苏教版九年级数学第一学期期末试卷附答案电子教案
- 格式:doc
- 大小:219.00 KB
- 文档页数:6
苏教版九年级数学上册 期末试卷(Word 版 含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°3.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90 B .90,90C .88,95D .90,955.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+6.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12B .13C .14D .157.下列方程是一元二次方程的是( ) A .2321x x =+B .3230x x --C .221x y -=D .20x y +=8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大9.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .311.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1912.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D 310二、填空题13.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .14.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .15.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.16.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,直线EF 是⊙O 的切线,B 是切点.若∠C =80°,∠ADB =54°,则∠CBF =____°.17.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 18.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 19.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)20.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.21.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.22.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.23.已知234x y z x z y+===,则_______ 24.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像; (2)直接写出不等式221x x x -->+的解集.26.某校九年级(2)班A 、B 、C 、D 四位同学参加了校篮球队选拔. (1)若从这四人中随杋选取一人,恰好选中B 参加校篮球队的概率是______; (2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B 、C 两位同学参加校篮球队的概率.27.已知二次函数y =x 2-2x +m (m 为常数)的图像与x 轴相交于A 、B 两点. (1)求m 的取值范围;(2)若点A 、B 位于原点的两侧,求m 的取值范围.28.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?29.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.30.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=52S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?31.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.32.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;(理解运用)如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是ABC的中点,MD⊥BC于点D,则BD=;(变式探究)如图3,若点M是AC的中点,(问题呈现)中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 3.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF,∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .5.C解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.6.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.7.A解析:A 【解析】 【分析】根据一元二次方程的定义逐一判断即可. 【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意; B . 3230x x --是一元三次方程,故本选项不符合题意; C . 221x y -=是二元二次方程,故本选项不符合题意; D . 20x y +=是二元一次方程,故本选项不符合题意; 故选A . 【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.8.D解析:D 【解析】 【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案. 【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大; 故选:D . 【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个, 所以,取出红球的概率为2163P ==, 故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 10.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.故选B .【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 11.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.12.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB10x,sin A=BCAB=1010,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.二、填空题13.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.解析:53π【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】 本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.14.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.15.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.16.46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆解析:46°【解析】【分析】连接OB ,OC ,根据切线的性质可知∠OBF=90°,根据AD ∥BC ,可得∠DBC=∠ADB =54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC 的度数,从而使问题得解.【详解】解:连接OB ,OC ,∵直线EF 是⊙O 的切线,B 是切点∴∠OBF=90°∵AD ∥BC∴∠DBC=∠ADB =54°又∵∠D CB =80°∴∠BDC=180°-∠DBC -∠D C B=46°∴∠BOC=2∠BDC =92°又∵OB=OC∴∠OBC=1(18092)442-= ∴∠CBF =∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.17.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 18.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:1212x 622±±===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.19.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 20.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 21.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF ∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.22.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相解析:67 【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP =7,∴AQ =BP , ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE =7,∴QE =AQ−AE .. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键. 23.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.24.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM ⊥AF∵六边形ABCDEF 为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.26.(1)14;(2)P (BC 两位同学参加篮球队)16= 【解析】【分析】 (1)根据概率公式P m n=(n 次试验中,事件A 出现m 次)计算即可 (2)用列表法求得全部情况的总数与符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)()1P B 4= 恰好选中B 参加校篮球队的概率是14. (2)列表格如下:∴P(BC两位同学参加篮球队)21 126 ==【点睛】本题考查的是用列表法或树状图法求事件的概率问题,通过题目找出全部情况的总数与符合条件的情况数目与熟记概率公式是解题的关键.27.(1)m<1;(2)m<0【解析】【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵12cx x ma==∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.28.(1)y=600-5x(0≤x<120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.29.(1)ME=MD=MB=MC;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN ∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.30.(1)D(2,4);(2)52t=;(3)存在,t的值为2 ;(4)当15t=或22511t=或325 6t=时,△DPQ是一个以DQ为腰的等腰三角形【解析】【分析】(1)由题意得出点D的纵坐标为4,求出y=2x中y=4时x的值即可得;(2)由PQ∥OD证△CPQ∽△COD,得CQ CPCD CO=,即555t t-=,解之可得;(3)分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F,对于直线y=2x,令y=4求出x的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得;(4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4∴DF ∥QE∴△CQE ∽△CDF∴QE CQ DF CD = ∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t = 答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.31.两次摸到的球都是红球的概率为19. 【解析】【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=19.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解. 32.(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB=CD+BA;证明见解析;(实践应用)22.【解析】【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(变式探究)证明△MAB≌△MGB(SAS),则MA=MG,MC=MG,又DM⊥BC,则DC =DG,即可求解;(实践应用)已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=12(6+8)=7.如图∠D2AC=45°,同理易得AD22.【详解】(问题呈现)①相等的弧所对的弦相等②同弧所对的圆周角相等③有两组边及其夹角分别对应相等的两个三角形全等故答案为:相等的弧所对的弦相等;同弧所定义的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案为:1;(变式探究)DB=CD+BA.证明:在DB上截去BG=BA,连接MA、MB、MC、MG,∵M是弧AC的中点,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(实践应用)如图,BC是圆的直径,所以∠BAC=90°.因为AB=6,圆的半径为5,所以AC=8.已知∠D1AC=45°,过点D1作D1G1⊥AC于点G1,则CG1′+AB=AG1,所以AG1=12(6+8)=7.所以AD1=2.如图∠D2AC=45°,同理易得AD22.所以AD的长为22.【点睛】本题考查全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧,解题的关键是掌握全等三角形的判定(SAS)与性质、等腰三角形的性质和圆心角、弦、弧.。
苏教版九年级上册数学 期末试卷(Word 版 含解析)一、选择题1.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .32.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .123.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤4.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒5.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15 C .15,15.5 D .16,15 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定7.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .168.如图,△AOB为等腰三角形,顶点A的坐标(2,5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(203,103)B.(163,45)C.(203,45)D.(163,43)9.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角B.都含有一个50°的内角C.都含有一个60°的内角D.都含有一个70°的内角10.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=011.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.1012.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题13.已知小明身高1.8m,在某一时刻测得他站立在阳光下的影长为0.6m.若当他把手臂竖直举起时,测得影长为0.78m,则小明举起的手臂超出头顶______m.14.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.15.如图,AB、CD、EF所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)16.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.19.一元二次方程x 2﹣4=0的解是._________20.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线BC 是双曲线ky x=的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.21.方程290x 的解为________.22.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.23.