高中集合测试题(含答案)
- 格式:doc
- 大小:275.50 KB
- 文档页数:6
高中数学集合练习题及答案-百度文库一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.已知集合{}0,1,2,3,4,5,6,7A =,{}1,2,4,6B =,则A B =( ) A .{}2,4B .{}1,2,4C .{}1,2,4,6D .{}2,4,63.已知{}24,A y N y x x x Z =∈=-+∈,{}ln 1B x x =>,则()R A B =( )A .{0,1,2}B .{1,2}C .{1,2,3,4}D .{0}4.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( )A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<5.已知集合{}28xA x =≤,{}16B x x =-≤≤,则A B ⋃=( )A .(,6]-∞B .[1,6]-C .[1,3]-D .(0,6]6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( ) A .A C ⋂=∅ B .A C A ⋃= C .B C B =D .A B C =7.设集合{}09A x x ∈≤≤N =,{}1,2,3,6,9,10B =-,则A B =( ) A .{}1,4,5,7,8B .{}0,1,4,5,7,8C .∅D .{}2,3,6,98.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( ) A .P Q R ⋂= B .P Q ⊆ C .Q P ⊆ D .P Q R = 9.已知集合{|3251}A x x =-<-<,2{|20}B x x x =-->,则A B =( ) A .{|23}x x <<B .{|13}x x -<<C .{|2}x x >D .{|1}x x >-10.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( ) A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--11.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,612.已知集合{{24},A xx B x y =<==∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( )A .{}2B .{}2,3C .{}0,3D .{}314.已知集合{}2,1,0,1,2,3U =--,{}1,0,1A =-,{}1,2,3B =,则()UB A =( )A .{}2-B .{}2,2-C .{}2,1,0,3--D .{}2,1,0,2,3--15.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4UA B =,B =( )A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4二、填空题16.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.用符号“∈”和“∉”填空:(1)12______N ; (2)1______Z -; (3)2-______R ; (4)π______Q +; (5)23______N ; (6)0______∅.19.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.20.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________.21.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________.22.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.23.写出集合{1,1}-的所有子集______.24.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.25.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________三、解答题26.已知全集U =R ,{}34A x x =->,108x B xx +⎧⎫=>⎨⎬-⎩⎭.求集合A B ,UA ,()UA B .27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围; (2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.关于x 的不等式()()2220R ax a x a +--≥∈的解集为][(),12,-∞-⋃+∞.(1)求a 的值;(2)若关于x 的不等式()()2320x c a x c c a -++-<解集是集合A ,不等式()()210x x -+>的解集是集合B ,若A B ⊆,求实数c 的取值范围.29.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x => (1)求()UA B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.30.已知集合{}10A x x =+>,{}2,1,0,1B =--,求()A B R .【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.C 【解析】 【分析】由交集定义可直接得到结果. 【详解】由交集定义知:{}1,2,4,6A B =. 故选:C. 3.D 【解析】 【分析】先化简集合A ,B ,再利用集合的交集和补集运算求解. 【详解】解:()22424y x x x =-+=--+,且N y ,则04y ≤≤,04x ≤≤,又Z x ∈,当=0x 时,=0y ,当1x =时,3y =,当2x =时,4y =,当3x =时,3y =,当4x =时,0y =, 则{}=0,3,4A又 {}ln 1B x x =>{}=|e x x >, 所以()R A B ={0}, 故选:D 4.D 【解析】 【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可. 【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=,所以A B ={}01x x <<, 故选:D 5.A 【解析】 【分析】先解出集合A ,再计算A B 即可.{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞.故选:A. 6.C 【解析】 【分析】由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可. 【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C 7.D 【解析】 【分析】根据集合的交集概念运算即可. 【详解】依题意,{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, ∴{}2,3,6,9A B ⋂=﹒ 故选:D . 8.C 【解析】 【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解. 【详解】如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=, 所以Q P ⊆. 故选:C.9.A 【解析】 【分析】解不等式求出集合,A B ,从而求出交集. 【详解】3251x -<-<,解得:13x <<,故{13}A xx =<<∣,220x x -->,解得:2x >或1x <-,故{2B x x =>或}1x <-,所以{23}A B xx ⋂=<<∣. 故选:A 10.B 【解析】 【分析】由交集定义可直接得到结果. 【详解】由交集定义可知:{}1,0,1-. 故选:B. 11.B 【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 12.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】解:{}[)2424A x x =≤<=,,{[)3,B x y ∞===+,因此,[)2,A B =+∞. 故选:A. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.A 【解析】 【分析】利用并集和补集的定义可求得结果.【详解】由已知可得{}1,0,1,2,3A B ⋃=-,因此,(){}2UAB =-.故选:A. 15.C 【解析】 【分析】根据条件可得1,2,4∈UB ,则1,2,4B ∉,结合条件即可得答案.【详解】 因为(){}1,2,4UAB =,所以1,2,4∈UB ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =. 故选:C二、填空题16.{(1,1)}【解析】 【分析】由集合中的条件组成方程组求解可得. 【详解】 将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =. 故答案为:{(1,1)}17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =,综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18. ∉ ∉ ∈ ∉ ∈ ∉ 【解析】 【分析】根据元素与集合的关系判断. 【详解】由,,,,N Z R Q -+∅所表示的集合,由元素与集合的关系可判断 (1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.故答案为:(1)∉(2)∉(3)∈(4)∉(5)∈(6)∉.19.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.20.7【解析】 【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果. 