希望杯八年级数学竞赛试题及答案
- 格式:doc
- 大小:400.50 KB
- 文档页数:4
3x+2y=64.已知a是正整数,方程组⎨的解满足x>0,y<0,则a的值是()12.如果实数a≠b,且10a+b全国数学邀请赛初二第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1.下列运动属于平移的是()(A)乒乓球比赛中乒乓球的运动.(B)推拉窗的活动窗扇在滑道上的滑行.(C)空中放飞的风筝的运动.(D)篮球运动员投出的篮球的运动.2.若x=1满足2m x2-m2x-m=0,则m的值是()(A)0.(B)1.(C)0或1.(D)任意实数.3.如图△1,将APB绕点B按逆时针方向旋转90 后得到△A'P'B',若BP=2,那么PP'的长为()(A)22.(B)2.(C)2.(D)3.⎧ax+4y=8⎩(A)4.(B)5.(C)6.(D)4,5,6以外的其它正整数.5.让k依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k2;③2k;④2k 就排成一个不变的大小顺序,这个顺序是()(A)①<②<③<④.(B)②<①<③<④.(C)①<③<②<④.(D)③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10,那么顺次连接这个四边形的四边中点所得的四边形的面积是()(A)40.(B)202.(C)20.(D)102.7.Let a be the length of a diagonal of a square,b and c be the length of two diagonals of a rhombu s respectively. If b:a=a:c,then the ratio of area of the square and rhomb us is()(A)1:1.(B)2:3.(C)1:2.(D)1:2.(英汉词典:length长度;diagonal对角线;squar e正方形;r h o mbus菱形;respectively分别地;ratio比;ar ea面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于().(A)132.(B)121.(C)120.(D)111.9.若三角形三边的长均能使代数式是x2-9x+18的值为零,则此三角形的周长是().(A)9或18.(B)12或15.(C)9或15或18.(D)9或12或15或18.10.如图2,A、B、C、D是四面互相垂直摆放的镜子,镜面向内,在镜面D上放了写有字母“G”的纸片,某人站在M处可以看到镜面D上的字母G在镜面A、B、C中的影像,则下列判断中正确的是()(A)镜面A与B中的影像一致.(B)镜面B与C中的影像一致.(C)镜面A与C中的影像一致.(D)在镜面B中的影像是“G”.二、A组填空题(每小题4分,共40分)11.如图3,在△BMN中,BM=6,点A、C、D分别在MB、BN、MN上,且四边形ABCD是平行四边形,∠NDC=∠MDA,则 ABCD的周长是.a+1=,那么a+b的值等于.10b+a b+121.解分式方程 213.已知 x = a +b M 是 M 的立方根, y = 3 b - 6 是 x 的相反数,且 M =3 a -7,那么 x 的平方根是.14.如图 4,圆柱体饮料瓶的高是 12 厘米,上、下底面的直径是6 厘米.上底面开有一个小孔供插吸管用, 小孔距离上底面圆心 2 厘米,那么吸管在饮料瓶中的长度最多是= 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用 213 元,已知甲种商品每件 7 元,乙种商品每件 19 元,那么 a + b 的最大值是 .16. ABC 是边长为 2 3 的等边三角形。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
数学初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333…D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,这个三角形是什么类型的三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. -16D. 44. 以下哪个表达式的结果不是正数?A. -1 + 2B. √4C. -√4D. (-2)^25. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 97. 如果一个角的余角是30°,那么这个角是多少度?A. 60°B. 45°C. 30°D. 15°8. 一个正方体的棱长是3,那么它的体积是多少?A. 27B. 9C. 3D. 19. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 010. 以下哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(2x+1)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。