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率. 27.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.28.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.30.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)31.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=032.解方程:(1)x2-3x+1=0;(2)x(x+3)-(2x+6)=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵PBC PCD∠=∠,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=118422BC,CD=3,由勾股定理得,OD=5,∵PD≥OD OP ,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.2.B解析:B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法. 3.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.4.C解析:C 【解析】 【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C 【解析】 【分析】由题意直接根据众数和中位数的定义求解可得. 【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键. 8.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.9.C解析:C【解析】试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.10.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.11.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴=5= 解得115DE = 115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,14.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.15.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r3<r2<r1故答案为:r3<r2<r1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.16.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),>,开口向上,∵a=10∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.19.x=±2【解析】移项得x2=4,∴x=±2.故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.20.24【解析】【详解】点B 是抛物线y=﹣x2+4x+2的顶点,∴点B 的坐标为(2,6),2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,∴点P 的坐标为(2018,6),解析:24【解析】【详解】点B 是抛物线y =﹣x 2+4x +2的顶点,∴点B 的坐标为(2,6),2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx=的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.21.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.22.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.23.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题25.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形. 【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式, 得,2(1)40.6(1)a a --=+, 解得a 1=3.6,a 2=-1(舍去), 所以点G 坐标为(3.6,2.76). S △FHG =6.348(3)y=mx+m=m (x+1), 当x=-1时,y=0, 所以直线y=mx+m 延长QH ,交x 轴于点R , 由平行线的性质得,QR ⊥x 轴. 因为FH ∥x 轴, 所以∠QPH=∠QAR, 因为∠PHQ=∠ARQ=90°, 所以△AQR ∽△PQH, 所以QR QHAR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1), 因为n+1≠0, 所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得, 过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T,所以KD QRSK AR==0.6, 所以tan ∠KSD=tan ∠QAR , 所以∠KSD=∠QAR , 所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH, 所以PQ=CD ,所以四边形CDPQ 为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=716. 【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.27.(1)7;(2)日最低气温波动大. 【解析】 【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案 (2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可. 【详解】 解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃ (2)最高气温的平均数:5768465x ++++==高最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出,最低气温的平均数:0x =低 最低气温的方差为:23.6S =低 ∵22S S <低高 ∴日最低气温波动大. 【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键. 28.(1)49;(2)13【解析】 【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】 解:列表得:直左直直直直右右左右直右右右相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=31 93 .【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.30.(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小【解析】【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是:15[(7-8)2+3(8-8)2+(9-8)2]=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是:15[2(6-8)2+2(9-8)2+(10-8)2]=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.31.(1)x1=4,x2=﹣6;(2)x1=,x2=2【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x+1)2﹣25=0,(x +1)2=25, x +1=±5, x =±5﹣1, x 1=4,x 2=﹣6; (2)x 2﹣4x ﹣2=0, ∵a =1,b =﹣4,c =﹣2,∴△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =42±=,即x 1=,x 2=2. 【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.32.(1)x 1x 22)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可; (2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1, ∴△=b 2-4ac=(-3)2-4×1×1=5.∴==.即x 1x 2 (2)∵因式分解得 (x+3)(x-2)=0, ∴x+3=0或x-2=0, 解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.。
苏教版数学九年级上册 期末试卷测试卷(含答案解析)一、选择题1.一元二次方程x 2=-3x 的解是( ) A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-32.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.43.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .234.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .165.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23 B .1.15 C .11.5 D .12.5 6.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .17.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14 C .16D .13 8.cos60︒的值等于( ) A .12B .22C .32D .339.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根10.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .211.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×10912.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.14.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.15.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;16.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.17.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;18.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)19.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________21.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.22.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.23..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.24.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题25.已知二次函数22y =x mx --.(1)求证:不论m 取何值,该函数图像与x 轴一定有两个交点;(2)若该函数图像与x 轴的两个交点为A 、B ,与y 轴交于点C ,且点A 坐标(2,0),求△ABC 面积.26.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.27.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB 在两棵同样高度的树苗CE 和DF 之间,树苗高2 m ,两棵树苗之间的距离CD 为16 m ,在路灯的照射下,树苗CE 的影长CG 为1 m ,树苗DF 的影长DH 为3 m ,点G 、C 、B 、D 、H 在一条直线上.求路灯AB 的高度.28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.29.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.30.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?31.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.32.如图,在矩形 ABCD 中,CE⊥BD,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P,⊙P 交 CE、BD、BC 交于 F、G、H(任意两点不重合),(1)半径 BP 的长度范围为;(2)连接 BF 并延长交 CD 于 K,若 tan ∠KFC = 3 ,求 BP;(3)连接 GH,将劣弧 HG 沿着 HG 翻折交 BD 于点 M,试探究PMBP是否为定值,若是求出该值,若不是,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴EF CF BE AB ==,设EF ,则2BE x =,∴(2BF CF DF x ===+,∴(2CD x x ===,((22DE DF EF x x =+=+=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.4.B解析:B 【解析】 【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案. 【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种, ∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B . 【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.5.C解析:C 【解析】 【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..6.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.7.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.8.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.9.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.10.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x =13222+=1, ∵511122⎛⎫-=-- ⎪⎝⎭, ∴点(﹣12,m )和(52,14)关于对称轴对称, ∴m =14, 故选:C .【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.11.B解析:B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.二、填空题13.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.14.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.15.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.16.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,=:10,根据相同时刻的物高与影长成比例,得到160:80x=.解得x20故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.17.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.18.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.19.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.20.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E解析:2【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+,即:222(32)(13)m m m ++=+,解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.21.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.22.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.23.