八年级数学下册第5章分式与分式方程第4节分式方程一教案新版北师大版
- 格式:doc
- 大小:106.50 KB
- 文档页数:3
新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。
教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。
2.引入分式的概念,让学生举例说明分式的实际应用。
提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。
2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。
理论课(30分钟)1.分式的定义和性质。
2.分式的约分、通分和加减法。
3.分式与整式的加减法。
实践课(50分钟)1.分式的变形:分解、合并及简化。
2.分式方程的概念及解法。
3.通过实例让学生掌握分式方程的解法。
课堂总结(10分钟)1.小结本节课的重点内容。
2.引导学生对本节课的学习成果进行分享。
作业布置1.抄写本节课的重点内容以及实例。
2.完成课后练习。
教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。
在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。
北师大版数学八年级下册5.4《分式方程》教学设计1一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上学习的。
本节课主要让学生掌握分式方程的定义、解法以及应用。
通过本节课的学习,学生能够理解和掌握分式方程的概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式运算有一定的了解。
但部分学生对分式的理解不够深入,解题思路不够清晰,需要在解题过程中进行引导。
此外,学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,需要通过实例进行启发。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用到实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.分式方程的定义及解法。
2.将分式方程应用到实际问题中。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的学习材料,如教材、课件、练习题等。
2.准备实际问题案例,用于引导学生应用分式方程解决实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引出分式方程的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解分式方程的定义,演示解法,让学生理解并掌握分式方程的基本知识。
3.操练(10分钟)让学生独立解决一些简单的分式方程,检验学生对知识点的掌握情况。
4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和辅导,使学生进一步巩固知识点。
5.拓展(10分钟)让学生尝试解决一些较复杂的分式方程,提高学生的解题能力。
6.小结(5分钟)总结本节课所学内容,强调分式方程的解法和应用。
7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。
8.板书(5分钟)整理本节课的主要知识点和解题方法,方便学生复习。
《分式方程(二)》教学设计教学目标(1)经历探索分式方程解法的过程,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径,了解解分式方程的一般步骤,使学生进一步体会数学思想中的“转化”思想.(2)经历探究增根产生的原因的过程,使学生理解解分式方程时,可能出现增根,方程无解的原因,明确分式方程验根的必要性,并掌握解分式方程的验根方法,培养学生的逻辑分析能力.教学重点:探索解分式方程的步骤,熟练掌握分式方程的解法;体会解分式方程验根的必要性.教学难点:如何将分式方程转化为整式方程;理解解分式方程时可能无解的原因,明确分式方程验根的必要性.教学过程(一)复习回顾1.请写出214x -与42-x x 的最简公分母. 2.解一元一次方程 21134x x +-= 3.什么叫做分式方程?它有哪些特点?如何解分式方程呢?师生行为:学生回顾最简公分母、一元一次方程的解法以及已学分式方程相关知识;教师点拨去分母,为下一步解分式方程做准备;提醒学生注意解一元一次方程每一步易犯的错误,尤其是去分母时每一项都要乘以最简公分母,不能漏乘,同时还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.设计目的:回顾最简公分母,解一元一次方程的解法,做好新知学习的铺垫.由于本节课的内容是紧接在分式的运算之后,多数学生在解分式方程时会对方程进行通分,所以着重复习去分母的步骤以及提醒漏乘现象,为学生过渡到分式方程去分母打下基础.(二)探究新知活动一:自主探索例1.类比上述方法,大胆尝试解分式方程:xx 321=- 师生行为:学生自主探索或互相讨论完成,老师巡视学生完成情况;有些学生可能会采用交叉法,也有些学生可能采用去分母,甚至有些学生可能受刚学习的分式加减法的影响进行通分,对于学生可能出现的几种典型的解法用多媒体展示台展示,让同学讨论,得出较好的解法,引导学生体会解分式方程的关键是把分式方程转化为整式方程.教师在活动中关注:(1) 学生能否观察出分式方程与整式方程的区别.(2) 学生是否有利用“转化思想”解决问题的意识.(3) 学生是否在参与合作交流的活动中获取知识,学生是否从多角度来研究分式方程的解法.(4) 引导学生检验刚才求得的解是否是原方程的解.设计目的:主要让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所得结果的合理性,培养学生的发散思维.通过教师对例题讲解,让学生初步体会解分式方程的一般步骤,了解解分式方程的关键是把分式方程转化为整式方程.练习:解分式方程(1)xx 413=- (2)1-2321x x =+ 师生行为:学生独立求解,老师巡视学生完成情况,对有困难度的学生给予帮助.对学生不同的解法或学生解题中一些错误的做法在多媒体上展示.设计目的:通过一组练习题,让学生熟练解简单的分式方程.活动二:深入探究例2.解分式方程:22121--=--xx x 师生行为:学生独立求解,解得2=x .教师提出问题:(1)你认为2x =是原方程的根?(2)例1和例2两个方程中,为什么例1去分母后所得整式方程的解3=x 是它的解,而例2去分母所得整式方程的解2x =却不是它的解呢?(3)探究:分式方程无解的原因是什么?(分式方程去分母后的整式方程的解代入原分式方程分母中,分母为0无意义,所以分式方程无解,我们称它为原方程的增根)(4)探究:如何检验分式方程的解?①直接代入原方程(计算量大,很少用) ②间接代入最简公分母(常用检验方法)设计目的:主要让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性.学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实,突出本节课重点.在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.以此让学生领会这一类题目的解法.同时强调不要漏乘.活动三:规范解法例3.解方程 )1(516++=+x x x x 师生行为:学生独立解题,其中一名学生上黑板完成,教师巡视,并对个别有困难的学生进行指导,等学生完成后,师生共同讲评,规范解题过程.设计目的:经历前两个活动后,再次让学生解分式方程,规范解题步骤,同时为下一个归纳解分式方程的步骤的活动积累经验.活动四:探究归纳解分式方程基本思路是什么?有哪些步骤?每一步的目的是什么?师生行为:师生共同分析交流归纳总结.解分式方程的基本思路是:分式方程通过去分母转化成整式方程.设计目的:通过探究,引发学生的思考,让学生在自主探究合作交流中归纳总结解分式方程的基本思路和步骤,在合作交流中获得成功的快乐。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案一. 教材分析《分式方程的概念及列分式方程》是北师大版数学八年级下册第5.4节的内容。