12. 如果一个数的相反数是-5,那么这个数是______。
13. 一个数的绝对值是10,这个数可能是______或______。
14. 如果一个角的补角是120°,那么这个角是______。
15. 一个数的平方是25,这个数是______或______。
16. 一个直角三角形的两条直角边分别是3和4,斜边的长度是______。
17. 一个数的平方根是±3,这个数是______。
18. 一个数的倒数是1/4,这个数是______。
19. 一个圆的直径是10,那么它的半径是______。
第二十二届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字母写在1、将a 千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x 千克,则由此可列出方程为( ) A 、%)151)(x a (%)101(a -+=- B 、%15)x a (%10a ⨯+=⨯ C 、%15a x %10a ⨯=+⨯ D 、%)151(x %)101(a -=-2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a%,则所用的时间减少b%,则a ,b 的关系是( ) A 、%a 1a 100b +=B 、%a 1100b +=C 、a 1a b +=D 、a100a100b +=3、当1x ≥时,不等式|2x |m 1x |1x |--≥-++恒成立,那么实数m 的最大值是( ) A 、1 B 、2 C 、3 D 、44、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数1x 2y -=与k kx y +=的图象的交点是整点,则k 的值有( )A 、2个B 、3个C 、4个D 、5个5、The sum of all such integers x that satisfy inequality 6|1x 2|2≤-≤ is ( ) A 、8 B 、5 C 、2 D 、0(英汉词典:sum 和;integer 整数;satisfy 满足;inequality 不等式)6、若三角形的三条边的长分别为a ,b ,c ,且0b c b c a b a 3222=-+-,则这个三角形一定是( ) A 、等腰三角形 B 、直角三角形 C 、等三角形 D 、等腰直角三角形7、As shown in figure 1,point C is on the segment BG and quadrilateral ABCD is a square. AG intersects BD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( ) A 、316 B 、38C 、4D 、5 (英汉词典:square 正方形;intersect …at … 与…相交于…) 8、1215-能分解成n 个质因数的乘积,n 的值是( ) A 、6 B 、5 C 、4 D 、3 9、若关于x ,y 的方程组⎩⎨⎧=+-=++0a y 2bx 01ay x 没有实数解,则( )A 、2ab -=B 、2ab -=且1a ≠C 、2ab -≠D 、2ab -=且2a ≠10、如图2,∠AOB=45°,OP 平分∠AOB ,PC ⊥OB 于点C , 若PC=2,则OC 的长是( )A 、7B 、6C 、222+D 、32+二、A 组填空题(每小题4分,共40分) 11、化简:5252549+=++;12、若关于x ,y 的方程组⎩⎨⎧=--=+2y 3x 21k y 2x 3的解使2y 7x 4>+,则k 的取值范围是3k >;figure 1A O BP C 2 图213、如图3,平行于BC 的线段MN 把等边△ABC 分成一个 三角形和一个四边形,已知△AMN 和四边形MBCN 的周长相 等,则BC 与MN 的长度之比是 4:3 ;14、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟, 停机15分钟,再运转5分钟,再停机15分钟,……,又知8月份 这台冰箱的耗电量是24.18度 (1度=1千瓦时),则这台冰箱的压缩 机运转时的功率是 130 瓦;15、已知自然数a ,b ,c ,满足c 12b 4a 442c b a 222++<+++和02a a 2>--,则代数式c1b 1a 1++的值是 1; 16、已知A 、B 是反比例函数x2y =的图象上的两点,A 、B 的横坐标分别是3,5.设O 为原点,则△AOB 的面积是1516;17、设完全平方数A 是11个连续整数的平方和,则A 的最小值是 121 ;18、将100个连续的偶数从小到大排成一行,其中第38个数与第63个数的和为218,则首尾两个数的和是 218 ; 19、A 、B 两地相距15km ,甲、乙两人同时从A 出发去B 。