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.24.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、 解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 三、解答题25.(1)见解析;(2)10【解析】【分析】(1)令y =0得到关于x 的二元一次方程,然后证明△=b 2−4ac >0即可;(2)令y=0求出抛物线与x 轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为224()4(4)b ac m -=--⨯-=216m +,且20m ≥,所以2160m +>.所以该函数的图像与x 轴一定有两个交点.(2)将A (-1,0)代入函数关系式,得,2(1)40m -+-=,解得m=3,求得点B 、C 坐标分别为(4,0)、(0,-4).所以△ABC 面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x 轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x 轴的交点坐标是解答问题(2)的关键.26.(1)y=(x-1)2-4;(2)点G 坐标为(3.6,2.76),S △FHG =6.348;(3)m=0.6,四边形CDPQ 为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G 点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH ,交x 轴于点R ,由平行线的性质得证明△AQR ∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m 中,即可证明四边形CDPQ 为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y 轴交于点E (0,3-),顶点为C (1,4-),∴y=a(x-1)2-4,代入E (0,3-),解得a=1,2(1)4y x =--(223y x x =--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得,过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T, 所以KD QR SK AR==0.6, 所以tan ∠KSD=tan ∠QAR ,所以∠KSD=∠QAR ,所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD ,所以四边形CDPQ为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.27.m【解析】【分析】设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.【详解】解:设BC的长度为x m由题意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴GC CEGB AB=,即11x+=2ABHD HB =FDAB,即()3316x+-=2AB∴11x+=()3316x+-∴x=4∴AB=10答:路灯AB的高度为10 m.【点睛】此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.28.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】 (1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=,①当MN ONAB BC=时,∴=|x||﹣x+2|=13|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.29.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q坐标为:(﹣2,2)或(﹣1或(﹣1)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).【点睛】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.30.(1)b=-4,c=5;(2)当x =2时,二次函数有最小值为1【解析】【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.【详解】(1)把(0,5),(1,2)代入y =x 2+bx +c 得:512c b c =⎧⎨++=⎩, 解得:45b c =-⎧⎨=⎩, ∴4b =-,5c =;(2)由表格中数据可得:∵1x =、3x =时的函数值相等,都是2, ∴此函数图象的对称轴为直线3122x +==, ∴当x =2时,二次函数有最小值为1.【点睛】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.31.(1)见解析;(2)见解析.【解析】【分析】(1)先运用SAS 判定△AED ≌△FDE ,可得DF=AE ,再根据AE=AB=CD ,即可得出CD=DF ; (2)当GB=GC 时,点G 在BC 的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE =AB ,∠AEF =∠ABC =∠DAB =90°,EF =BC =AD ,∴∠AEB =∠ABE ,又∵∠ABE+∠EDA =90°=∠AEB+∠DEF ,∴∠EDA =∠DEF ,又∵DE =ED ,∴△AED ≌△FDE (SAS ),∴DF =AE ,又∵AE =AB =CD ,∴CD =DF ;(2)如图,当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H ,连接GH 交AD 于M ,∵GC =GB ,∴GH ⊥BC ,∴四边形ABHM 是矩形,∴AM =BH =12AD =12AG , ∴GM 垂直平分AD ,∴GD =GA =DA ,∴△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS )与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS )与性质的运用.32.(1)95102BP <<;(2)BP=1;(3)1125PM BP = 【解析】【分析】(1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案;(2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF∠=,得出EF 的值,再根据。
苏教版数学九年级上册 期末试卷测试卷(含答案解析)一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3C .3-D .33.已知3sin α=,则α∠的度数是( ) A .30° B .45°C .60°D .90° 4.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内5.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,956.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.7.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .68.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,159.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π- C .3π-D .3π-10.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是A .(6,0)B .(6,3)C .(6,5)D .(4,2)11.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=60012.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题13.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .14.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .15.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 16.抛物线y =3(x+2)2+5的顶点坐标是_____.17.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.18.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.19.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.20.一组数据3,2,1,4,x 的极差为5,则x 为______.21.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 22.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.23.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.26.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?27.现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64 m 的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3 m 处达到最高,高度为1 m . (1)求喷灌出的圆形区域的半径;(2)在边长为16 m 的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.29.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)30.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 31.将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG .(1)如图,当点E 在BD 上时.求证:FD =CD ; (2)当α为何值时,GC =GB ?画出图形,并说明理由.32.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且AB BD ADA B B D A D==''''''.判断△ABC和△A′B′C′是否相似,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B解析:B【解析】【分析】根据题干可以明确得到p,q是方程2330x x-=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程2330x x-=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 3.C解析:C【解析】根据特殊角三角函数值,可得答案.【详解】解:由3sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.5.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.6.D【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.7.C解析:C 【解析】 【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答. 【详解】如图,作直径BD ,连接CD ,∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°, ∴∠BDC =∠BAC =30°,∵BD 是直径,∠BCD 是BD 所对的圆周角, ∴∠BCD =90°, ∴BD =2BC =4,故选:C . 【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.8.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,+÷=15.5岁,∴中位数为(1516)2故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.9.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π故选B .10.B解析:B 【解析】试题分析:△ABC 中,∠ABC=90°,AB=6,BC=3,AB :BC=2.A 、当点E 的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB :BC=CD :DE ,△CDE ∽△ABC ,故本选项不符合题意;B 、当点E 的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB :BC≠CD :DE ,△CDE 与△ABC 不相似,故本选项符合题意;C 、当点E 的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB :BC=DE :CD ,△EDC ∽△ABC ,故本选项不符合题意;D 、当点E 的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB :BC=CD :CE ,△DCE ∽△ABC ,故本选项不符合题意. 故选B .11.C解析:C 【解析】 【分析】设快递量平均每年增长率为x ,根据我国2018年及2020年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x , 依题意,得:600(1+x )2=950. 故选:C . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题13.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键.14.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.15.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=12AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则=)21cm,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般.16.(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点解析:(﹣2,5)【解析】【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.17.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 18.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===,∴AB =''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''4C P =,∴''C P =∴线段CQ【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.19.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设AC =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得BD ==,因为BC =,所以BC x =+=x 2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 20.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.21.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴A B 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =2268+=10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.22.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 23.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.24.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.x 1=2,x 2=8.【解析】【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.26.(1)50;(2)8.26,8;(3)400【解析】【分析】(1)根据总数等于各组数量之和列式计算;(2)根据样本平均数和中位数的定义列式计算;(3)利用样本估计总体的思想解决问题.【详解】解:(1)本次调查一共抽取了4+10+15+11+10=50名;(2)调查获取的样本数据的平均数为6471081591110108.2650分 ; 4+10+15=29<26,所以中位数为8+8=82分; (3)根据题意得2000名居民中得分为10分的约有102000=40050名,∴社区工作人员需准备400份一等奖奖品.