【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个.故答案为:721.11023-、、 【解析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可 【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =; 当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭,因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-.故答案为:11023-、、 22.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭23.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.24.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案.根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素 同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅. 故答案为:∅. 25.5,6##{}6,5 【解析】 【分析】先求出A B ,再进行补集运算及即可求解. 【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=, 故答案为:5,6.三、解答题26.{}8A B x x ⋂=>,{}7UA x x =≤,(){}17UA B x x ⋃=-≤≤【解析】 【分析】分别求出集合,A B ,再根据交集、并集和补集的定义即可得出答案. 【详解】解:{}{}347A x x x x =->=>,()(){}{1018088x B x x x x x x x ⎧⎫+=>=+->=>⎨⎬-⎩⎭或}1x <-, 所以{}8A B x x ⋂=>,{}7UA x x =≤,{7A B x x ⋃=>或}1x <-,所以(){}17UA B x x ⋃=-≤≤.27.(1)(0,3] (2)[5,)+∞ 【解析】 【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解. (1)解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)1;(2)72c --≤≤【解析】【分析】(1)由给定条件可得-1,2是方程()2220ax a x +--=的根,且0a >,再借助韦达定理计算作答.(2)求出集合B ,按集合A 是空集和不是空集分类求解作答.(1)依题意,方程()2220ax a x +--=的解为-1,2,且0a >,于是得2122a a a-⎧=⎪⎪⎨-⎪=-⎪⎩,解得:1a =,所以1a =.(2)由(1)知,()(){}231210A x x c x c c =-++-<,而()1,2B =-,又A B ⊆, 当A =∅时,()()2231811410c c c c c ∆=+--=++≤,解得77c --≤-+当A ≠∅时,2Δ1410311221(31)2(1)042(31)2(1)0c c c c c c c c c ⎧=++>⎪+⎪-<<⎪⎨⎪+++-≥⎪-++-≥⎪⎩,解得72c -+<≤综上得:72c --≤所以实数c的取值范围是72c --≤29.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞; (2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-. 30.{}2,1--【解析】【分析】先解不等式,求出集合A ,进而求出()A B R .【详解】{}1A x x =>-,{}R 1A x x =≤-,所以(){}R 2,1A B =--。
高中数学集合练习题及答案一、单选题1.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1}B .{0,1}C .{0,1,2}D .∅2.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( )A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,43.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅4.()Z M 表示集合M 中整数元素的个数,设{}24A x x =-<<,{}723B x x =-<<,则()Z A B =( )A .5B .4C .3D .25.设全集U =R ,集合{}{}13,0,1,2,3,4,5A x x B =≤≤=,则()U A B =( ) A .{0,4,5} B .{0,1,3,4,5} C .{4,5} D .{0} 6.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( )A .PB .QC .∅D .U7.已知集合{}21A x x =<,{}e 2xB x =<,则A B =( )A .()1,1-B .()1,ln 2-C .()0,ln 2D .()ln 2,18.已知集合{22},{13}A xx B x N x =-<<=∈-<∣∣,则A B =( ) A .{}0,1 B .1,0,1,2C .[)1,2-D .()2,3-9.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-10.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,111.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( ) A .2B .3C .4D .512.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .813.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,114.设全集U =R ,集合{}21A x x =-≤,{}240xB x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,215.已知集合{5,3,1,0,2,4},{1,2,4},{5,0,2}U A B =---=-=-,则()U A B ⋃=( ) A .{2}B .{3}-C .{3,1,2}-D .{5,3,1,0,4}---二、填空题16.集合{}2,A x x k k ==∈Z ,{}25B x x =≤,那么A B =______. 17.设集合{}{}23,650A x x B x xx =≤=-+≤,则AB =________.18.已知条件:212p k x -≤≤,:53q x -≤≤,p 是q 的充分条件,则实数k 的取值范围是_______.19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.21.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______22.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.23.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.24.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合()3,12y A x y a x ⎧⎫-==+⎨⎬-⎩⎭与集合()()(){}2,1115,1B x y a x a y a =---=≠±,满足A B ⋂≠∅,求实数a 的值.27.已知集合{}22|430A x x ax a =-+<,集合{}2|560B x x x =-+≤.(1)当1a =时,求A B ,A B ;(2)设0a >,若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.四人共同管理一个保险箱,该保险箱要同时插入几把不同的钥匙才能打开.约定四人中要有三位到场才可以打开此箱,问至少要有几把钥匙才能开箱,这些钥匙应如何分配?【参考答案】一、单选题 1.A 【解析】 【分析】首先列举表示集合A ,再求A B . 【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=. 故选:A 2.C 【解析】 【分析】化简集合A ,根据集合B 中元素的性质求出集合B. 【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且,{1,2,3}B ∴=,故选:C 3.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 4.C 【解析】 【分析】首先求出集合B ,再根据交集的定义求出A B ,即可得解; 【详解】解:因为{}7372322B x x x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,{}24A x x =-<<,所以3|22A B x x ⎧⎫=-<<⎨⎬⎩⎭,则()1A B -∈,()0A B ∈,()1A B ∈,所以()3Z A B =; 故选:C 5.A 【解析】 【分析】由集合的补集和交集的运算可得. 【详解】 由题可得{1UA x x =<或3}x >,所以(){0,4,5}=UA B .故选:A . 6.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;【详解】解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 7.B 【解析】 【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可. 【详解】由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2xB x e=<,即集合{}ln 2B x x =<,因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<. 