第九届“新希望杯”全国数学⼤赛⼋年级试题(含解答)第九届“新希望杯”全国数学⼤赛⼋年级试题(B 卷)(时间:2013年3⽉24⽇满分120分)⼀、选择题(每⼩题4分,共32分) 1. 下列⼏种说法中:(1)⽆理数都是⽆限⼩数;(2)带根号的数是⽆理数;(3)实数分为正实数和负实数;(4)⽆理数包括正⽆理数、零和负⽆理数.正确的有() A.(1) (2) (3) (4) B.(2) (3) C.(1) (4) D.只有(1)2. 2.已知⼀个等腰三⾓形的⼀条边长为8cm ,其中⼀个外⾓等于1200,则它的周长为()A.16cmB.18cmC.24cmD.条件不⾜,⽆法计算3. 把⼀个正⽅形如图对折三次后沿虚线剪下两个⾓,则展开余下部分所得的图形是()DCB A4. 已知a 、b 、c 分别是?ABC 的三边,则()2222224a b c a b +--为()A 正数B 负数C 零D ⽆法确定5. =()A -2B 2C -D 6. ⼀次函数y kx b =+与正⽐例函数y kbx =在同⼀坐标系中的图象可能为()镜⾯合同三⾓形B'B真正合同三⾓形C'B CDCBA7. 在四边形ABCD 中,AD//BC ,AE 、BE 分别平分∠BAD 、∠ABC ,点F 为AB 的中点,连结EF ,则下列结论中,⼀定成⽴的是()A EF=BEB BF=BEC BC=DED AD+BC=2EF (第7题图)8. 如图,已知?ABC 为等腰三⾓形,AB=AC ,F 为AC 上⼀点,点D 为BC 延长线上⼀点,点E 为AB 延长线上⼀点,EF 与BC 相交于点G ,如果∠ABC=2∠D ,∠CAD= ∠BAC ,BE=CF ,那么下列说法中,正确的个数有()A 1个B 2个C 3个D 4个⼆、填空题(每⼩题5分,共40分)9.()44310?= (结果⽤科学计数法表⽰)10. 已知533x y z ++=,2859x y z ++=,则x y z ++的平⽅根为 . 11. 全等三⾓形也叫做合同三⾓形,平⾯内的合同三⾓形分为真正合同三⾓形和镜⾯合同三⾓形.假如?ABC 和?'''A B C 是全等三⾓形,且点A 与点'A 对应,点B 与点'B 对应,点C 与点'C 对应.如下图,当沿周界A →B →C →A 及''''A B C A →→→环绕时,若运动⽅向相同,则称它们是真正合同三⾓形;若运动⽅向相反,则称它们是镜⾯合同三⾓形.下列各组合同三⾓形中,属于镜⾯合同三⾓形的有。
八年级试题(A 卷)(时间:120分钟 满分:120分)一、选择题(每小题4分,共32分) 1.若()422015+=mA ,则A 的算术平方根是( )A.(m 2+2015)4B.(m 2+2015)2C.m 2+2015D.m+20152.已知等腰三角形的两边长分别为a 、b ,且0243163=-++-+b a b a ,则此三角形的周长是( )A.13B.17C.13或17D.14或163.将一副三角板如下图叠放在一起,则∠1的度数是( )A.105°B.110°C.115°D.120°4.如图,在3×4的正方形网格中,已有3个方格涂色,若再选择一个方格涂色,且使得4个涂色的方格组成轴对称图形,可选择的方格共有( )A.1个B.2个C.3个D.4个5.已知201531+n 是整数,若n 是正整数,则n 的最小值是( )A.31B.59C.65D.1246.某超市购进50千克的散装糖果,决定包装后出售,方式一:1.5千克/盒,包装成本1.2元/个;方式二:1千克/盒,包装盒成本1元/个.根据需要1千克装的糖果数量不能少于1.5千克装的一半,且糖果全部包装完,那么包装盒的总成本最低是( )A.43.4元B.43.1元C.42.8元D.42.5元7.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,且BO=DO ,点P 在△BCD 内部,下列说法:①S △AOD=S △AOB ;②BC +CD >PB +PD ;③AC +BD >AB +CD ;④AC +BD >AD >CD ,其中正确的有( ) A.1个 B.2个 C.3个 D.4个8.如图,等边三角形ABC 边长为6,点P 从B 点开始在BC 上向点C 运动,运动到点C 停止,以AP 为边在直线BC 的同侧作等边三角形APQ ,得到点Q ,则点Q 的运动路径长( ) A.6 B.33 C.24 D.23π二、填空题:(每小题5分,共40分)9.化简:.________________)2015(201522=+--x x )(10.已知正n 边形的一个内角是一个外角的5倍,则n=____________.11.如图,△ABC 是格点三角形,点D 是异于点A 的一个格点,则使△DBC 和△ABC 全等的D 点共有__________个.12.方程3100820151210071=+-+-xx x 的解是___________________.13.如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k 时,锯齿图形的周长为___________.(用含k 的代数式表示).14.将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________种.15.对于实数m 、n ,定义运算m ※n=m(1-n),下面是关于这种运算的几个结论:①2※3=-4;②若m ※n=0,则n=0;③m ※n=(1-n )※(1-m);④若m+n=1,则(m ※n )-(n ※n)=0.