【点睛】本题考查条形统计图,读懂图形,从图形中得到必要的信息是解答此题的关键,条形统计图的特点是能清楚的反映出各个项目的数据.27.(1)8m ;(2)不可以,水管高度调整到0.7m ,理由见解析.【解析】【分析】(1)根据题意设最远的抛物线形水柱的解析式为2(3)1y a x =-+,然后将(0,0.64)代入解析式求得a 的值,然后求解析式y=0时,x 的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为2(3)1y a x =-+,将(0,0.64)代入解析式,得910.64a +=解得:125a =- ∴最远的抛物线形水柱的解析式为21(3)125y x =--+ 当y=0时,21(3)1025x --+= 解得:128;2x x ==-所以喷灌出的圆形区域的半径为8m ;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r ,则2r 2r∴在Rt△AMN 中,22216)(162)r r r -+-=(2(162)2560r r -++=解得:8r=+(其中816+>,舍去)∴88.5r=+≈设最远的抛物线形水柱的解析式为2(3)1y a x=-+,将(8.5,0)代入25.51=0a+解得:4=121a-∴24(3)1121y x=--+当x=0时,y=850.7121≈∴水管高度约为0.7m时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键. 28.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得22-2y x xy x⎧=+⎨=⎩﹣,解得2xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得13k bk b=+⎧⎨-=-+⎩,解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.29.(1)x =﹣3或x =1;(2)x =1或x =4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x 2+2x ﹣3=0,∴(x+3)(x ﹣1)=0,∴x =﹣3或x =1;(2)∵(x ﹣1)2=3(x ﹣1),∴(x ﹣1)[(x ﹣1)﹣3]=0,∴(x ﹣1)(x ﹣4)=0,∴x =1或x =4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.30.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCE =90︒ ,∴∠OCA +∠ECF =90︒,∵OC =OA ,∴∠OCA =∠CAB .又∵∠CAB =∠E ,∴∠OCA =∠E ,∴∠E +∠ECF =90︒,∴∠EFC =180O -(∠E +∠ECF ) =90︒.∴∠EFC =∠ACB=90︒ ,∴OE ∥BC .(2)由(1)知,OE ∥BC ,∴∠E =∠BCD .在Rt △OCE 中,∵AB =12,∴OC =6,∵tan E =tan ∠BCD =OC CE,∴468tan3OCCEDCB==⨯=∠.∴OE2=O C2+CE2=62+82,∴OE=10又由(1)知∠EFC =90︒,∴∠AFO=90︒.在Rt△AFO中,∵tan A =tan E=34,∴设OF=3x,则AF=4x.∵OA2=OF2+AF2,即62=(3x)2+(4x)2,解得:65 x=∴185 OF=,∴18321055 EF OE OF=-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.31.(1)见解析;(2)见解析.【解析】【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB =GC 时,点G 在BC 的垂直平分线上,分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H ,连接GH 交AD 于M ,∵GC =GB ,∴GH ⊥BC ,∴四边形ABHM 是矩形,∴AM =BH =12AD =12AG , ∴GM 垂直平分AD ,∴GD =GA =DA ,∴△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG =60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS )与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS )与性质的运用.32.△ABC ∽△A 'B 'C ',理由见解析【解析】【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.【详解】△ABC ∽△A 'B 'C ',理由:∵==''''''AB BD AD A B B D A D∴△ABD ∽△A 'B 'D ',∴∠B =∠B ',∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中 ∵=''''AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.【点睛】 本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.。
苏教版九年级数学上册 期末试卷(Word 版 含解析) 一、选择题 1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π 2.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( ) A .5B .4C .3D .2 4.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =5.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC =D .2AC AE= 6.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-2 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--8.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =9.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣310.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A.20°B.40°C.70°D.80°11.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233π-B.233π-C.3π-D.3π-12.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.34二、填空题13.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.14.如图,AB、CD、EF所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)15.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.16.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .17.点P 在线段AB 上,且BP AP AP AB=.设4AB cm =,则BP =__________cm . 18.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.19.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.20.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.21.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.22.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.23.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.24.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题25.(1)解方程:2670x x +-=(2)计算:)04sin 45831tan 30︒--︒ 26.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?27.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.28.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=029.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.30.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB=30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.31.如图,在平面直角坐标系中,⊙O 的半径为1,点A 在x 轴的正半轴上,B 为⊙O 上一点,过点A 、B 的直线与y 轴交于点C ,且OA 2=AB •AC .(1)求证:直线AB 是⊙O 的切线;(2)若AB =3,求直线AB 对应的函数表达式.32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π,故选:B .【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.D解析:D【解析】【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.3.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.4.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 5.D解析:D【解析】【分析】 只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.本题考查了二次函数的最值.7.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.C解析:C【解析】【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积.【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90°∴△ABC ≌△ADE (AAS )∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a ,CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得,CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2,解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF=12×(a+4a)×4a=10a2=25x2.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.9.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.11.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =2602123602π⨯-⨯=23π 故选B . 12.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题13.1, ,【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
苏教版九年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 4.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=05.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或66.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45°7.已知52xy=,则x yy-的值是()A.12B.2 C.32D.238.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<19.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断10.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.众数C.平均数D.中位数11.二次函数y=3(x+4)2﹣5的图象的顶点坐标为()A.(4,5)B.(﹣4,5)C.(4,﹣5)D.(﹣4,﹣5)12.如图,△AOB为等腰三角形,顶点A的坐标(2,5),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(203,103)B.(163,453)C.(203,453)D.(163,43)二、填空题13.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.14.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.15.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 17.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 18.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)19.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .20.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).21.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).22.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).23.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 27.已知二次函数y =x 2+bx +c 的函数值y 与自变量x 之间的对应数据如表: x … ﹣1 0 1 2 3 4 … y…1052125…(1)求b 、c 的值;(2)当x 取何值时,该二次函数有最小值,最小值是多少?28.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).29.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.30.如图,在平面直角坐标系中,一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,⊙P5P在x轴上运动.(1)如图1,当圆心P的坐标为(1,0)时,求证:⊙P与直线AB相切;(2)在(1)的条件下,点C为⊙P上在第一象限内的一点,过点C作⊙P的切线交直线AB于点D,且∠ADC=120°,求D点的坐标;(3)如图2,若⊙P向左运动,圆心P与点B重合,且⊙P与线段AB交于E点,与线段BO相交于F点,G点为弧EF上一点,直接写出12AG+OG的最小值.31.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.32.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB =MG 又∵MD ⊥BC ∴BD =DG ∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.3.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .4.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意; D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.5.D解析:D 【解析】 【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN ACAC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可. 【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN ACAC CB =, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒, ACN CHM ∴∆∆∽,∴CN MHAC CH=, ∴123516685kk k=-, 1k ∴=, 4BM ∴=.综上所述,4BM =或6. 故选:D . 【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.6.C解析:C 【解析】 【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解. 【详解】解:∵OA=OB ,∠ABO=35°, ∴∠BAO=∠ABO=35°, ∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°. 故选:C . 