故选:B. 8.A 【解析】 【分析】 由交集定义计算. 【详解】{}{12}0,1.A B x x ⋂=∈-<=N ∣故选:A . 9.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 10.C 【解析】 【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C . 11.D 【解析】 【分析】根据集合的交运算结果,即可求得参数值. 【详解】因为{}5A B =,故可得{}51,a ∈,则5a =. 故选:D. 12.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解. 【详解】 由x31,得03x <≤, 所以}{N ,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 13.B 【解析】 【分析】求出定义域得到集合B ,从而求出补集和交集. 【详解】{}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,RA =-∞-⋃+∞,所以()[)1,RA B ∞⋂=+.故选:B. 14.C 【解析】 【分析】解不等式化简集合A ,B ,再利用补集、交集的定义计算作答.【详解】解不等式21-≤x 得:13x ≤≤,则[1,3]A =, 解不等式240x -≥得:2x ≥,则[2,)B =+∞,(,2)UB =-∞,所以()[1,2)UA B =.故选:C 15.B 【解析】 【分析】按照并集和补集计算即可. 【详解】由题意得,{5,1,0,2,4}A B =--,所以(){3}U A B =-.故选:B.二、填空题16.{}2,0,2-【解析】 【分析】根据集合A 的含义,直接求解A B ⋂即可. 【详解】因为集合A 表示元素为偶数的集合,又{}2|5{|B x x x x =≤=≤≤,故{}2,0,2A B ⋂=-. 故答案为:{}2,0,2-.17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.[2,)-+∞【解析】 【分析】设{}212A x k x =-≤≤,{}53B x x =-≤≤,则A B ⊆,再对A 分两种情况讨论得解. 【详解】记{}212A x k x =-≤≤,{}53B x x =-≤≤, 因为p 是q 的充分条件,所以A B ⊆. 当A =∅时,212k ->,即32k >,符合题意; 当A ≠∅时,32k ≤,由A B ⊆可得215k -≥-,所以2k ≥-,即322k -≤≤. 综上所述,实数的k 的取值范围是[2,)-+∞. 故答案为:[2,)-+∞.19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立2y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0.20.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:1472【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.22.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤<23.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.24.{1,2,3,4,6,8}【解析】 【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =. 故答案为:{1,2,3,4,6,8}. 25. ∉, ∈, ∈ ∈【分析】(1)利用元素与集合的关系判断. (2)利用元素与集合的关系判断. (3)利用元素与集合的关系判断. (4)利用元素与集合的关系判断. 【详解】 解:34∉N ; 4-∈Z ; 13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.2-或72【解析】 【分析】由题意,可得两直线有交点,再由直线平行公式可判断得两直线重合,从而列式求解. 【详解】因为A B ⋂≠∅,A ≠∅,B ≠∅, 所以直线()121,2a x y a x +-=-≠与()()21115,1a x a y a ---=≠±有交点,因为21111a a a --=+,所以两直线重合, 所以15121a a =--,得223140a a --=, 解得2a =-或72a =27.(1)[)2,3A B =, (]1,3A B ⋃= (2)()1,2 【解析】 【分析】(1)先解出集合AB ,再求A B ,A B ; (2)利用集合法列不等式组求出a 的范围. (1)当1a =时,{}{}()222|430|4301,3A x x ax a x x x =-+<=-+<=.{}[]2|5602,3B x x x =-+≤=.所以()[][)1,32,32,3A B ⋂=⋂=, ()[](]1,32,31,3A B ⋃=⋃=.(2)当0a >时,{}()22|430,3A x x ax a a a =-+<=.[]2,3B =. 因为“x A ∈”是“x B ∈”的必要不充分条件,所以B A , 只需233a a <⎧⎨>⎩,解得:1 2.a << 故实数a 的取值范围为()1,2.28.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ;(2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A x x x =--≤∣,{}26510B x x x =-+>∣,{|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.详见解析.【解析】【分析】根据题意可知每种相同的钥匙得两把,从4人中选出2人保存为6种不同的方法,进而得到至少有6把钥匙,每人有3把钥匙,然后根据3人能凑齐6把钥匙,2人不能凑齐,进行分配.【详解】根据题意可知要使不同的钥匙最少,则每种相同的钥匙得两把,因为四人中要有三位到场才可以打开保险箱,少于3人就不行,任意2人在一起,就至少少一把钥匙,不能打开,从4人中选出2人保存有6种不同的方法,所以需要有6把不同的钥匙(每种2把),共12把,分给4人,平均每人3把, 将这6把不同的钥匙分别记为1,2,3,4,5,6,将这四人分别记为A ,B ,C ,D ,钥匙分配方法不唯一如:方法一:A :1 , 2 , 3;B :3 , 4 , 5;C :1 , 5 , 6;D :2 , 4 , 6.方法二:A :4 , 5 , 6;B :2 , 3 , 4;C :1 , 2 , 6 ;D :1 , 3 , 5.。
高一集合测试试题及答案一、选择题(每题4分,共40分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数是()。
A. 1B. 2C. 3D. 42. 集合A={1,2,3,4},集合B={4,5,6,7},则A∪B的元素个数是()。
A. 6B. 7C. 8D. 93. 集合A={x|x^2-1=0},则A的元素是()。
A. {-1, 0}B. {-1, 1}C. {0, 1}D. {-1, 0, 1}4. 集合A={1,2,3},集合B={x|x∈A},则B是()。
A. 空集B. 单元素集合C. 有限集合D. 无限集合5. 集合A={x|x是奇数},集合B={x|x是偶数},则A∩B是()。
A. {0}B. {1}C. 空集D. {2, 4, 6, ...}6. 集合A={x|x^2-4=0},则A的元素是()。
A. {-2, 2}B. {-2, 0, 2}C. {-2, 2, 4}D. {-2, 2, -4}7. 集合A={x|x^2-9=0},则A的元素是()。
A. {-3, 3}B. {-3, 0, 3}C. {-3, 3, 9}D. {-3, 0, 9}8. 集合A={1,2,3},集合B={x|x∈A且x是偶数},则B是()。
A. {1, 3}B. {2}C. {1, 2, 3}D. 空集9. 集合A={x|x是自然数},集合B={x|x是正整数},则A∪B是()。
A. AB. BC. 空集D. {0, 1, 2, 3, ...}10. 集合A={x|x^2-4x+4=0},则A的元素是()。
A. {-2, 2}B. {-2, 0, 2}C. {-2, 2, 4}D. {2}二、填空题(每题4分,共20分)1. 集合A={1,2,3},集合B={2,3,4},则A∩B=______。
2. 集合A={x|x^2-1=0},则A=______。
3. 集合A={x|x^2-4=0},则A=______。
高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x > 3.已知全集{}2,1,1,4U =--,{}2,1A =-,{}1,4B =,则()U A B ⋃=( ). A .{}2-B .{}2,1-C .{}1,1,4-D .{}2,1,1--4.已知集合{}21,A y y x x ==-∈Z ,{}25410B x x x =--≤,则A B =( ) A .{}1B .{}0,1C .{}0,1,2D .{}1,3,55.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则A B =( ) A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2-- 6.已知集合{1,1},{0,1}A B =-=,设集合{,,}C z z x y x A y B ==+∈∈∣,则下列结论中正确的是( )A .A C ⋂=∅B .AC A ⋃= C .B C B =D .A B C =7.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( )A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-8.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1}B .{1,2}C .{0,2}D .{0,1,2}9.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( ) A .[)1,1- B .(1,1)- C .(,1)-∞ D .(0,1)10.