其中正确的是___________. 16.如图,已知点A(1,1),点B (7,3),点P 为x 轴上一个动点,当PA+PB 的值最小时,点P 的坐标为_______________.三、解答题(10+12+12+14=48分)17..)32(32,2,29的值)求(若+--==-y x xy y x18.如图,△ABC 为等边三角形,点D 是BC 延长线上一点,且CD <BC ,BD 的垂直平分线交AC 于E ,过点E 作EF ∥BC 交AB 于F.(1)求证:△AEF 为等边三角形; (2)若BC=3CD ,求ECAE的值.19.某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A 型车共有8个座位,B 型车有4个座位,要求租用的车不能空座,也不能超载. (1)共有多少种不同的租车方案?(2)若A 型车的租金是400元/天,B 型车的租金是260元/天,请设计最划算的租车方案,并说明理由.20.已知:直角三角形斜边上的中线等于斜边的一半,如图1,在△ABC 中,∠CAB=90°,D 是BC 的中点,连接AD ,则AD=CD=BD.(1)如图2,过点D作DE⊥AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分∠FAB.(2)如图3,过点C作CH⊥AF于H,连接DH,求证:DH=FG.1 2 3 4 5 6 7 8C B AD B C D A9 10 11 12 13 14 15 1610 1/2-8060X12 3 1008KK 66-6 ①③④⎪⎭⎫ ⎝⎛0,25。
第十届“新希望杯”全国数学大赛八年级试题(B 卷)简版答案一、选择题(每题4分,共32分)1.A 2.A 3.D 4.C 5.C 6.A 7.C 8.B二、填空题(每题5分,共40分)9.(22)(22)x x -+-- 10.13 11.12 12.180 13.222m S m ++ 14.12 15.8 16.4028π三、解答题(每题12分,共48分)17.解:(1)h =22()2b a -=22(63)(323)+-+=(933)(33)+⨯-=3(93)-=32. (2)a =22()2b h +=22(261)(261)++-=52. 18.解:设第一次进货时这种笔的进价为x 元,则第二次进货时这种笔的进价为1.2x 元.根据题意得:1200150010 1.2x x+=, 4分 解得:5x =,经检验:5x =是原方程的解, 6分第一次购进这种笔12002405=(支), 第二次购进这种笔24010250+=(支),第一次赚钱240(155)2400⨯-=(元),第二次赚钱200(155 1.2)50(150.45 1.2)1800⨯-⨯+⨯⨯-⨯=(元),所以两次共赚钱240018004200+=(元). 11分答:王老板两次售笔总体上是赚钱了,共赚了4200元. 12分19.解:如图,∵四边形ACGH 和四边形BCFE 都是正方形,∴将CFG ∆绕点C 顺时针方向旋转90后则得到CBG'∆,且点A 、C 、G '三点共线,AC CG'=,∴CFG CBG'ABC S S S ∆∆∆==,同理AHK BDE ABC S S S ∆∆∆==,∴图中三个阴影部分的面积之和等于ABC ∆面积的3倍,过点C 作CP ⊥AB 于点P ,则CP ≤AC ,∴当且仅当AC ⊥AB ,即CP 与AC 重合时CP 取得最大值,此时CP =AC ,∴ABC ∆面积的最大值为12AB AC ⋅=6, ∴图中三个阴影部分的面积之和的最大值为3×6=18.答:图中三个阴影部分的面积之和的最大值为18.20.解:设1x ,2x ,3x ,…,2014x 中有a 个1-,b 个1,c 个2,则212842014.a b c a b c -++=⎧⎨++=⎩,解得943=10713.a c b c =-⎧⎨-⎩, 又0a ≥,0b ≥,所以0357c ≤≤,记3333123201486128S x x x x a b c c=+++⋅⋅⋅+=-++=+,则12863571282270S⨯+=≤≤,当943a=,1071b=,0c=时,S取最小值为128;当586a=,0b=,357c=时,S取最大值为2270.。
希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于3B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 40C. 50D. 60答案:B3. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A4. 下列哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3 = 0D. x^3 - 4x^2 + 4x = 0答案:B5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是答案:D6. 下列哪个选项是正确的不等式?A. 2x > 3B. 2x < 3C. 2x = 3D. 2x ≤ 3答案:A7. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C8. 下列哪个选项是正确的分数?A. 3/2B. 2/3C. 1/2D. 4/5答案:D9. 一个等腰三角形的两个底角都是45度,那么它的顶角是多少度?A. 90B. 45C. 135D. 180答案:A10. 下列哪个选项是正确的函数关系?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x/2D. y = x^3 - 2x^2 + 3x答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。