【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.7.C解析:C 【解析】 【分析】设x=5k (k ≠0),y=2k (k ≠0),代入求值即可.【详解】 解:∵52x y = ∴x=5k (k ≠0),y=2k (k ≠0) ∴52322x y k k y k --== 故选:C .【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.8.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 9.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O 的直径为4,∴⊙O 的半径为2,∵圆心O 到直线l 的距离是2,∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.故选:B .【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r ,圆心到直线的距离是d ,当d =r 时,直线和圆相切,当d >r 时,直线和圆相离,当d <r 时,直线和圆相交.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=,即43O'F 22⋅=,∴.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.二、填空题13.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.14.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.15.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 16.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.18.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB = 【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A =∠A ,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B =∠1或AD AE AB AC=. ∵∠B =∠1,∠A =∠A ,∴△ADE ∽△ABC ; ∵AD AE AB AC=,∠A =∠A , ∴△ADE ∽△ABC ; 故答案为∠B =∠1或AD AE AB AC= 【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 19.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 20.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.21.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S 甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S 甲2 >S 乙2, 所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.22.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=mx2 +4mx+m2 +1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.23.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】 解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解. 三、解答题25.该段运河的河宽为303m .【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.27.(1)b=-4,c=5;(2)当x =2时,二次函数有最小值为1【解析】【分析】(1)利用待定系数法求解即可;(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.【详解】(1)把(0,5),(1,2)代入y =x 2+bx +c 得:512c b c =⎧⎨++=⎩, 解得:45b c =-⎧⎨=⎩, ∴4b =-,5c =;(2)由表格中数据可得:∵1x =、3x =时的函数值相等,都是2, ∴此函数图象的对称轴为直线3122x +==, ∴当x =2时,二次函数有最小值为1.【点睛】 本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.28.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==, 在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.29.(1)②;(2)±1;(3)23<B x 373B x <23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k 的正负分类讨论,作图后根据最美三角形的定义求解EF ,利用勾股定理求解AF ,进一步确定∠AOF 度数,最后利用勾股定理确定点F 的坐标,利用待定系数法求k .(3)本题根据⊙B 在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB 的度数,继而按照最美三角形的定义,分别以△BND ,△BMN 为媒介计算BD 长度,最后与OD 相减求解点B 的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线,∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-,∵1=2PMO S PM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEF S AE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==∵A(0,2),即OA=2, ∴在直角△AFO 中,22=2OF OA AF AF -==,∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D ,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°,在直角△BDN 中,sin BN BDN BD ∠=, 故23=sin sin 60?BN BN BD BN BDN =∠. ∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=3222BMN S MN BM MN MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33, 则23<B x <33. ②当⊙B 在直线CD 左侧时,同理可得:73B x <23- 故综上:23<B x 3733-<B x <23- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.30.(1)见解析;(2)D 233);(337 【解析】。
苏教版数学九年级上册 期末试卷(Word 版 含解析)一、选择题 1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上 B .点P 在O 外 C .点P 在O 内 D .无法确定 3.一元二次方程x 2=-3x 的解是( ) A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm πC .2130cm πD .2155cm π 5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 6.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .407.下列图形,是轴对称图形,但不是中心对称图形的是( ) A . B . C . D .8.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.2 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .5 10.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80° 11.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >> 12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.14.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.15.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.16.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____. 18.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.19.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.20.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.21.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.22.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.23.若a b b -=23,则a b的值为________. 24.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.∠=______°;(1)连接AC.则AC=______,DAC(2)当B C''恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.27.已知二次函数y=x2-22mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.28.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.29.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)30.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.31.已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.32.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045注:月销售利润=月销售量×(售价-进价)(1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m 的值为 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 3.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.4.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A .【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.10.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.11.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12.B解析:B【解析】【分析】【详解】解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.15.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.16.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 18.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =,2n m∴=,()3m n m∴+=最大,∴当m最大时,()3m n m+=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x=-=⨯-时,28128mn m==最大,94m∴=最大,m n∴+的最大值为927344⨯=.故答案为:274.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.19.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.20.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.21.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.23.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.24.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163故答案为:3.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.三、解答题25.(1)20%;(2)8640万元.【解析】 【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算. 【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得,5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b (a 、b 、x 、n 分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)22,30;(2)2322CE =-;(3)CC '的长22π=【解析】【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=- 易证AB D DC E ''∆∆∽ ∴C E DC BD AB ''='' ∴6222CE -= ∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长602222π⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.27.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-2mx +m 2+m -1=0∵b 2-4ac =(-2m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-2mx +m 2+m -1=0有两个不相等的实数根∴二次函数y=x2-mx+m2+m-1图像与x轴有两个公共点(2)解:平移后的解析式为: y=x2-mx+m2+m-1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k≥34.【点睛】本题考查了二次函数图象与几何变换以及图象与x轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.28.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是29.29.301)米【解析】【分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt △ACD 中,∵tan ∠ACD =AD CD , ∴CD =AD =x ,∴BD =BC +CD =x +60,在Rt △ABD 中,∵tan ∠ABD =AD BD, ∴3(60)3x x =+, ∴30(31)x =+米,答:山高AD 为30(31)+米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.30.(1)证明见解析;(2)2933()22cm . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:cm .∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm 扇形 31.(1)证明见解析;(2)k ≥34. 【解析】 【分析】 (1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.32.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.。