本节课主要让学生掌握分式方程的概念,学会如何列分式方程,并能够解简单的分式方程。
这一内容是学生学习了分式运算和一元一次方程的基础上进行的,为后续解决实际问题打下基础。
二. 学情分析学生在八年级上学期已经学习了分式的概念、分式的运算以及一元一次方程的解法,对于分式的基本概念和运算规则有一定的了解。
但部分学生在分式运算中还存在一定的困难,对于分式方程的理解和应用还需要加强。
此外,学生对于实际问题的解决能力有待提高。
三. 教学目标1.了解分式方程的概念,理解分式方程与一元一次方程的联系和区别。
2.学会列分式方程,并能解简单的分式方程。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:分式方程的概念,列分式方程的方法,解分式方程的步骤。
2.难点:理解分式方程与一元一次方程的联系和区别,解决实际问题中的分式方程。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学PPT2.教学素材(实际问题)七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。
通过分析,引入分式方程的概念。
2.呈现(10分钟)讲解分式方程的概念,解释分式方程与一元一次方程的联系和区别。
通过示例,展示如何列分式方程。
3.操练(10分钟)让学生分组讨论,尝试解决一些简单的实际问题,引导学生运用分式方程来解决问题。
每组选择一个问题,列出分式方程,并求解。
4.巩固(10分钟)选取部分学生的解题过程和答案,进行讲解和分析。
针对学生解题中出现的问题,进行讲解和指导。
5.拓展(10分钟)让学生尝试解决一些稍复杂的实际问题,引导学生运用所学的分式方程知识来解决问题。
北师大版八年级下册数学《5.4 第1课时分式方程的概念及列分式方程》教案一. 教材分析《5.4 第1课时分式方程的概念及列分式方程》这一课时主要让学生了解分式方程的概念,学会如何列分式方程。
分式方程是初中数学中的重要内容,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过学习分式方程,学生能够更好地理解和运用数学知识。
二. 学情分析八年级下的学生已经掌握了分式的基本知识,对分式的性质和运算有一定的了解。
但是,对于分式方程的概念和列方程的方法,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生理解分式方程的概念,并通过具体的例子让学生掌握列分式方程的方法。
三. 教学目标1.了解分式方程的概念,理解分式方程与整式方程的区别。
2.学会如何列分式方程,并能运用分式方程解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分式方程的概念的理解。
2.列分式方程的方法的掌握。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生掌握列分式方程的方法,通过小组合作让学生互相交流和学习。
六. 教学准备1.准备相关的案例和问题。
2.准备PPT,用于展示案例和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,例如:“某商品的原价是100元,打8折后的价格是80元,求商品的折扣率。
”让学生思考如何用数学方程来表示这个问题。
2.呈现(10分钟)呈现PPT,展示分式方程的定义和例子。
解释分式方程与整式方程的区别,并通过具体的例子让学生理解分式方程的概念。
3.操练(10分钟)让学生分组讨论,每组出一个例子,尝试列出一个分式方程。
然后,让学生互相交换例子,尝试解对方列出的分式方程。
4.巩固(10分钟)让学生回答一些关于分式方程的问题,以巩固对分式方程的理解。
例如:“分式方程的解与哪些因素有关?”、“如何判断一个方程是不是分式方程?”等。
1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。
第五章 分式与分式方程教学目标:1、了解分式、分式方程的概念,掌握解分式方程的基本方法和步骤2、理解分式的基本性质并能利用性质进行分式的约分,会找最简公分母,能进行分式的通分3、能进行简单的分式加减乘除运算4、能解决一些与分式有关的简单的实际问题5、经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识教学重点:分式的加减乘除运算教学难点:能解决一些与分式有关的简单的实际问题知识结构:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧题的一般步骤列分式方程解决实际问解分式方程应注意验根分式方程异分母的分式加减法则同分母的分式加减法则加减分式的除法法则分式的乘法法则乘除运算通分约分应用基本性质基本性质最简分式分式基本概念分式分式与分式方程课时安排:1、认识分式 2课时2、分式的乘除法 1课时3、分式的加减法 3课时4、分式方程 3课时1.认识分式(一)教学目标:1、了解分式的概念,明确分式和整式的区别;2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.3、培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.教学重点1、了解分式的概念,明确分式和整式的区别;2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.教学难点分式有意义、无意义、值为零三者的区别教学过程一、温旧而知新问题:下列子中那些是整式?a ,-3x 2y 3,5x -1,x 2+xy +y 2,abc m a a y xy n m ,3,19,,2-- 二、情景引入以一个“土地沙化”的问题情景引入,让学生思考讨论,用式分式表达题目中的数量关系:(1):面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成一原计划的任务。