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,311.已知函数()2ln 3y x x =-的定义域为A ,集合{}14B x x =≤≤,则()A B =R ( )A .{0,1,2,3,4}B .{1,2,3}C .[0,4]D .[1,3] 12.设集合{|12}A x x =-<<,{|2}B x a x a =-<<,若{|10}A B x x =-<<,则A B ⋃=( )A .(2,1)-B .(2,2)-C .(1,2)-D .(0,2)13.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<14.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( ) A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2 15.已知集合{}1,0,1,2A =-,{}12B x x =-<<,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1,2-D .{}1,2二、填空题16.如图,设集合,A B 为全集U 的两个子集,则A B =____________.17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.19.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.20.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)21.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______.22.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.27.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.28.设r 为正实数,若集合(){}22,4M x y x y =+≤,()()(){}222,11N x y x y r =-+-≤.当M N N =时,求r 的取值范围.29.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.30.已知集合(){}2log 31A x x =->,22112y y B y -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭. (1)分别求出集合A 、B ;(2)设全集为R ,求()R A B ⋂.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】由集合的补集运算求U B ,再利用集合的并集运算求()U A B 即可. 【详解】由题意得,{}U 2,1B =--,又{}2,1A =-,(){}{}{}U 2,12,12,1,1AB ==---=--,故答案为:D.4.A【解析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由25410x x --≤,即()()5110x x +-≤,解得115x -≤≤, 所以{}215410|15B x x x x x ⎧⎫=--≤=-≤≤⎨⎬⎩⎭, 又{}{}21,,3,1,1,3,5,A y y x x Z ==-∈=--,所以{}1A B ⋂=;故选:A5.C【解析】【分析】 根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解.【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C.6.C【解析】【分析】 由题意得{1,0,1,2}C =-,再由交集和并集运算求解即可.【详解】由题意可知,{1,0,1,2}C =-,{1,1}A C ⋂=-,{}1,0,1,2A C C ⋃=-=,{0,1},{1,0,1}B C B A B C ⋂==⋃=-≠.故选:C7.A【解析】【分析】先求出集合B ,得出其补集,再由交集运算得出答案.【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭, 所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2A B ⎡⎫=--⎪⎢⎣⎭. 故选:A8.C【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .9.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A10.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D11.D【解析】【分析】根据对数函数的性质,可知230x x ->,由此即可求出集合A ,进而求出A R ,再根据交集运算即可求出结果.【详解】由题意可知,230x x ->,所以0x <或3x >, 所以{}{}03A x x x x =<>,故{}03A x x =≤≤R ,所以()[]1,3R A B =.故选:D.12.B【解析】由{}10A B x x ⋂=-<<,求出0a =,{}20B x x =-<<,由此能求出A B .【详解】 集合{}12A x x =-<<,{}2B x a x a =-<<,{}10A B x x ⋂=-<<,0a ∴=,{}20B x x ∴=-<<,满足题意则(2,2)=-A B .故选:B .13.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B14.D【解析】【分析】解不等式后求解【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D15.B【解析】【分析】利用交集概念及运算,即可得到结果.【详解】∵集合{}1,0,1,2A =-,{}12B x x =-<<,∴{}0,1A B =,故选:B二、填空题16.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可.【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==,所以{}1,2,3,4,5A B =.故答案为:{}1,2,3,4,517.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.19.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.20.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃21.{}0,1【解析】【分析】先求出集合A ,然后根据交集的定义求得答案.【详解】 由题意,{}22A x x =-<<,所以{}0,1A B =.故答案为:{}0,1.22.(){}0,0【解析】【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果. 【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩ 则(){}0,0M N =.故答案为:(){}0,0.23.②③⑤【解析】【分析】根据集合与集合的关系,元素与集合的关系确定正确答案.【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误.④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.{}3【解析】【分析】由交集、补集的定义计算.【详解】 由题意{4,3}M =,所以M N ⋂={3}.故答案为:{3}.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<; (2)()3,+∞.【解析】【分析】(1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<.(2) 解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.27.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.28.02r <≤-【解析】【分析】 确定集合的元素,由两位置关系可得.【详解】M N N =,则N M ⊆,集合M 表示以原点O 为圆心,2为半径的圆及圆内部分,集合N 表示以点C (1,1)为圆心,r 为半径的圆及内部,OC =2r OC -≥=02r <≤29.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.30.(1){}5A x x =>,{0B y y =<或}2y >(2)(){}R 5A B x x ⋂=≤【解析】【分析】(1)利用对数函数和指数函数的单调性可分别求得集合A 、B ;(2)求出A B ,利用补集的定义可求得集合()R A B ⋂. (1)解:(){}{}{}2log 31325A x x x x x x =->=->=>,{}{222112002y y B y y y y y y -⎧⎫⎪⎪⎛⎫=<=->=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭或}2y >. (2)解:由(1)可得{}5A B x x ⋂=>,因此,(){}R 5A B x x ⋂=≤.。