苏教版九年级上册数学 期末试卷测试卷(含答案解析) 一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上 B .点P 在O 外 C .点P 在O 内 D .无法确定 2.若25x y =,则x y y +的值为( ) A .25 B .72 C .57 D .753.若将二次函数2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 4.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断5.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)-- 6.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④7.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③8.下列方程中,是一元二次方程的是( )A .2x +y =1B .x 2+3xy =6C .x +1x =4D .x 2=3x ﹣2 9.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x10.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或11.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 12.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题13.已知∠A =60°,则tan A =_____.14.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.15.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)16.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .17.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.18.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.19.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .20.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.21.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.22.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.23.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.24.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MN PM=_____.三、解答题25.(1)解方程:234x x -=;(2)计算:2tan 60sin 452cos30︒+︒-︒26.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.27.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.28.解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=029.如图,已知二次函数y=ax2+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣12x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:2.(1)求这个二次函数的表达式;(2)若点M为x轴上一点,求MD+5MA的最小值.30.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?31.如图,在矩形 ABCD 中,CE ⊥BD ,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P ,⊙P 交 CE 、BD 、BC 交于 F 、G 、H (任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K ,若 tan ∠KFC = 3 ,求 BP ;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PM BP是否为定值,若是求出该值,若不是,请说明理由.32.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 2.D解析:D【解析】【分析】由已知可得x 与y 的关系,然后代入所求式子计算即可.【详解】 解:∵25x y =, ∴25x y =, ∴2755y y x y y y ++==.故选:D.【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.3.C解析:C【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.4.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.5.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 6.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.7.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.8.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B 、原式方程为二元二次方程,不符合题意;C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意,故选:D .【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.9.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 10.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.11.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511 BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.解析:3【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°=3.故答案为:3.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.15.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.16.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.17.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72=故答案为:7 2 .【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.18.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 19.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.20.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.点睛:知道“从2,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.21.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C =108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.22.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.23.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积 ∴飞镖落在阴影部分的概率是3193=, 故答案为13. 【点睛】 此题主要考查概率的求解,解题的关键是熟知几何概率的公式.24.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM . 三、解答题25.(1)x 1=-1,x 2=4;(2)原式=12【解析】【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)234x x -=(x+1)(x-4)=0∴x 1=-1,x 2=4;(2)原式2()2=12【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.26.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=, ∵BD =3,AD =4,22BD AD + ∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.27.(1)见解析;(2)12【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴2AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC , ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.28.(1)x 1=3,x 2=﹣7;(2)x 1=72+x 2=72- 【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x 2+4x ﹣21=0(x ﹣3)(x+7)=0解得x 1=3,x 2=﹣7;(2)x 2﹣7x ﹣2=0∵△=49+8=57∴x解得x 1x 2 【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.29.(1)25552443y x x =--+;(2.【解析】【分析】(1)先把D 点坐标代入y =﹣12x +b 中求得b ,则一次函数解析式为y =﹣12x ﹣3,于是可确定A (﹣6,0),作EF ⊥x 轴于F ,如图,利用平行线分线段成比例求出OF =4,接着利用一次函数解析式确定E 点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),利用勾股定理得到AD =Rt △AMH ∽Rt △ADO ,利用相似比得到MHAM ,加上MD =MD ′,MDMA =MD ′+MH ,利用两点之间线段最短得到当点M 、H 、D ′共线时,MD的值最小,然后证明Rt △DHD ′∽Rt △DOA ,利用相似比求出D ′H 即可. 【详解】解:(1)把D (0,﹣3)代入y =﹣12x +b 得b =﹣3, ∴一次函数解析式为y =﹣12x ﹣3, 当y =0时,﹣12x ﹣3=0,解得x =﹣6,则A (﹣6,0), 作EF ⊥x 轴于F ,如图,∵OD ∥EF , ∴AO OF =AD DE =32, ∴OF =23OA =4, ∴E 点的横坐标为4, 当x =4时,y =﹣12x ﹣3=﹣5, ∴E 点坐标为(4,﹣5),把A (﹣6,0),E (4,﹣5)代入y =ax 2+4ax +c 得3624016165a a c a a c -+=⎧⎨++=-⎩,解得52453a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为25552443y x x =--+; (2)作MH ⊥AD 于H ,作D 点关于x 轴的对称点D ′,如图,则D ′(0,3),在Rt △OAD 中,AD =2236+=35,∵∠MAH =∠DAO ,∴Rt △AMH ∽Rt △ADO ,∴AM AD =MH OD ,即35=3MH , ∴MH =5AM , ∵MD =MD ′, ∴MD +5MA =MD ′+MH , 当点M 、H 、D ′共线时,MD +5MA =MD ′+MH =D ′H ,此时MD +5MA 的值最小, ∵∠D ′DH =∠ADO ,∴Rt △DHD ′∽Rt △DOA ,∴D H OA '=DD DA ',即6D H '=35,解得D ′H =125, ∴MD +5MA 的最小值为1255.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.30.(1)乙平均数为8,方差为0.8;(2)乙.【解析】【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S 甲2=3.2,S 乙2=0.8,∴S 甲2>S 乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛. 【点睛】 本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 21n=[(x 1x -)2+(x 2x -)2+…+(x n x -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.31.(1)95102BP <<;(2)BP=1;(3)1125PM BP = 【解析】【分析】 (1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案;(2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF∠=,得出EF 的值,再根据△BEF ∽△FEG ,求出EG 的值,进而可求出BP 的值; (3)设圆的半径,利用三角函数表示出PO ,GO 的值,看PP G '∆用面积法求出P Q ',在P GQ '∆中由勾股定理得出MQ 的值,进而可求出PM 的值即可得出答案.【详解】(1)当G 点与E 点重合时,BG=BE ,如图所示:∵四边形ABCD 是矩形,AB=4,BC=3,∴BD=5,∵CE ⊥BD ,∴1122BC CD BD CE ⋅=⋅, ∴125CE =, 在△BEC 中,由勾股定理得:221293()55BE =-=, ∴910BP =,当点G 和点D 重合时,如图所示:∵△BCD 是直角三角形,∴BP=DP=CP ,∴52BP =, ∵任意两点都不重合,∴95102BP <<, (2)连接FG ,如图所示:∵∠KFC=∠BFE ,tan ∠KFC = 3,∴tan 3BFE ∠=,∴3BE EF=, ∴335BE EF ==, ∵BG 是圆的直径,∴∠BFG=90°,∴∠GFE+∠BFE=90°,∵CE ⊥BD ,∴∠FEG=∠FEB=90°,∴∠GFE+∠FGE=90°,∴∠BFE=∠FGE∴△BEF ∽△FEG ,∴2EF BE EG =⋅,∴99255EG =, ∴15EG =, ∴BG=EG+BE=2,∴BP=1,(3)PM BP为定值, 过P '作P Q BD '⊥,连接P G ',P M ',P P '交GH 于点O ,如下图所示:设5BP x PG P G P M ''====,则3PO P O x '==,4GO x =,∴1122P Q PG GO PP ''⋅=⋅, ∴245P Q x '=, ∴2275MQ GQ P G P Q x ''==-=, ∴145MG x =, ∴115PM PG MG x =-=, ∴1111:5525PM x x BP == 【点睛】本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键.32.(1)3y x ;(2)3;(3)APC ∆面积的最大值为278.【解析】【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积; (3)根据题意过点P 作PE y 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m 进而进行分析.【详解】解:(1) 分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,;将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x .(2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0),所有S APC S APG S ACG =-11646312922=⨯⨯-⨯⨯=-=3; (3)过点P 作PE y 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94. ∵()1322APC C A S PE x x PE ∆=⋅-=, ∴APC ∆面积的最大值为278. 【点睛】 本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.。