第五章分式与分式方程1.经历用分式、分式方程表示现实情境中数量关系的过程,了解分式、最简分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号意识.2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会求分式的值,会解可化为一元一次方程的分式方程,会检验分式方程的解,发展运算能力.1.经历通过观察、归纳、类比、猜想,从而获得分式的基本性质、分式乘除法则、分式加减法则的过程,发展合情推理能力与代数式的恒等变形能力,积累类比的活动经验.2.能解决一些与分式、分式方程有关的实际问题,发展分析问题、解决问题的能力和应用意识.培养学生的观察能力和类比意识,培养学生勇于质疑、严谨求实的科学态度.本章主要学习分式的概念、基本性质与运算,分式方程及其应用.分式是代数式的重要组成部分.分式的基本性质与运算法则是代数式恒等变形的重要依据,是有关比例的学习基础.分式与分数、因式分解、一元一次方程、反比例函数等联系密切,在中学数学、物理、化学等学科和生产实践中有着广泛的应用.根据《标准》的要求,本章教科书特别关注了下列几个方面:(1)分式、分式方程是描述现实世界数量关系的模型.在学习分式、分式方程的概念时,教科书通过用字母表示现实情境中的数量关系,丰富了分式、分式方程的实际背景,以帮助学生领会分式、分式方程的模型作用,体会分式、分式方程与现实生活的密切联系.(2)在学习分式的基本性质及其运算法则时,十分注重观察、归纳、类比、猜想等思维方法的应用.(3)分式运算的教学重点是运算法则建立的过程和对算理的理解.在分式运算的设计中,教科书适当降低了分式纯运算的难度,只对较简单的分式进行化简、求值与运算.具体地,教科书设计了4节内容:第1节“认识分式”.通过土地沙化、上海世博会等实例中存在的数量关系引入分式的概念,体会分式的模型作用;通过类比分数的基本性质,理解分式的基本性质.第2节“分式的乘除法”.通过类比分数乘除法的法则,获得分式乘除法的法则,并会用法则进行分式运算.第3节“分式的加减法”.通过类比分数加减法的法则,获得分式加减法的法则,并会用法则进行分式运算.第4节“分式方程”.通过列出刻画行程、捐款等实例的方程,分析所列出方程的共同特征,理解分式方程的概念,进而学习怎样解分式方程,并会用分式方程解决简单的实际问题.【重点】1.分式的概念,正确理解分式的基本性质.2.运用分式乘除法的法则进行简单的分式乘除运算.3.会进行简单的分式加减运算.4.能将实际问题中的等量关系用分式方程表示出来;会解可化为一元一次方程的分式方程,会检验根的合理性.【难点】1.理解和掌握分式有意义的条件;推导分式的基本性质;运用分式的基本性质将分式进行变形.2.分式乘除法法则的推导.3.确定公分母,分式方程的正确变形,检验根的合理性.4.列分式方程解应用题.1.让学生经历用字母表示实际问题中数量关系的过程,进一步发展符号感.让学生经历用字母表示实际问题中数量关系的过程是发展学生符号感的重要环节,与以前用字母表示数量关系相比,本章表示量与量之间关系的代数式可以是分式.教学时应鼓励学生独立思考、自主探索问题情境中的数量关系,并运用符号进行表示.在此基础上可根据教学的实际情况组织学生对一些难点问题展开讨论、交流.2.让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展学生的合情推理能力.教科书为学生探索分式运算的法则提供了丰富的素材,教学时应将重点放在对法则的探索过程上,使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则.同时,还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有条理思考问题的能力.3.解分式方程的关键是把分式方程转化为整式方程.在引导学生探索分式方程的解法时,要注意体现这种“转化”的思想.另外,对分式方程的解法,只要求掌握可化为一元一次方程的分式方程,教学过程中要注意把握这一要求.4.列分式方程解决应用问题比列一元一次方程(组)要稍复杂一些.教学时要引导学生抓住寻找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示等量关系等关键环节.对于常用的数量关系,虽然学生以前大都接触过,但在本章的教学中仍要注意复习、总结,引导学生举一反三,进一步提高分析问题与解决问题的能力.此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验、理解所获得结果的合理性.1认识分式1.了解分式的概念,明确分式和整式的区别,会用分式表示生活情境中的数量关系.2.掌握分式是否有意义、分式的值是否为零的判断方法.3.在分数性质的基础上掌握分式的基本性质,并能利用分式的基本性质对分式进行变形.让学生观察、分析分式的特点,提高学生分析问题、解决问题的能力.培养学生类比的思维习惯,培养学生严谨认真的科学态度.【重点】分式的概念与基本性质.【难点】分式有意义和分式值为零的条件及其应用.第课时1.能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感.2.了解分式的概念,明确分式与整式的区别.1.经历用字母表示现实情境中数量关系的过程,了解分式的概念,体会分式的模型思想,进一步发展符号感.2.使学生经历分析、类比、归纳等活动,培养学生的自学能力,获得学习代数知识的常用方法.1.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性.2.培养学生类比联想的思维习惯.【重点】分式的概念.【难点】理解和掌握分式有意义的条件.【教师准备】多媒体课件.【学生准备】回忆小学学过的分数的有关知识及七年级学过的整式的有关知识.导入一:【问题】下列式子中哪些是整式?哪些是单项式?哪些是多项式?a,-3x2y3,5x-1,x2+xy+y2,.解:a,-3x2y3,5x-1,x2+xy+y2,是整式;a,-3x2y3,是单项式;5x-1,x2+xy+y2是多项式.[设计意图]因为分式概念的学习是学生通过观察、比较分式与整式的区别而获得的,所以必须熟练掌握整式的概念.导入二:【问题】学生思考讨论,用式子表达题目中的数量关系:(1)面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林x公顷,那么原计划完成造林任务需要个月,实际完成造林任务用了个月.(2)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?【师生活动】让学生充分思考,最好让学生积极投身于问题情境中,根据学生的情况教师可以给予适当的提示和引导.解:(1)(2)册.[设计意图]让学生经历探索实际问题中数量关系的过程.通过问题情境,让学生初步感受分式是解决问题的一种模型,体会分式的意义,发展符号感.一、认识分式思路一(针对导入一)(1)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元?(2)一块土地分为两块棉田,第一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这块土地平均每公顷的棉产量是多少?(3)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?根据学生交流、讨论,可得出结果.解:(1). (2) kg. (3)册.2.认识分式问题1刚才这些代数式有什么共同特征?它们与整式有什么不同?学生分组交流讨论,展示讨论结果,教师及时补充.它们的共同特征:(1)它们是由分子、分母与分数线构成的;(2)分母中都含有字母.它们与整式的不同点:它们的分母中都含有字母,而整式的分母中不含有字母,例如,,它们都含有分母,但分母中都不含有字母,所以它们是整式.一般地,用A,B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.问题2分式中,字母可以取任意实数吗?学生领会分式的概念并思考得出:不可以.因为分式中分母含有字母,而分母是除式,不能为零,因此字母的取值就受到制约,即字母的取值不能使分母为零,否则分式就会失去意义.问题3在什么情况下分式的值为0?学生通过类比分数的性质得出:分式的分子为0的时候,分式的值为0.思路二(针对导入二)的意义.讨论内容:(针对前面列出的三个代数式)这些代数式有什么共同特征?它们与整式有什么不同?老师提出思考问题:(1)整式中的分母有没有字母?(2)前面的三个代数式中,分母中有没有字母?(3)前面的三个代数式是不是分数呢?(4)前面的三个代数式中,字母能取任意值吗?(5)前面的三个代数式的值在什么情况下为零?问题预设:学生会比较容易发现这几个式子的分母中都含有字母,但容易与整式中有数字分母的情况混淆,把字母等同于数字看待,这就无法顺利总结出分式的概念.2.认识分式根据学生的观察、讨论,老师进行总结:这三个代数式的共同特征是分母中都含有字母,而整式中虽然也有分母,但分母中不含字母.