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .163.已知2{|1}A x x ==,1|B x x a ⎧⎫==⎨⎬⎩⎭,若B A ⊆,则a 的值为( )A .1或-1B .0或1或-1C .1-D .14.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( ) A .{}2,3,4 B .{}1,2,3,4 C .{}15x x ≤≤D .{}05x x <≤5.设集合{}220A x x x =--≤,124x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-6.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}7.已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭8.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( )A .()1,2B .()1,5C .()2,4D .()4,5 9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--10.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( ) A .1B .2C .3D .411.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( ) A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,212.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______. 21.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..22.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.24.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.25.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 3.A 【解析】 【分析】A ={-1,1},若B A ⊆,则1a=±1,据此即可求解﹒{}2{|1}1,1A x x ===-,11|B x x a a ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 若B A ⊆,则1a=1或-1,故a =1或-1. 故选:A . 4.D 【解析】 【分析】理解集合的含义,由并集的概念运算 【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D 5.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B6.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 7.D 【解析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D . 8.B 【解析】 【分析】先求出集合,A B ,再求A B 即可. 【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B. 9.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 10.D 【解析】 【分析】根据真子集的定义进行求解即可. 【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=, 故选:D 11.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.()3,0-【解析】 【分析】先求出{}3A x x =>-,进而求出交集. 【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n nf n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0. 20.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 21.16,310⎡⎤-+⎣⎦【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+对应的抛物线如图:将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅,将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =, 当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅,故答案为:16,310⎡⎤⎣⎦. 22.(,8]-∞【解析】【分析】根据集合交集的性质,结合子集的性质进行求解即可.【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.{}34x x ≤<【解析】【分析】 求出{}24A x x =<<与{}3B x x =≥,进而求出A B .【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤< 故答案为:{}34x x ≤<24.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】【分析】根据()f x =.【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =, {,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭. ()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 25.A B ⋂##B A ⋂【解析】 【分析】根据集合的运算法则求解.【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂.故答案为:A B ⋂.三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b ab a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤,所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。
集合测试题及答案一、选择题1. 集合A和集合B的并集表示为:A. A∪BB. A∩BC. A-BD. A∪B答案:A2. 集合A中所有元素都属于集合B,则称集合A是集合B的:A. 子集B. 并集C. 交集D. 补集答案:A3. 若集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B二、填空题1. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5})是________。
答案:{4, 5}2. 若A={x | x是偶数},B={x | x是3的倍数},则A∩B的元素包括所有________。
答案:6的倍数三、简答题1. 描述什么是集合的幂集,并给出一个具体的例子。
答案:集合的幂集是指一个集合的所有子集构成的集合,包括空集和该集合本身。
例如,集合A={1, 2}的幂集是{∅, {1}, {2}, {1, 2}}。
2. 解释什么是集合的差集,并给出一个例子。
答案:集合的差集是指属于集合A但不属于集合B的所有元素组成的集合。
例如,如果A={1, 2, 3},B={2, 3, 4},则A-B={1}。
四、计算题1. 给定集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},求A∪B,A∩B,A-B。
答案:A∪B = {1, 2, 3, 4, 5, 6}A∩B = {3, 4}A-B = {1, 2}2. 如果集合C={x | x是小于10的正整数},求C的幂集。
答案:C的幂集包含从空集到C本身的所有子集,即{∅, {1},{2}, ..., {1, 2, ..., 9}}。
五、论述题1. 讨论集合论在数学中的重要性,并给出至少两个应用领域的例子。
答案:集合论是现代数学的基础,它提供了一种形式化的方法来描述数学对象和它们之间的关系。
例如,在逻辑学中,集合论用于定义命题的真值;在计算机科学中,集合论的概念被用来设计数据结构和算法。
高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
高中数学集合练习题含答案高中数学集合练题含答案1.单选题21.已知集合 $A=\{-2,-1,0,2,3,4\}$,$B=\{x|x-3x-4<0\}$,则 $A\cap B=$()A。
$\{-1,0,2,3,4\}$ B。
$\{0,2,3,4\}$ C。
$\{0,2,3\}$ D。
$\{2,3\}$22.设集合 $A=\{x|x-3x>0\}$,则 $A=$()A。
$(0,3)$ B。
$(-\infty,0)\cup(3,+\infty)$ C。
$[0,3]$ D。
$(-\infty,0]$3.已知集合 $A=\{x|-1<x<5,x\in N^*\}$,$B=\{x|\leq x\leq 3\}$,则 $A\cap B=$()A。
$[0,3]$ B。
$[-1,5)$ C。
$\{1,2,3,4\}$4.设集合$A=\{x|-1<x<3\}$,集合 $B=\{x|-3\leq x\leq 2\}$,则 $A\cup B=$()A。
$\{0,1,2\}$ B。
$\{1,2\}$ C。
$[-3,3)$ D。
$(-1,2]$5.集合 $A=\{x|-1<x<3\}$,集合 $B=\{x|x^2<2\}$,则$A\cap B=$()A。
$(-2,2)$ B。
$(-1,3)$ C。
$(-2,3)$ D。
$(-1,2)$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则$A\cap B=$()A。
$\{-1\}$ B。
$\{0,1\}$ C。
$\{0,1,2\}$ D。
$\{x\leq x\leq1\}$7.已知集合 $A=\{x|x<1\}$,$B=\{x|x(x-2)<0\}$,则$A\cup B=$()A。
$(0,1)$ B。
$(1,2)$ C。
$(-\infty,2)$ D。
$(0,+\infty)$8.若全集 $U=R$,集合 $A=\{0,1,2,3,4,5,6\}$,$B=\{x|x<3\}$,则图中阴影部分表示的集合为()图略)A。