答案:162. 一个数的立方根是2,那么这个数是______。
答案:83. 一个数的倒数是1/2,那么这个数是______。
答案:24. 一个数的绝对值是6,那么这个数可以是______。
答案:6或-65. 一个等腰三角形的顶角是120度,那么它的底角是______。
答案:30度三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10答案:x = 52. 计算:(2x^2 - 3x + 1) - (x^2 + 2x - 3)答案:x^2 - 5x + 43. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
山东省滨州市无棣县埕口中学八年级数学第9届“希望杯”第2试试题一、选择题:(每题6分,共60分)1.若a +b +c =0,则a 3+a 2c -abc +b 2c +b 3的值为[ ] A .-1.B .0.C .1.D .22.适合关系式|3x -4|+|3x +2|=6的整数x 的值的个数是 [ ] A .0. B .1. C .2. D .大于2的自然数.3.已知x <0<z ,xy >0,|y |>|z |>|x |,那么 |x +z |+|y +z |-|x -y |的值 [ ] A .是正数. B .是负数. C .是零. D .不能肯定符号. 4.863863++-的值为[ ] A.32; B.23; C.52; D.25.5.△ABC 的一个内角的大小是40°,且∠A =∠B ,那么∠C 的外角的大小是 [ ] A .140°.B .80°或100°.C .100°或140°.D .80°或140°6.如图15,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是[ ] A .60°; B .65°; C .70°; D .75°.7.若对于±3之外的一切实数x,等式28339m n xx x x -=+--均成立,则mn 的值为[ ] A .8 B .-8. C .16 D .-168.已知N =2222……2(共k 个2),若N 是1998的倍数, 那么符合条件的最小的k 值是 [ ] A .15 B .18. C .24 D .279.在方程组33336x y z x y z ++=⎧⎨++=-⎩中,x,y,z 是互不相等的整数,则此方程组的解的组数为[ ] A .6 B .3 C .多于6 D .少于310.如图16,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是 [ ]A.CF>GB B.CF=GB. C.CF<GB D.无法肯定的二、填空题(每题6分,共60分)11.把代数式(x+y-2xy)(x+y-2)+(xy-1)2分解成因式的乘积,应当是________. 12.设实数x知足方程|x2-1|-x|x+1|=0,则x的值为________.13.设x=3352-,那么代数式(x+1)(x+2)(x+3)(x+4)的值为_________.14. 199819992000200114⨯⨯⨯+的值为_________.15.如图17,Rt△ACB中,∠ABC=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE的大小是________.16.如图18,△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD,交BC的延长线于F,则∠CAF的大小是________.17.如图19,Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于D,作CE⊥BD交BD的延长线于E,过A作AH⊥BC交BD于M,交BC于H,则BM与CE的大小关系是________.18.如图20,四边形ABCD中有两点E、F,使A、B、C、D、E、F中任意三点都不在同一条直线上,连接它们的极点,得若干线段,把四边形分成若干个互不重叠的三角形,则所有这些三角形的内角和为______;一样,若四边形ABCD中有n个点,其中任意三点都不在同一条直线上,以A、B、C、D和这n个点为顶点作成若干个互不重叠的三角形,则所有这些三角形的内角和为_________.19.如图21,直线段AB的长为l,C为AB上的一个动点,别离以AC和BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCD′,那么DD′的长的最小值为________.20.