceasing enhancement, the unit control and operation management become more and more complex and difficult. In order to reduce the operational personnel Labour intensity, guarantee the unit operation, demanding more advanced, suitable for a wider, function and more complete automatic control system. This creates the whole control system. So-called process control system refers to the start-stop and normal operation are to achieve automatic control system. Water control system is the coal-fired power plant very important control subsystem, stable drum drum water level is an important index of the safe operation of the boiler. Thermal water system structure is complex, the drum water level by the unit loads, steam pressure, temperature, water etc. Several parameters influence; Different load stage, water supply equipment, and the need to adopt different different control modes.Key words:Process control system Undisturbed switch Single grade three impulse Cascade three impulse1选题背景随着发电机组容量的增加和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。