高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈,则A B =( ) A .{}5,9,11 B .{}5,9,11,17 C .{}5,13,17D .{}5,9,13,172.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( )A .{}|12x x -≤<B .{}|33x x -<≤C .{}|32x x -<≤D .{}|13x x -≤≤4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)6.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}38.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( ) A .(]1,5-B .(]1,5C .[]1,5-D .[]1,59.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5 D .[]2,5 10.已知集合{}{}1101A B =-=,,,,则A B =( ) A .{0}B .{1}C .{2}D .∅11.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤12.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{{24},A xx B x y =<==∣∣,则A B ⋃=( ) A .[)2,+∞ B .[)3,4 C .[]3,4 D .[)3,+∞14.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-15.设集合{}*21230,1A x N x x B x Rx ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1B .{}1C .(]0,1D .{}0,1二、填空题16.已知平面上两个点集(){},112,,M x y x y x y x R y R =++++->∈∈,(){},11,,N x y x a y x R y R =-+-≤∈∈,若M N ⋂=∅,则实数a 的取值集合是___________.17.设非空数集M 同时满足条件:①M 中不含元素1,0,1-;②若a M ∈,则11aM a+∈-,则下列结论不正确的个数是__________个. (1)集合M 中至多有2个元素; (2)集合M 中至少有4个元素; (3)集合M 中有且仅有4个元素; (4)集合M 中至多有4个元素.18.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.19.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 20.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.21.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.22.若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________.24.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______25.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知集合2111x A xx +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()RA B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.28.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .29.设n 是不小于3的正整数,集合12{()|{01}12}n n i S a a a a i n =⋯∈=⋯,,,,,,,,,对于集合Sn 中任意两个元素1212()()n n A a a a B b b b =⋯=⋯,,,,,,,.定义()1122 n n A B n a b a b a b =--+-++-.若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =.(1)若n =3,A =(0,1,0),B =(1,1,0),试写出A ,B ,以及A ·B 的值; (2)若n A B S ∈,,证明: A B A B n +=;(3)设k 是小于n 的正奇数,至少含有两个元素的集合n M S ⊆,且对于集合M 中任意两个不同的元素1212 ()()n n A a a a B b b b =⋯=⋯,,,,,,,,都有·A B n k =-,试求集合M 中元素个数的所有可能的取值.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】根据交集的定义计算即可. 【详解】因为集合{}3,5,7,9,11,13,17A =,{}41,B x x n n Z ==+∈, 所以{5,9,13,17}A B =, 故选:D. 2.B【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由()()130x x +-≤,解得13x -≤≤, 所以()(){}{}|130|13B x x x x x =+-≤=-≤≤, 又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<. 故选:A 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B.6.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 7.C 【解析】 【分析】由交集的定义直接求解即可 【详解】因为{}1,2M =,{}2,3N = 所以{}2M N =,故选:C 8.B 【解析】 【分析】化简集合B ,然后利用交集的定义运算即得. 【详解】∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>, ∴(]1,5A B ⋂=. 故选:B. 9.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤,即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 10.B 【解析】 【分析】根据集合的交集运算,直接求得答案. 【详解】集合{}{}1101A B =-=,,,, 则{1}A B ⋂=, 故选:B 11.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.A 【解析】 【分析】求出集合A 、B ,利用交集的定义可求得集合A B . 【详解】解:{}[)2424A x x =≤<=,,{[)3,B x y ∞===+,因此,[)2,A B =+∞. 故选:A. 14.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B .【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D. 15.B 【解析】 【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果. 【详解】因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R所以{}1A B =. 故选:B.二、填空题 16.{}1-【解析】 【分析】结合点到直线距离公式可知M 表示到直线10x y ++=与10x y +-=的,可得可行域;N 是以(),1a 的正方形及其内部的点集,采用数形结合的方式可确定a 的取值. 【详解】由112x y x y ++++->>则M 表示到直线10x y ++=与10x y +-=直线10x y ++=与10x y +-=之间的距离d =则集合()10,10x y M x y x y ⎧⎫+->⎧=⎨⎨⎬++<⎩⎩⎭,则其表示区域如阴影部分所示(不包含10x y ++=与10x y +-=上的点);集合N 是以(),1a 若M N ⋂=∅,则,M N 位置关系需如图所示,由图形可知:当且仅当1a =-时,M N ⋂=∅, ∴实数a 的取值集合为{}1-.【点睛】思路点睛:本题考查集合与不等式的综合应用问题,解题基本思路是能够确定集合所表示的点构成的区域图形,进而采用数形结合的方式来进行分析求解. 17.3 【解析】 【分析】 由题意可求出11,,11,1a a a a a a -+--+都在M 中,然后计算这些元素是否相等,继而判断M 的元素个数的特点. 【详解】因为若a M ∈,则11aM a +∈-,所以1111111a a M a a a ++-=-∈+--,111111a a M a a--=∈++, 则11211211a a a a M a a -++==∈--+; 当1,0,1a ≠-时,4个元素11,,11,1a a a a a a -+--+中,任意两个元素都不相等, 所以集合M 中至少有4个元素.故可判断出(1)错误,(2)正确,(3)错误,(4)错误, 故答案为:3.18.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >. 19. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.20.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==. 由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+ ⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒21.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,122.{}1【解析】 【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可 【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}1 24.1078 【解析】 【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果. 