这样的代数式我们称为分式.一般地,用A,B表示两个整式,A÷B可以表示为的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零.[设计意图]让学生通过观察、归纳总结出整式与分式的异同,从而得出分式的概念.学生通过观察、类比及小组讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑到了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解.这样获得的知识,理解更加透彻,掌握更加牢固,运用起来会更灵活.[知识拓展]1.当整式相除不能整除时,就出现了分式,所以分式实际上是一个商式,其分子是被除式,分母是除式.2.整式和分式统称为有理式,即有理式包括整式和分式.3.分式的概念包括3个方面:(1)分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;(2)分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;(3)在任何情况下,分式的分母的值都不可以为0,否则分式无意义.这里,分母是指除式而言,而不是只就分母中某一个字母来说的.也就是说,分式的分母不为零是隐含在此分式中而无需注明的条件.二、例题讲解(教材例1)(1)当a=1,2,-1时,分别求分式的值;(2)当a取何值时,分式有意义?〔解析〕(1)分式的值是由字母的取值决定的,但要注意的是字母的取值一定不能让分母为0,即一定要让分式有意义.(2)只有当分式的分母不为0时,分式才有意义.解:(1)当a=1时,==2.当a=2时,==1.当a=-1时,==0.(2)当分母的值为零时,分式没有意义,除此以外,分式都有意义.由分母2a-1=0,得a=.所以当a≠时,分式有意义.[设计意图]让学生体会分式的意义,理解如果字母的取值使得分母的值为零,那么分式没有意义,反之则有意义.通过例题讲解,让学生从两方面来理解分式:一是分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零.学生基本能够计算出分式的值,但对于分式在什么条件下有意义,一下子掌握还有一定的难度, 需要通过与分数进行类比,多举例才能理解得更深刻.1.分式的概念.一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.2.分式有意义的条件.分式有意义的条件是分母不为0.3.分式的值为0的条件是分子等于0,且分母不等于0.1.(2015·随州中考)若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1解析:若代数式+有意义,则有解得x≥0且x≠1.故选D.2.若分式有意义,则x的取值范围是.解析:依题意得3x+5≠0,解得x≠-,因此x的取值范围是x≠-.故填x≠-.3.若分式的值为0,则x的值是.解析:在这个分式中,x2-1是分子,x+1是分母,因此,分式的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.4.对于分式,已知当x=-3时,分式的值为0;当x=2时,分式无意义.试求m,n的值.解:∵当x=-3时,分式的值为0,∴即又∵当x=2时,分式无意义,∴m-2n+3×2=0,即m-2n=-6.解方程组得第1课时一、认识分式1.分式初探2.认识分式二、例题讲解一、教材作业【必做题】教材第109页随堂练习的1,2题.【选做题】教材第109页习题5.1的1,2,3题.二、课后作业【基础巩固】1.下列各式是分式的是()A. B. C.+y D.2.(2015·金华中考)要使分式有意义,则x的取值应满足()A.x=-2B.x≠2C.x>-2D.x≠-23.若分式的值为0,则()A.x=-2B.x=0C.x=1或-2D.x=14.若分式有意义,则x的取值范围是()A.x≠3B.x=3C.x>3D.x<3【能力提升】5.使分式无意义的a的值为()A.2B.-2C.±2D.36.若分式的值为1,则x的值为 ()A.1B.-2C.±1D.27.一项工作,甲单独做x小时完成,乙单独做比甲多用6小时完成,那么乙单独做t小时(t<6)能完成这项工作的()A. B. C. D.8.下列各式中,可能取值为0的是()A. B.C. D.9.若的值为正数,则x的取值范围是()A.x<-2B.x<1C.x>-2且x≠1D.x>110.要使分式的值为负,则x .11.当x 时,分式有意义.【拓展探究】12.把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.13.已知当x=1时,分式无意义;当x=4时,此分式的值为零,求a+b的值.【答案与解析】1.B(解析:由分式的定义可知,分母中含有字母的是分式,注意π为实数,不是字母.故选B.)2.D(解析:分式有意义的条件是分母不为0,则由题意得x+2≠0,则x≠-2.故选D.)3.D(解析:分式值为0的条件是分子为0且分母不为0,所以有解之即可.故选D.)4.A(解析:分式有意义的条件是分母不为0,即3-x≠0,解之即可.故选A.)5.C(解析:分式无意义的条件是分母为0,即-2=0,解之即可.故选C.)6.D(解析:分式值为1的条件是分子等于分母,且分母不为0,即解之即可.故选D.)7.C(解析:乙单独做完这项工作需要(x+6)小时,则单独做t小时(t<6)能完成这项工作的.故选C.)8.B(解析:A中分子m2+1>0;B中当m=1时,分子为0,分母不为0,分式的值为0;C中当m=-1时,分子为0,分母为0,分式无意义;D中分子m2+1>0.故选B.)9.C(解析:因为分式的分母x2-2x+1=(x-1)2≥0,所以若分式的值为正数,则有x+2>0且x-1≠0,即x>-2且x≠1.故选C.)10.>3(解析:要使分式的值为负,需使分母3-x<0,即x>3.故填>3.)11.≠±1(解析:若分式有意义,则x2-1≠0,解之即可.故填≠±1.)12.13.解:因为当x=1时,分式无意义,所以1-a=0,解得a=1;因为当x=4时,此分式的值为零,所以4+2b=0,解得b=-2,所以a+b=1+(-2)=-1.在学习分式的概念时,避免了传统教学中对于概念的直接给出,叫学生死记硬背,忽略学生学习的过程,也不考虑学生是否真正理解,本课时是让学生通过观察、归纳出整式与分式的异同,从而总结出分式的概念,学生对这样获得的知识,理解得更透彻.对学生学习效果的反馈不够及时,还不能够较全面地了解学生的学习情况,对不足之处未能及时补充.在学习中,要注意观察学生的情感变化,是否遇到困难,学生的积极性、热情是否发挥出来,投入的程度有多少,是否每个学生都参与其中等,作为教师应时刻关注这些,以便适时地引导他们,调动他们,鼓励他们.随堂练习(教材第109页)1.解:(1)当x取1以外的任何实数时,分式都有意义. (2)当x取±3以外的任何实数时,分式都有意义.2.解:当x=0时,=-.当x=-2时,=.当x=时,=0.3.提示: kg.习题5.1(教材第109页)1.解:(2)(4)是整式,(1)(3)是分式.2.提示:(1)x=. (2)x=-2.3.解:当a=-1,b=时,==.4.提示:这箱橘子的零售价至少应定为元/kg.5.提示:(1)平均每公顷的棉产量是 kg. (2)这种商品每件的成本是元.易错点考虑问题不全面导致错误已知分式的值为整数,求整数x的所有可能值.错解:若分式的值为整数,则x-1的值可为1,2,3,6.∴x=2,3,4,7.错因分析:忽略了分式的值为负整数时x的值,造成漏解.正解:若分式的值为整数,则x-1的值可为±6,±3,±2,±1,∴x=7,4,3,2,-5,-2,-1,0.第课时1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法.