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰着一辆公共汽车,那么在始发站公共汽车发车的距离时间x=________.三、解答题(每小题15分,共30分)解答本题时,请写出推算进程.21.已知n,k均为自然数,且知足不等式761311nn k<<+.若对于某一给定的自然数n,只有唯一的自然数k使不等式成立,求所有符合要求的自然数n中的最大数和最小数.22.甲、乙、丙三人分糖块,分法如下:先在三张纸片上各写三个正整数p、q、r,使p <q<r,分糖时,每人抽一张纸片,然后把纸片上的数减去p,就是他这一轮分得的糖块数,通过若干轮这种分法后,甲总共取得20块糖,乙取得10块糖,丙取得9块糖,又知最后一次乙拿到的纸片上写的数是r,而丙在各轮中拿到的纸片上写的数字的和是18,问:p、q、r别离是哪三个正整数?为何?答案·提示一、选择题题号答案1 B2 C3 C4 A5 D6 B7 D8 D9 A10 B提示:1.a3+a2c-abc+b2c+b3=(a3+b3)+(a2+b2)c-abc=(a+b)(a2-ab+b2)+(a2+b2)c-abc=(a+b)(a2+b2)-ab(a+b)+(a2+b2)c-abc∵a+b+c=0∴a+b=-c∴原式=-c(a2+b2)+abc+(a+b)c-abc=0∴选B.2.解(1)当3x-4≥0时,即3x≥4时,原式为3x-4+3x+2=6.当-2≤3x<4时.原式为4-3x+3x+2=6,即6=6(2)由已知|3x-4|+|3x+2|=6=|(3x-4)-(3x+2)|∴(3x-4)-(3x+2)≤0.∴-2≤3x≤4.∴x1=0,x2=1,∴选C.3.由已知条件,可在数轴上标出x、y、z三数,如图22.∴x+z>0,y+z<0,x-y>0.∴原式=x+z-y-z-x+y=0.∴选C.5.△ABC中,若∠A=40°,则∠B=40°,∠C=100°,∠C的外角为80°. 若∠C=40°,则∠C的外角为140°.∴选D.6.如图23,取DE的中点G,连接AG.在Rt△AED中,AG为斜边上的中线∴∠AGB=∠ABG.又∵AG=GD∴∠AGB=2∠ADG∵AD∥BC∴∠ADG=∠DBC∴∠ABG=∠AGB=2∠ADG=2∠DBC又∵∠ABC=75°∴∠ABG=50°,∠DBC=25°∴∠AED=∠BEF=90°-∠EBF=90°-25°=65°.∴选B.8.∵1998=2×9999.∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=0.∴x3+y3+z3=3xyz∴3xyz=-36即xyz=-12∴x,y,z中必然是两正一负,且x+y+z=0∴x,y,z中负数的绝对值必然等于两个正数的绝对值的和.又∵12=1×1×12=1×2×6=1×3×4=2×2×3这四种组合中只有12=1×2×4符合条件共有6个解,选A.10.如图24,自F作FH⊥AB交AB于H.∵AF平分∠CAB∴FC=FH又∵△ABC中,∠ACB=90°CD⊥AB∴∠ACD=∠B∴∠1=∠CAE+∠ACD,∠2=∠FAB+∠B ∴∠1=∠2,FC=CE∴CE=FH又∵EG∥AB∴∠CGE=∠B在Rt△CEG和Rt△FHB中,∵CE=FH,∠CGE=∠B∴Rt△CEG≌Rt△FHB∴CG=FB.∴CF=GB,选B.二、填空题题号答案11 (x-1)2·(y-1)21213 4814 1998999.515 45°16 45°17 BM>CE18 1080°,(n+1)360°1920 8分钟提示:11.(x+y-2xy)(x+y-2)+(xy-1)2=(x+y)2-2xy(x+y)-2(x+y)+4xy+x2y2-2xy+1 =(x+y)2-2(x+y)(xy+1)+(xy+1)2=(x+y-xy-1)2=(x-1)2·(y-1)2.12.|x2-1|-x|x+1|=0.∴|x+1|(|x-1|-x)=0.当|x+1|=0时,得x=-1.当|x-1|-x=0时,得|x-1|=x,若x≥1,得x-1=x,矛盾,舍去. 14.设2000=k把k=2000代入,得原式=1998999.515.△ACD中,AC=AD.16.∵EF是AD的垂直平分线,∴FA=FD,∠FDA=FAD.∵∠FDA=∠B+∠BAD.∠FAD=∠CAF+∠DAC.∵AD是∠BAC的平分线,∠BAD=∠DAC∴∠CAF=∠B=45°.17.如图25延长CE交BA延长线于F.∵∠ABE=∠CBE. BE=BE.∴Rt△FBE≌Rt△CBE.又∵∠ACF=90°-∠F=∠ABD.AB=AC∴Rt△ABD≌Rt△ACF,∴BD=CF.在△ABM中,∠BAM=45°>∠ABM.∴BM>AM.在△AMD中,∠ADM>45°=∠DAM.∴AM>MD.∴BM>MD.18.四边形ABCD中两个点E、F把图形分成6个三角形,这些三角形的内角和为6×180°=1080°.若四边形内有n个点,则以这n个点所成n个周角再加上原来四边形的内角和360°,即得n·360°+360°=(n+1)·360°19.设AC=x,BC=l-x.∵△ACD、△BCD′均为等腰直角三角形.20.设公共汽车的速度为v1,甲的速度为v2,因为两辆车距离距离相等,汽车与甲是追及问题,即两车之间距离为s=10(v1-v2).