【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个. 故答案为:1078.25.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4三、解答题26.(1)[)1,1-; (2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.【解析】 【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围; (3)根据集合之间的关系,列出不等关系,求解即可. (1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤, 故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<.即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >, 故实数a 的取值范围为:()(),13,∞∞--⋃+. (3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆, ①A =∅时,1a <-或3a >满足题意;②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦.27.(1)12x x ⎧≤-⎨⎩或}1x ≥(2)(]2,4- 【解析】 【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案. (1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭,{}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭,所以()12RA B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2)解:(){}()(){}222210B x x m x m x x m x =<-+=+-<,因为“x A ∈”是“x B ∈”的必要条件, 所以B A ⊆且B ≠∅,故2m ≠-, 当12m->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭,因为{}21A x x =-<<, 所以A B =∅,不符合题意; 当12m-<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤,综上(]2,4m ∈-. 28.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,UB {|1x x =<-或3}x >;(2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >. 【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()UAB ,根据已知集合求解即可.(1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<,{|13}A B x x ⋃=-≤≤,UB {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()BA B ⋂3{|12x x =-≤<或23}x ≤≤. (3)因为{|13}A B x x ⋃=-≤≤, 根据题意可得M =()UAB {|1x x =<-或3}x >.29.(1)(101)(001)2A B A B ===,,,,,, (2)证明见解析(3)集合M 中元素的个数只可能是2 【解析】 【分析】(1)根据定义直接求解即可;(2)设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,,进而结合题意得1122||n n a x a x a x n +++=---,112i i x a i n ==⋯-,,,,,再计算 A B A B +即可;(3)假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素,进而结合题意,推出矛盾,得出假设不成立,即集合M 中至多有两个元素,且{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意,故集合M 中元素的个数只可能是2(1)解:因为若·0A B =,则称A ,B 互为相反元素,记作A B =或B A =, 所以(101)(001)A B ==,,,,,, 所以()30111002A B =--+-+-=. (2)解:设121212()()()n n n A a a a B b b b A x x x =⋯=⋯=⋯,,,,,,,,,,,, 由{01}12i i i a b x i n ∈=⋯,,,,,,,,可得||112i i a x i n ≤=⋯-,,,, 所以1122||n n a x a x a x n ++⋯+≤---,当且仅当||112i i a x i n ==⋯-,,,,,即112i i x a i n ==⋯-,,,,时上式“=”成立 由题意可知1122·()0n n A A n a x a x a x =--+-++-=即1122n n a x a x a x n -+-++-=所以112i i x a i n ==⋯-,,,, 12[|||(1)|]ni i i i i A B A B n a b a b =+=--+--∑12[|1||0|]ni i i n b b ==--+-∑12(1)ni i i n b b ==--+∑2n n =-n =(3)解:解法1:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素. 则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0i i a b =-或1,i =1,2,,n 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次为1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑, 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑所以1111||||||||2i i j ji i j jkn kn m m m m m m m m i j k i j k a c a c b c b c k ==+==+⎛⎫⎛⎫-+-+-+-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑ 即111(||||)||||2i i i i jj jj knnm m m m m m m m i j k j k a c b c ac bc k ==+=+-+-+-+-=∑∑∑因为11221k k m m m m m m a b a b a b -=-==-=由(2)可知1(||||)i i i i km m m m i a c b c k =-+-=∑因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,设11||||jj jj nnm m m m j k j k ac bc p =+=+-=-=∑∑,由题意可知p N ∈.所以2 2k p k +=,得2k p =与k 为奇数矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2解法2:假设121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素.则1122(||||||)n n A B n a b a b a b n k =--+-++-=-即1122||||||n n a b a b a b k -+-++-=又由题意可知||0112i i a b i n ==⋯-或,,,, 1122||,||,,||n n a b a b a b ---恰有k 个1,与n -k 个0设其中k 个等于1的项依次为1122,,,k k m m m m m m a b a b a b --- n -k 个等于0的项依次1122,,,k k k k n n m m m m m m a b a b a b ++++---由题意可知1122(||||||)n n A C n a c a c a c n k =--+-++-=-所以11||||i i jj knm m m m i j k a c ac k ==+-+-=∑∑① 同理11||||i i jj k nm m m m i j k b c bc k ==+-+-=∑∑②因为11220k k k k n n m m m m m m a b a b a b ++++-=-==-=所以11||||jj jj nnm m m m j k j k ac bc =+=+-=-∑∑,①—②得1(||||)0i i i i km m m m i a c b c =---=∑又因为111(||||)(|1||0|)2i i i i i i i k k km m m m m m m i i i a c b c c c k c ===---=---=-∑∑∑为奇数与1(||||)0i i i i km m m m i a c b c =---=∑矛盾所以假设不成立,即集合M 中至多有两个元素 当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意所以集合M 中元素的个数只可能是2. 【点睛】关键点点睛:本题第三问解题的关键在于利用反证法证明当121212() ()()n n n A a a a B b b b C c c c ===,,,,,,,,,,,为集合M 中的三个不相同的元素时,结合题意推出2k p =与k 为奇数矛盾,进而得集合M 中至多有两个元素,再举例当{(1,1,,1,0,0,,0),(0,0,,0)}k n k M -=个个时符合题意即可.30.(1){|22}A x x =-≤≤ (2)[1,)-+∞ 【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解. (1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤. (2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆, 当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<,综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。