通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣.【重点】理解分式的基本性质,会进行分式的化简.【难点】灵活应用分式的基本性质将分式变形.【教师准备】预设学生学习过程中容易出错的地方.【学生准备】复习分数的基本性质.导入一:【问题】有位老爷爷把一块地分给三个儿子.老大分到了这块地的,老二分到了这块地的,老三分到了这块地的.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话后,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?这里涉及了分数的基本性质,那么分式也有这样的性质吗?[设计意图]创设故事情境导入新课,激发了学生学习的好奇心,同时复习了分数的基本性质,为学习分式的基本性质做好铺垫.导入二:上节课我们类比整式和分数的概念学习了分式的概念,今天我们来继续学习分式的相关知识,请看下面的问题:问题1如图(1)所示,面积为1的长方形平均分成了4份,则阴影部分的面积是多少?问题2如图(2)所示,面积为1的长方形平均分成了2份,则阴影部分的面积是多少?问题3这两块阴影部分的面积相等吗?这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图]提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.请看下面的问题.(1)填空:==;==.(2)你认为分式与相等吗?为什么?与呢?与同伴交流.学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).问题1如图(1)所示,面积为1的长方形,长为a,那么长方形的宽怎么表示呢?问题2如图(2)所示,两个图(1)中的长方形拼接在一起,它的宽怎么表示呢?问题3两图中长方形的宽相等吗?问题4通过怎样的变形可以由得到?通过怎样的变形可以由得到?变形的依据是什么?问题5若n个这样的长方形拼接在一起,它的宽又该如何表示呢?学生分析得出答案为.教师进一步追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题6若(m+1)个这样的长方形拼接在一起,宽又如何表示呢?追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题7能类比分数的基本性质,归纳出分式的基本性质吗?学生根据上面的问题尝试归纳分式的基本性质,教师在学生回答的基础上补充完善.总结:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).教师强调:a,b,m均为整式,m≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图]一方面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.(1)=(y≠0);(2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕(1)的分母2x乘y才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b也要乘y,才能得到.(2)的分子ax除以x得到a,所以分母bx也需要除以x得到b.在这里,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1);(2).处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕(1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)==.总结:像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展]1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1);(2).〔解析〕根据分式的基本性质进行化简.解:(1) ==.(2)==.四、议一议在化简时,小颖和小明出现了分歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展]化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图]通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想(1)与有什么关系?(2),与-有什么关系?解:(1)的分子分母都乘-1与相等.(2)同样的道理,与-相等.与-相等.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图]通过想一想的设计,让学生掌握分式的符号法则.1.分式的基本性质:=,=(m≠0).(1)分式的基本性质的作用:分式进行变形的依据.(2)在运用分式的基本性质时,必须注意分式的分子分母同时乘或除以的是同一个整式,且不为0.(3)分式的基本性质的研究方法:从分数类比到分式,从特殊到一般.2.分子和分母已没有公因式的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式.3.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.。
4 分式方程第1课时一、教学目标 1.知识与技能(1)理解分式方程的概念;(2)能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 2.过程与方法体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 3.情感态度及价值观在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力. 二、教学重点、难点重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 难点:能根据实际问题中的等量关系列出分式方程. 三、教具准备 课件. 四、教学过程(一)创设情境,引入新课[师]在这一章的第一节《认识分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1)我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型. 接下来,我们再来看几个这样的例子. (二)讲授新课列出刻画现实世界的数学模型——方程.(多媒体出示) 1.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦 9 000 kg 和15000 kg .已知第一块试验田每公顷的产量比第二块少3 000 kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为x kg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程_________ ___.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生1]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积. [师]你能找出这一问题的所有等量关系吗?[生2]第一块试验田的面积=第二块试验田的面积.(a ) [生3]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少千克呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg . [生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000.