苏教版数学九年级上册 期末试卷(Word 版 含解析)一、选择题1.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .702.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 3.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1B .k≥-1C .k <-1D .k≤-14.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .125.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤6.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58π B .58πC .54πD .54π 7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,108.二次函数y =()21x ++2的顶点是( ) A .(1,2) B .(1,−2)C .(−1,2)D .(−1,−2)9.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14 C .16D .13 10.cos60︒的值等于( ) A .12B .22C .32D .3311.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似12.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题13.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .14.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.15.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__. 16.关于x 的方程220kx x --=的一个根为2,则k =______.17.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 18.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.19.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).20.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.21.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.22.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.23.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)24.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.26.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m 的值为 .27.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.28.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.29.如图,矩形ABCD中,AB=6cm,AD=8cm,点P从点A出发,以每秒一个单位的速度沿A→B→C的方向运动;同时点Q从点B出发,以每秒2个单位的速度沿B→C→D的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t秒.(1)当t=时,两点停止运动;(2)设△BPQ的面积面积为S(平方单位)①求S与t之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?30.计算(12020 318(1)2⎛⎫+-⎪⎝⎭(2)2430x x -+=31.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.32.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式; (3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.4.B解析:B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法.5.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d,圆的半径为r,当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交. 6.B解析:B【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.7.D解析:D 【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.8.C解析:C 【解析】 【分析】因为顶点式y=a (x-h )2+k ,其顶点坐标是(h ,k ),即可求出y=()21x ++2的顶点坐标. 【详解】解:∵二次函数y=()21x ++2是顶点式, ∴顶点坐标为:(−1,2); 故选:C. 【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.9.A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.11.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.12.A解析:A【解析】根据黄金比的定义得:512APAB-=,得5142522AP-=⨯=- .故选A.二、填空题13.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BEN K的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.14.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,∴=,解得:AD=3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵ADAB=AEAC,AE=2,EC=6,AB=12,∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.15.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 16.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.17.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.18.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).19.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).20.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.21.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 =,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.22.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,5∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.23.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.24.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9y x =或16y x= 【点睛】 本题考查一次函数与反比例函数的性质,理解题意找出AC 的最长值是通过圆心的直线是解题关键.三、解答题25.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x ++++==高 最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出, 最低气温的平均数:0x =低最低气温的方差为:2 3.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.26.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50 ∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.27.(1)(3,0)m ,2(,4)m m ;(2)①213y x x =-++,②2955y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】 解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:33m =(33m =-舍去), ∴二次函数的关系式为:22313y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =(15m =-舍去), ∴二次函数的关系式为:221595y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.28.(1)①(6,33,332)()()()()24343033313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩【解析】【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,23),∴点B的坐标为:(6,23);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3∴3∴AE=3tan60PE=,∴OE=OA-AE=6-3=3,∴点P的坐标为(3,3故答案为:①(6,3),②(3,3(2)①当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l ∥BC ∥OA , ∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =433(3+x ) ∴43433x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH =3(x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ =43(3+x )﹣23x (-3) ∴231333S x x =-+-. ③当5<x ≤9时,如图∵CE ∥DP∴CO CEDO DP=∴2333CEx=∴23CE x=263BE x=-S=12(BE+OA)•OC=3(12﹣23x)∴23123S x=-+.④当x>9时,如图∵AH∥PI∴AO AHOI PI=∴633x=∴183AH=S=12543.综上:243430333133335231235935439xxx x xSx xx⎧+≤≤⎪⎪⎪-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪()()()().【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.29.(1)7;(2)①当0<t <4时,S =﹣t 2+6t ,当4≤t <6时,S =﹣4t+24,当6<t≤7时,S =t 2﹣10t+24,②t =3时,△PBQ 的面积最大,最大值为9【解析】【分析】(1)求出点Q 的运动时间即可判断.(2)①的三个时间段分别求出△PBQ 的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD 是矩形,∴AD =BC =8cm ,AB =CD =6cm ,∴BC+AD =14cm ,∴t =14÷2=7,故答案为7.(2)①当0<t <4时,S =12•(6﹣t )×2t =﹣t 2+6t . 当4≤t <6时,S =12•(6﹣t )×8=﹣4t+24. 当6<t≤7时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+24. ②当0<t <4时,S =12•(6﹣t )×2t =﹣t 2+6t =﹣(t ﹣3)2+9, ∵﹣1<0,∴t =3时,△PBQ 的面积最大,最小值为9.当4≤t <6时,S =12•(6﹣t )×8=﹣4t+24, ∵﹣4<0,∴t =4时,△PBQ 的面积最大,最大值为8,当6<t≤7时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+24=(t ﹣5)2﹣1, t =7时,△PBQ 的面积最大,最大值为3,综上所述,t =3时,△PBQ 的面积最大,最大值为9.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.30.(1)2;(2)13x =,21x =【解析】【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=2112-+=(2)解:(3)(1)0x x --=30x -=或10x -=123,1x x ∴==【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.31.(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(12)+或(12)-.【解析】【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解;(2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:()219y a x =-+,将点A 的坐标代入上式并解得:1a =-,故抛物线的表达式为:228y x x =-++…①,则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得:直线AB 的表达式为:21y x =-;(2)存在,理由:二次函数对称轴为:1x =,则点()1,1C ,过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -, ∵2DAC DCM S S ∆∆=,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯, 解得:1x =-或5(舍去5),故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++,①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++,解得:6s =或﹣4,故点()6,16P -或()4,16--;②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =± 故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.32.(1)A(-4,0)、B (0,-2);(2)213y x-222x =+;(3)①(-1,3)或(-3,-2);②(-2,-3).【解析】【分析】。
苏教版九年级上册数学 期末试卷(Word 版 含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定3.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠06.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4 7.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm πB .290cm πC .2130cm πD .2155cm π8.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④ 9.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( )A .-2B .2C .-1D .110.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ),A .19 B .14C .16D .1312.下列方程中,是一元二次方程的是( )A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣2二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).15.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________16.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+这个正方形的边长为_____________17.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 18.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.19.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.20.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________. 21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.23.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.24.已知234x y z x z y+===,则_______ 三、解答题25.如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ; (2)求△ABC 与△DEC 的面积比.26.学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下: 得分 10 9 8 7 6 人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么? 27.在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.28.从甲、乙两台包装机包装的质量为300g的袋装食品中各抽取10袋,测得其实际质量如下(单位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分别计算甲、乙这两个样本的平均数和方差;(2)比较这两台包装机包装质量的稳定性.29.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?30.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB 与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)31.