集合测试题一、选择题(本大题共有10个小题,每小题3分,满分共得30分)1.下列式子中,正确式子的个数是( )Φ {Φ}; Φ∈{Φ}; {0} Φ ; 0∈Φ; Φ≠{0}; {Φ}≠{0};(A )6; (B )5; (C )4; (D )小于4 。
2.已知}3|{≤=x x M ,3=a ,则下列关系正确的是( )(A )a M ;(B )M a ∈;(C )M a ∈}{; (D )M a ⊄}{ 。
3.设集合P 、S 满足P ⋂S=P ,则必有( )(A )P S ; (B )P ⊆S ;(C )S P ;(D )S=P 。
4.设全集},,,,{e d c b a U =,A 、B 都是U 的子集}{e B A =⋂,}{d B A C U =⋂, },{b a B C A C U U =⋂,则下列判断中正确的是( )(A )c ∉A 且c ∉B ; (B )c ∈A 且c ∈B ; (C )c ∉A 且c ∈B ; (D )c ∈A 且c ∉B 。
5. 设集合M={(x,y)∣y=x,x,y ∈R}, N={(x,y)∣x 2+y 2=0,x,y ∈R},则 ( ) (A )M ⋃N=M ; (B )M ⋃N=N ; (C )M ⋂N=M (D )M ⋂N=φ 6.若C A B A ⋃=⋃,则一定有( )(A )B=C ;(B )C A B A ⋂=⋂; (C )C C A B C A U U ⋃=⋂;(D )C A C B A C U U ⋂=⋂ 。
7.已知集合M 和N 间的关系为M N M =⋂,那么下列必定成立的是 ( )(A )Φ=⋂M N C U ; (B )Φ=⋂N M C U ; (C )Φ=⋂N C M C U U ;(D )Φ=⋃N C M C U U 。
8.若U={(x,y)∣x,y ∈R}, M={(x,y)∣123=--x y }, N={(x,y)∣y-3=x-2 },则C U M ⋂N 是( ) (A )φ;(B ){2,3}; (C ){(2,3)}; (D ){(x,y)∣y-3≠x-2 }。
9.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则 )(B A A --总等于( )(A )A ;(B )B ;(C )B A ⋂;(D )B A ⋃ 。
10.若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==, },16|{Z n n a c C ∈+==,则A 、B 、C 的关系是( )(A )A B C ; (B )A B=C ; (C )A=B C ;(D )A=B=C 。
二、填空题(本大题共有10个小题,每小题3分,满分共得30分)11.用列举法表示集合},|{34Z x Z x x∈∈-= 。
12.},6|{N x x x A ∈≤=,}{质数=B ,C =A ⋂B ,则集合C 的真子集的个数为 。
13.设}42|{≤≤-=x x A ,}23|{<<-=x x B ,则A ⋃B= 。
14.设集合},12|{2R x x x y y A ∈+-==,集合},1|{2R x x y y B ∈+-==,则=⋂B A 。
15.设集合}31|{<≤-=x x A ,}|{a x x B ≤=,若Φ=⋂B A ,则实数a 的取值 范围为 。
16.}|),({22y x y x A ==,}|),({2x y y x B ==,则=⋂B A 。
17.设}043|{2=-+=x x x A ,}01|{=-=ax x B ,若B B A =⋂,则实数a= 。
18.已知集合A 、B ,若用A 、B 的式子表示右图中阴影部分所表示的集合,则这个表达式可以为 。
19.设集合}0|{43≤≤=x x M ,}1|{32≤≤=x x N ,如果把b-a 叫做集合}|{b x a x A ≤≤= 的“长度”,那么集合M ⋃N 的“长度”是 。
20.设全集},1001|{Z x x x U ∈≤≤=及其二个子集},12,1001|{Z k k m m m A ∈+=≤≤=、 },3,1001|{Z k k n n n B ∈=≤≤=,则B A C U ⋂中数值最大的元素是 。
三、解答题(本大题共有6个小题,6'+6'+6'+6'+8'+8',满分共得40分) 21.写出满足}4,3{ M ⊆ {0,1,2,3,4}的所有集合M 。
22.设全集R U =,设全集}51|{≤<-=x x A ,}153|{≥<=x x x B 或, 求:(1)A C U (2))(B A C U ⋂ 。
23.集合}13,1,2{2---=a a a A ,集合}2,3,1{2+++=a a a B ,当B A ⋂={2,3}时, 求实数a 的值。
24.设集合},,02|{2R b a b ax x x A ∈=+-=,},,0)2(6|{2R b a b x a x x B ∈=+++=, 若}{21=⋂B A ,求B A ⋃ 。
25.已知全集U=R ,集合A={x |-3<x ≤5},B={x |-a<x<a,a>0}(1)若B B A =⋂,求a 的取值范围 (2)若φ=⋂B C A U ,求a 的取值范围26.已知集合A={x |x 2-1=0},B={x |x 2-2ax+b=0 }若,且B ⊆A ,B ≠Φ,求a 、b 的值。
一、选择题(本大题共有10个小题,每小题3分,满分共得30分) 1.下列式子中,正确式子的个数是( B )Φ {Φ}; Φ∈{Φ}; {0} Φ ; 0∈Φ; Φ≠{0}; {Φ}≠{0}; (A )6;(B )5;(C )4;(D )小于4 。
2.已知}3|{≤=x x M ,3=a ,则下列关系正确的是( B )(A )a M ;(B )M a ∈;(C )M a ∈}{; (D )M a ⊄}{ 。
3.设集合P 、S 满足P ⋂S=P ,则必有( B )(A )P S ; (B )P ⊆S ;(C )S P ;(D )S=P 。
4.设全集},,,,{e d c b a U =,A 、B 都是U 的子集}{e B A =⋂,}{d B A C U =⋂, },{b a B C A C U U =⋂,则下列判断中正确的是( D )(A )c ∉A 且c ∉B ; (B )c ∈A 且c ∈B ; (C )c ∉A 且c ∈B ; (D )c ∈A 且c ∉B 。
5. 设集合M={(x,y)∣y=x,x,y ∈R}, N={(x,y)∣x 2+y 2=0,x,y ∈R},则 ( A )(A )M ⋃N=M ; (B )M ⋃N=N ; (C )M ⋂N=M (D )M ⋂N=φ 6.若C A B A ⋃=⋃,则一定有( D )(A )B=C ;(B )C A B A ⋂=⋂; (C )C C A B C A U U ⋃=⋂;(D )C A C B A C U U ⋂=⋂ 。
7.已知集合M 和N 间的关系为M N M =⋂,那么下列必定成立的是 ( A )(A )Φ=⋂M N C U ; (B )Φ=⋂N M C U ; (C )Φ=⋂N C M C U U ;(D )Φ=⋃N C M C U U 。
8.若U={(x,y)∣x,y ∈R}, M={(x,y)∣123=--x y }, N={(x,y)∣y-3=x-2 },则C U M ⋂N 是( C )(A )φ;(B ){2,3};(C ){(2,3)}; (D ){(x,y)∣y-3≠x-2 }。
9.定义集合A 与集合B 的“差集”为:}|{B x A x x B A ∉∈=-且,则 )(B A A --总等于( C )(A )A ;(B )B ;(C )B A ⋂;(D )B A ⋃ 。
10.若},13|{Z n n a a A ∈+==,},23|{Z n n a b B ∈-==,},16|{Z n n a c C ∈+==,则A 、B 、C 的关系 ( C ) (A )A B C (B )A B=C ; C )A=B C (D )A=B=C 。
二、填空题(本大题共有10个小题,每小题3分,满分共得30分) 11.用列举法表示集合},|{34Z x Z x x∈∈-= {4,5,7,2,1,-1} 。
12.},6|{N x x x A ∈≤=,}{质数=B ,C =A ⋂B ,则集合C 的真子集的个数为 7个 。
13.设}42|{≤≤-=x x A ,}23|{<<-=x x B ,则A ⋃B= {x|-3<x ≤4} 。
14.设集合},12|{2R x x x y y A ∈+-==,集合},1|{2R x x y y B ∈+-==,则=⋂B A {y|0≤y ≤1} 。
15.设集合}31|{<≤-=x x A ,}|{a x x B ≤=,若Φ=⋂B A ,则实数a 的取值 范围为 a <-1 。
16.}|),({22y x y x A ==,}|),({2x y y x B ==,则=⋂B A {(0,0),(1,1),(1,-1)} 。
17.设集合}043|{2=-+=x x x A ,}01|{=-=ax x B ,若B B A =⋂,则实数a= 0,-41 ,1 。
18.已知集合A 、B ,若用A 、B 的式子表示右图中 阴影部分所表示的集合,则这个表达式可以为 )(B C A U ⋃ 。
19.设集合}0|{43≤≤=x x M ,}1|{32≤≤=x x N ,如果把b-a 叫做集合}|{b x a x A ≤≤= 的“长度”,那么集合M ⋃N 的“长度”是 1 。
20.设全集},1001|{Z x x x U ∈≤≤=及其二个子集},12,1001|{Z k k m m m A ∈+=≤≤=、 },3,1001|{Z k k n n n B ∈=≤≤=,则B A C U ⋂中数值最大的元素是 96 。
三、解答题(本大题共有6个小题,6'+6'+6'+6'+8'+8',满分共得40分) 21.写出满足}4,3{M ⊆ {0,1,2,3,4}的所有集合M 。
解:7个(略)22.设全集R U =,设全集}51|{≤<-=x x A ,}153|{≥<=x x x B 或, 求:(1)A C U (2))(B A C U ⋂ 。
解: A C U ={x |x ≤-1或x>5} )(B A C U ⋂={x |x ≤-1或x ≥3}23.集合}13,1,2{2---=a a a A ,集合}2,3,1{2+++=a a a B ,当B A ⋂={2,3}时, 求实数a 的值。