(3) [师]接下来,我们再来看一个问题.(多媒体出示) 2.[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少? 这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元. 根据题意,可得方程____________. [师]我们先来审题,找到题中的等量关系. [生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c ) [生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d ) [师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢? [生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]很好!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法: 设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程x 300-4=x2480.(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y300;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y ,根据题意,利用等量关系(c ),得方程2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,鼓励一下他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好. 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5) 上面所得到的方程有什么共同特点?[生]方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.(三)随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x+102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元. 解:x 满足的方程是101×x+102000=200.2.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,根据题意得x x +-8040=41.(四)课堂小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程. (五)教学反思第2课时教学目标 1.知识与技能(1)掌握解分式方程的一般步骤; (2)理解检验分式方程的根的必要性. 2.过程与方法(1)通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤; (2)使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径. 3.情感态度及价值观(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度; (2)运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.二、教学重点、难点重点:(1)解分式方程的一般步骤; (2)检验分式方程的根的必要性. 难点:明确解分式方程验根的必要性. 三、教具准备 课件. 四、教学过程(一)提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程:213-x +325+x =2-624-x[师生共解]解:去分母,方程两边同乘分母的最小公倍数6,得 3(3x -1)+2(5x +2)=6×2-(4x -2), 去括号,得9x -3+10x +4=12-4x +2, 移项,得9x +10x +4x =12+2+3-4, 合并同类项,得23x =13, 系数化为1,得x =2313. (二)讲解新课,探索分式方程的解法[师]刚才我们一同回忆了解一元一次方程的步骤.下面我们来看一个分式方程. [例1]解方程:21-x =x3. (1) [师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [生]可以.[师]同学们可以接着讨论,方程两边同乘什么样的整式(或数),可以去掉分母呢? [生]乘分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘x (x -2),得x (x -2)·21-x =x (x -2)·x3, 整理,得x =3(x -2). (2)[师]我们可以发现,采用去分母的方法把分式方程转化为了整式方程,而且是我们曾学过的一元一次方程.再往下解,我们就可以像解一元一次方程一样,解出x .即去括号,得x =3x -6.移项、合并同类项,得2x =6.系数化为1,得x =3.[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[师]x =3是由一元一次方程x =3(x -2)(2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解. [师]请同学们用同样的方法完成例2的解答. [例2]解方程:x 300-x2480=4. (由学生在练习本上试着完成,然后师生共同解答). 解:方程两边同乘2x ,得600-480=8x. 解这个方程,得x =15.检验:将x =15代入原方程,得左边=4,右边=4,左边=右边, 所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.我这里还有一个题,我们再来一起解决一下.(多媒体出示,先隐藏小亮的解法) 议一议: 解方程:32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并共同分析)[师]我们来看小亮同学的解法:32--x x =x-31-2. 解:方程两边同乘(x -3),得2-x =-1-2(x -3) 解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解. [师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根. [师]它是去分母后得到的整式方程的根吗? [生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根,那么是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? 学生先思考,教师再讲解.[师]产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误. (三)应用,升华 1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 2.回顾,总结想一想:解分式方程一般需要经过哪几个步骤? [师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根. 3.解分式方程: (1)x 9000=300015000+x ; (2)x h 2=xa a -(a ,h 常数).(四)课堂小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.(五)教学反思第3课时一、教学目标1.