化简并求值:22+24411m m mm m++÷+-,其中m满足m2-m-2=0.32.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用圆内接四边形的对角互补计算∠C 的度数. 【详解】∵四边形ABCD 内接于⊙O ,∠A =400, ∴∠C =1800-400=1400, 故选D. 【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.B解析:B 【解析】【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P 点应该在以BC 为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决. 【详解】如图,∵四边形ABCD 为矩形, ∴AB=CD=3,∠BCD=90°, ∴∠PCD+∠PCB=90°, ∵PBC PCD ∠=∠, ∴∠PBC+∠PCB=90°, ∴∠BPC=90°,∴点P 在以BC 为直径的圆⊙O 上,在Rt △OCD 中,OC=118422BC ,CD=3, 由勾股定理得,OD=5,∵PD ≥OD OP ,∴当P ,D,O 三点共线时,PD 最小, ∴PD 的最小值为OD-OP=5-4=1.故选:B. 【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P 点的运动轨迹是解答此题的关键.4.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<,解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.5.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.6.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.7.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.8.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=O C=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.9.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.12.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O ,E ,D 在同一直线上时,DE 的最小值等于OD ﹣OE =3,∴BC 的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.15.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC 是⊙O 的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.16.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.17.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.18.(,2).【解析】【分析】【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x ,则AE=4-x ,在RT△A BE 中,∵EA2+AB2=BE2,∴(4-x )2+22=解析:(32,2). 【解析】【分析】【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.19.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC222268OB OC+=+=10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.20.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).22.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 23.1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.24.2【解析】【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案. 【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题25.(1)见解析;(2)12 【解析】【分析】(1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴2AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC, ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.26.(1)8.6;(2)300;(3)不同意,理由见解析.【解析】【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)103938271618.633211x ⨯+⨯+⨯+⨯+⨯==++++ ∴这10名同学这次测试的平均得分为8.6分; (2)3350030010+⨯=(人) ∴这 500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.27.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(2(2--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S S S =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO SS S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC Sm m =--有最大值, 当()33m 212-=-=-⨯-时,PAC S 有最大值,此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫- ⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 17=- 又QG=3,∴327Q G x x =+=∴34(27,0),(27,0)Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.28.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.29.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58-2x),利用矩形的面积公式列出方程并解答.【详解】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4,当x=4时,58﹣8=50,∵墙的长度为20m,∴x=4不符合题意,当x=25时,58﹣2x=8,∴矩形的长为25m,宽为8m,答:矩形长为25m,宽为8m.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.30.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC的外接圆,连接BO并延长交AD于点P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC ∽△CDP . 【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.31.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零. 32.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14. 考点:列表法与树状图法.。
九年级数学第一学期期末试卷一、选择题:你一定能选对!(每小题3分,共24分。
在每小题给出的四个选项中,只有1项是符合题目要求的,请将正确答案的序号写在答题纸相应的表格内) 1.下列二次根式中,最简二次根式是 A .2 3B .12 C错误!未指定书签。
D .a 2b2.将二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是A .y =x 2+3B .y =x 2-3C .y =(x+3)2D .y =(x-3)23.下列计算中,不正确的是A .B .(12 )-2=4C .(π-3.14)0=1D .(-x )3·(-x )2=x 54.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是A .相交B .内含C .内切D .外切5.在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条宽度相等的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2816cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 A .(60+x )(40+2x )=2816 B .(60+x )(40+x )=2816 C .D .(60+2x )(40+2x )=28166.如图,量角器外缘上有A 、B 两点,它们所表示的读数分别是80°、50°,则∠ACB 应为 A .25° B .15° C .30° D .50° 7.已知下列命题:①若00a b >>,,则0a b +>;②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个8.若关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,则p ,q 的值分别是 A .-3,2 B .3,-2 C .2,-3 D .2,3 二、能填得又快又准吗?(每题3分,计30分)9.我市某天的最高气温是8℃,最低气温是-1℃,那么当天的最大温差是 . 10.二次函数y =x 2+6x -5的图像与y 轴交点坐标是 .11.等腰梯形两底长分别为5cm 和11cm ,一个底角为60°, 则腰长为______________. 12.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,P 为CD 中点,若点P 在以AC 为直径的圆周上,则∠A = .第6题图... ... . . . . 10 50 8090 0B A 180A70°第15题图13.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为 ;14.若二次三项式12++kx x 是一个完全平方式,则k 的值是 .15.如图所示,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是70° ,为了监控整个展厅,最少..还.需.在圆形边缘上安装这样的监视器 台. 16.在实数范围内定义一种运算“*”,其规则为a *b =a 2-b 2,根据这个规则,方程(x +2)*3=0的解为 .17.已知⊙O 1和⊙O 2相切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长是 .18.如图,两个同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6、3,则图中阴影部分的面积为 . 三、做一做,你肯定能行!(计96分) 19.计算:(每小题6分,计12分)(1)0)12(39-+-- (2) 183)3232731(+⋅- 20.解下列方程:(每小题6分,计12分)(1) (2x -1)2=4 (2) (x +3)2=2x +5. 21.(8分)已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE =CG ,连接BG 并延长交DE 于F . (1)求证:△BCG ≌△DCE ;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE ′,判断四边形E ′BGD 是什么特殊四边形?并说明理由.22.(8分)张扬、王明两位同学10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示.A BCD EF GE ′ A BO第13题图 A . . BC D PO第12题图王明同学张扬同学(1)根据图中提供的数据填写下表:(2)如果将90分以上(含90分)(3)根据图表信息,请你对这两位同学各提一条不超过2023.(8分)用圆规、直尺作出下图:(保留痕迹,不写作法)24、(8分)某农科所种有芒果树300棵,成熟期一到,随意摘下其中10棵树的芒果,分别称得质量如下(单位:kg ):10,13,8,12,11,8,9,12,8,9.⑴样本的平均数是___________kg ,估计该农科所所种芒果的总产量为__________kg ;⑵在估产正确的前提下,计划两年后的产量达3630kg ,求这两年产量的平均增长率.25、(8分)阅读材料:若一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2= -b a ,x 1x 2= ca根据上述材料解决下列问题: 已知关于x 的一元二次方程x 2 = 2(1-m )x -m 2 有两个实数根:x 1,x 2. (1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值. 26.(10分)如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并说明你的理由;(2)若AB = 2 ,BC =2,求⊙O 的半径.27.(10分)如图,路边有一根电线杆AB 和一块半圆形广告牌,在太阳光照射下,杆顶A 的影子刚好落在半圆形广告牌的最高处G ,而半圆形广告牌的影子刚好落在平地上一点E ,若BC =5米,半圆形的广告牌直径为6米,DE =2米.(1)求电线杆落在广告牌上的影子长(即︵CG 的长). (2)求电线杆的高度.28.(12分)如图所示,矩形ABCD 中,AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线..DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,过ΔFMN 三边的中点作ΔPQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明ΔFMN ∽ΔQWP ;(2)设0≤x ≤4.试问x 为何值时,ΔPQW 为直角三角形?(3)试用含的代数式表示MN 2,并求当x 为何值时,MN 2最小?求此时MN 2的值.A BCDF .备用图ABC D F MNP Q W九年级数学参考答案及评分标准一、选择题:(每题3分,共24分)二、填空题:(每题3分,共30分,若是两解,少一解扣1分)9. 9℃. 10. (0,-5). 11.6cm . 12. 60°. 13.22cm . 14.2±.15.2. 16.1或-5.17.153或.18.π339-. 三、解答题:(分步得分)19.(1)1-----(4+2分);(2)3-----(4+2分) 20.(1)x 1=1.5,x 2=-0.5 (4+2分) (2)x 1=x 2=-2(4+2分) 21.(1)略(3分)(2)平行四边形(2分)理由略(3分) 22.(1)张扬 80、60、20 王明 80、90(5分);(2)王明(1分);(3)建议正确2分 23.方法正确7分,结论1分 24.(1)10、3000;(1+1分) (2)设增长率为x,得方程3630)1(30002=+x -----(4分), x 1=0.1,x 2=-2.1(舍去)-----(1分)答略-----(1分)25.(1) 5.0≤m ----(4分)(2) y=2-2m,当m=0.5时,y 最小值=1-----(4分)26.(1)相切,(1分)连结OE,证三角形OEC 为直角三角形即可,(4分其它方法正确,同样得分) (2)由△ECD 与△ACB 相似得ED=1,则AE=1,从而得AO=0.5AF=0.25AC=46---(5分) 27.(1)1.5π----(4分)(2)在Rt △OEF 中得EF=4;作GH ⊥AB 于H,由△GAH 与 △EOF 相似得AH=6 得AB=9米.----(6分)28. 解:(1)由题意可知P 、W 、Q 分别是ΔFMN 三边的中点, ∴PW 是ΔFMN 的中位线,即PW ∥MN ∴ΔFMN ∽ΔQWP------3分(2)由(1)得,ΔFMN ∽ΔQWP ,故当ΔQWP 为直角三角形时,ΔFMN 为直角三角形,反之亦然. 由题意可得 DM =BN =x ,AN =6-x ,AM =4-x ,由勾股定理分别得 2FM =24x +,2MN =2)4(x -+2)6(x -,2FN =2)4(x -+16-----5分 ①当2MN =2FM +2FN 时,2)4(x -+2)6(x -=24x ++2)4(x -+16解得 34=x -----6分 ②当2FN =2FM +2MN 时,2)4(x -+16=24x ++2)4(x -+2)6(x - 此方程无实数根----7分③2FM =2MN +2FN 时,24x +=2)4(x -+2)6(x -+2)4(x -+16 解得 101=x (不合题意,舍去),42=x ------8分 综上,当34=x 或4=x 时,ΔPQW 为直角三角形;------9分 (3)①当0≤x ≤4,即M 从D 到A 运动时,MN ≥AN ,AN =6-x ,故只有当x =4时,MN 的值最小,MN 2的值也最小,此时MN =2,MN 2=4 ----------10分②当4<x≤6时,2MN =2AM +2AN =2)4(-x +2)6(x -=2)5(22+-x当x =5时,MN 2取得最小值2,∴当x =5时, MN 2的值最小,此时MN 2=2.-------12分。