知识与技能会利用分式方程的数学模型反映、解决现实情境中的实际问题.2.过程与方法经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力;3.情感态度及价值观(1)经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣;(2)培养学生的创新精神,从中获得成功的体验.二、教学重点、难点重点:(1)审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.(2)根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.(二)讲授新课做一做(多媒体出示)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一起来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租? [生]问题也可以是:这两年每年房屋的租金各是多少?[师]很好,下面我们就来先解决第一个问题:每年各有多少间房屋出租? [师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x96000元,第二年每间房屋的租金为x 102000元.根据题意,得x 102000=x96000+500. 解这个方程,得x =12.经检验x =12是原方程的解,也符合题意. 所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得 第一年每间房屋的租金为1296000=8 000(元), 第二年每间房屋的租金为12102000=8 500(元). [师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x . 解得x = 8000.x +500=8 500(元).经检验,x =8 000是原分式方程的解,也符合题意. 所以这两年每间房屋的租金分别为8 000元,8 500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例]某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢? [生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表).[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费. [师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水每立方米收费为x 元,则1月份张家超出5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x55.15.17⨯- m 3,总用水量为5+x55.15.17⨯- m 3;李家超出5 m 3部分的水费为(27.5-1.5×5)元,超出5 m 3的用水量为x55.15.27⨯- m 3,总用水量为(5+x55.15.27⨯-)m 3.根据等量关系,得x 55.15.17⨯-+5=(x55.15.27⨯-+5)×32.解这个方程,得x =2. 经检验x =2是所列方程的根.所以超出5 m 3部分的水每立方米收费2元. (三)随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本每本的价格各是多少?[师]我们先来找到题中的等量关系.[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本;硬皮本的价格=软皮本的价格×(1+21). [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本每本的价格为x 元,则硬皮本每本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x )211(15++1 解得x =5.经检验x =5是原方程的根,也符合题意.所以(1+21)x =23×5=7.5(元). 答:软皮本每本的价格为5元,硬皮本每本的价格为7.5元.(四)课堂小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.(五)教学反思。
北师大版数学八年级下册5.4《分式方程》教学设计2一. 教材分析《分式方程》是北师大版数学八年级下册第5章第4节的内容。
本节课的主要任务是让学生掌握分式方程的解法,理解分式方程的解法在实际问题中的应用。
教材通过引入实际问题,让学生感受分式方程的重要性,进而学习分式方程的解法。
教材内容由浅入深,循序渐进,符合学生的认知规律。
二. 学情分析学生在学习本节课之前,已经学习了分式的概念、性质和运算。
他们具备了一定的数学基础,能够理解和掌握分式方程的基本概念和解法。
但是,学生对分式方程在实际问题中的应用可能还不够清晰,需要通过实例让学生感受和理解。
三. 教学目标1.知识与技能:学生会解分式方程,理解解分式方程的思路和方法。
2.过程与方法:学生通过自主学习、合作交流,培养解决问题的能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,提高学习数学的兴趣。
四. 教学重难点1.重点:分式方程的解法。
2.难点:理解分式方程的解法在实际问题中的应用。
五. 教学方法1.启发式教学:通过提问、引导,激发学生的思考,培养学生的解决问题的能力。
2.案例教学:通过实际问题的引入,让学生感受分式方程的重要性,提高学生的学习兴趣。
3.合作学习:学生分组讨论,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示分式方程的解法及实际问题。
2.教学素材:准备一些实际问题,用于引导学生学习分式方程的解法。
3.黑板:用于板书 key points 和解题步骤。
七. 教学过程1.导入(5分钟)教师通过提问,回顾分式的概念和性质,为学生学习分式方程做好铺垫。
2.呈现(10分钟)教师展示一些实际问题,引导学生思考如何用数学方法解决这些问题。
学生通过讨论,发现这些问题可以用分式方程来表示。
3.操练(10分钟)教师引导学生学习分式方程的解法,让学生通过自主学习、合作交流,掌握解分式方程的方法。
教师在这个过程中给予学生适当的指导,帮助学生克服解题过程中的困难。
第五章分式与分式方程4.分式方程(一)本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。
三个课时彼此之间由浅入深,是“实际问题——分式方程建模——求解——解释解的合理性”过程。
本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。
同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。
一、学生起点分析学生的知识技能基础:能熟练准确地解一元一次方程;已学过分式的定义;了解分式有意义的条件;能利用分式的基本性质进行约分通分;课前预习知晓分式方程的概念。
学生活动经验基础:八年级的学生已经具备了一定的自主探究能力和分析问题的能力,并对发现新问题以及寻求解决办法有相当的兴趣和积极的愿望.二、教学任务分析教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。
对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。
三、教学目标分析本节课的具体教学目标为:1.理解分式方程的概念;2.能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
3.在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。
四、教学过程分析本节课设计了5个教学环节:引入新课——探索新知——感悟升华——课堂反馈——自我小结第一环节 引入新课活动内容:引课从生活实际出发,春季带领同学们游玩北京世博会为由,首先解决行程上出现的问题:两地相距690km ,乘高铁列车比乘特快列车少用2h ,已知高铁列车的平均行驶速度比特快列车快54km/h .(1)你能找出这一问题中的所有等量关系吗?等量关系:①乘特快列车的时间-乘高铁列车的时间=2,②高铁列车的平均行驶速度-特快列车的平均速度=54;(2)如果设特快列车的平均行驶速度为xkm/h ,则高铁的平均速度为______那么特快列车所用的时间为____,高铁所用的时间是____,因为高铁时间比特快少2小时,则方程为 ____________________,(3)如果设乘高铁列车需yh .则特快的时间是_______那么高铁的速度是______,特快的速度是______而高铁速度比特快快54,则方程为______________________.设计意图:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,利用实际生活中一个熟悉的问题,引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力,同时培养学生们的热爱生活,向往美好事物的情怀.注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况教师可以给予适当的提示和引导.第二环节 探究新知活动内容:城市对一条全长12000m 的公路进行改造,实际每天比原计划多完成300m,所用天数是原计划的 32 ,若计划每天完成xm,则可列方程为_______________________. 设计意图:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。
北师大版八年级(下)数学第五章回顾与思考(一)教学设计西安高新第一学校车大鹏一、教材分析本节是第五章《分式与分式方程》的最后一节,占两个课时,这是第一课时,它主要让学生回顾在学习分式的基本概念与分式的运算时用到的几种法则,熟练掌握分式的运算法则,通过螺旋式上升的认识,让学生逐步熟悉运用分式运算的基本技能,培养学生的代数表达能力,通过本节课的教学使学生对分式的运算能有更深的认识.二、教学目标●知识与技能(1)学生进一步熟悉分式的意义及分式的运算;(2)提高学生分式的基本运算技能.●过程与方法(1)通过制作思维导图,将头脑中零散的知识点用思维导图有机地组合起来,形成知识网络。
(2)通过典例分析,学生在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。
●情感、态度与价值观(1)提高学生的运算能力,发展学生的合情推理能力;(2)注重学生对分式的理解,提高学生分析问题的能力.三、教学重点、难点教学重点:进一步熟悉分式的意义及分式的运算;教学难点:提高学生分式的基本运算技能.四、教学方法●学生学习现状分析学生的技能基础:学生已经学习了分式及分式的运算等有关概念,对分式及其运算有了初步的认识,但对技巧性较高的运算题还不熟悉.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.●教法分析在本章的学习中,学生已经掌握了分式的概念与分式加减乘除法的运算,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。
因此采用“回顾、反思、应用”有机结合的教学法。
4.分式方程
课题4.分式方程(一)课
型
教学目标(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
(2)通过观察,归纳分式方程的概念。
(3)体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。
重点探索分式方程的概念,分式方程的解法,会解可化为一元一次方程的分式方程,会检验根的合理性
难
点
列方程解应用题
教
学
用
具
教学环节本节课设计了5教学环节:路程问题高速公路问题电脑网络培、训问题
小节。
二次
备课
新
课
导
入
板书课题,揭示目标
课程讲授
请同学们认真考虑下列问题:
第一环节路程问题
甲、乙两地相距1400 km,乘高铁列车从甲地到乙地比乘特快列车少用9 h,已知高铁列车的平均行驶速度是特快列车的2.8倍。
(1)你能找出这一问题中的所有等量关系吗?
(2)如果设特快列车的平均行驶速度为x km/h,那么x 满足怎样的方程?
(3)如果设小明乘高铁列车从甲地到乙地需y h,那么y 满足怎样的方程?
第二环节高速公路问题
从甲地到乙地有两条长路:一条是全长600
km的普通公路,另一条是全长
480km 的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上快
45h km /,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时
间的一半,求该客车由高速公路从甲地到乙地所需的时间。
这一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地所需的时间为 xh ,那么它由普通公路从
甲地到乙地所需的时间为 _________________h 。
根据题意,可得方程_______________________________________________
(1)找出的等量关系有(1)600km=客车在普通公路上行驶的平均速度⨯客车由普
通公路从甲地到乙地的时间。
(2)480 km=客车在高速公路上行驶的平均速度⨯客车由高速公路从甲地到乙地的
时间。
(3)客车在高速公路上行驶的平均速度减去客车在普通公路上行驶的平均速度
h km /45=
(4)由高速公路从甲地到乙地的时间⨯=2
1由普通公路从甲地到乙地的时间。
同样注意引导学生每一步的实际意义。
第三环节 电脑网络培训问题
王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估
计共需费用300元。
后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要
480元,参加活动的每个同学平均分摊的费用比原计划少4元,原定的人数是多少?
这一问题中有哪些等量关系? 如果设原定是x 人,那么每人平均分摊
______________元。
人数增加到原定人数的2倍后,每人平均分摊_________________元。
根据题
意,可得方程_______________________________________________
找出如下的等量关系:(1)实际参加活动的人数=原定人数2⨯。
(1) 原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用4元。
根据题
意:x
x 2480300=4+ 分母中含有未知数的方程叫做分式方程
小结本节你有哪些收获,有什么感想?
1. 对于一个现实问题⇒找到它的等量关系⇒建立分式方程 2.分母中含有未知数的方程叫做分式方程
作业布置板书设计
课后反思1、课堂上要把激发学生学习的积极性放在首位,多让学生说,帮助学生培养发展有条理的思考及其语言表达能力。
同时要多注意困难学生的疑问。
不要让一些思维活跃的学生的回答代替了其他同学的思考。
使小组学习更有实效性。
2、列分式方程解决应用问题教学时,要引导学生抓住寻找等量关系,恰当选设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量等关键环节,细心分析问题中的数量关系。