汽车与乙是相遇问题,即两车之间距离为s=5(v1+3v2).∴10(v1-v2)=5(v1+3v2)∴v1=5v2.三、解答题综上得n的最大值为84,n的最小值为13.22.每一轮三人取得的糖块数之和为r+q+p-3p=r+q-2p设他们共分了n轮,则n(r+q-2p)=20+10+9=39.∵39=1×39=3×13.且n≠1,不然拿到纸片p的人得糖数为0,与已知矛盾n≠39,因为每次至少分出2块糖,不可能每轮只分1块糖.∴n=3或n=13.由于每一个人所得糖块数是他拿到的纸片上数的总和减去np,由丙的情况取得9=18-np∴np=9 p≥1.∴n≠13,只有n=3.∴p=3.把n=3,p=3代入①式得r+q=19.又乙得的糖块总数为10,最后一轮取得的糖块r-3块.∴r-3≤10,r≤13.若r≤12,则乙最后一轮拿到的纸片为r,所得糖数为r-p≤9.这样乙一定要在前两轮中再抽得一张q或r.这样乙得的总糖数必然大于等于(r+q)-2p=13,这与乙取得的糖数为10块矛盾.∴r>12 ∵12<r≤13.∴r=13. q=19-r=6.综上得p=3,q=6,r=13甲、乙、丙三人在三轮中抽得的纸片数如下::。
第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
全国数学邀请赛初二第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1.下列运动属于平移的是()(A)乒乓球比赛中乒乓球的运动.(B)推拉窗的活动窗扇在滑道上的滑行.(C)空中放飞的风筝的运动.(D)篮球运动员投出的篮球的运动.2.若x=1满足2m x2-m2x-m=0,则m的值是()(A)0.(B)1.(C)0或1.(D)任意实数.3.如图1,将△APB绕点B按逆时针方向旋转90 后得到△A P B''',若BP=2,那么PP'的长为( )(A)(B(C)2 .(D)3.4.已知a是正整数,方程组48326ax yx y+=⎧⎨+=⎩的解满足x>0,y<0,则a的值是()(A)4 .(B)5 .(C)6.(D)4,5,6以外的其它正整数.5.让k依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k2;③2 k;④2 k 就排成一个不变的大小顺序,这个顺序是()(A)①<②<③<④.(B)②<①<③<④.(C) ①<③<②<④.(D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是()(A)40 .(B)(C)20.(D).7.Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If b:a=a:c,then the ratio of area of the square and rhombus is ( )(A)1:1.(B)2(C)1(D)1:2.(英汉词典:length长度;diagonal对角线;square正方形;rhombus菱形;respectively分别地;ratio比;area面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于().(A)132.(B)121.(C)120.(D)111.9.若三角形三边的长均能使代数式是x2-9x+18的值为零,则此三角形的周长是().(A)9或18.(B)12或15 .(C)9或15或18.(D)9或12或15或18.10.如图2,A、B、C、D是四面互相垂直摆放的镜子,镜面向内,在镜面D上放了写有字母“G”的纸片,某人站在M处可以看到镜面D上的字母G在镜面A、B、C中的影像,则下列判断中正确的是()(A)镜面A与B中的影像一致.(B)镜面B与C中的影像一致.(C)镜面A与C中的影像一致.(D)在镜面B中的影像是“G”.二、A组填空题(每小题4分,共40分)11.如图3,在△BMN中,BM=6,点A、C、D分别在MB、BN、MN上,且四边形ABCD是平行四边形,∠NDC=∠MDA,则 ABCD的周长是.12.如果实数a ≠b,且101101a b ab a b++=++,那么a b+的值等于.13.已知x=a M的立方根,y =x 的相反数,且M =3a -7,那么x 的平方根是 . 14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是= 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC是边长为D 在三角形内,到边AB 的距离是1,到A 点的距离是2,点E 和点D 关于边AB 对称,点F 和点E 关于边AC 对称,则点F 到BC 的距离是 .17.如图5,小华从M 点出发,沿直线前进10米后,向左转20,再沿直线前进10米后,又向左转20,……,这样下去,他第一次回到出发地M 时,行走了 米.18.关于x 的不等式123x x -+-≤的所有整数解的和是 . 19.已知点(1,2)在反比例函数ay x=所确定的曲线上,并且该反比例函数和一次函数1y x =+ 在x b =时的值相等,则b 等于 .20.如图6,大五边形由若干个白色和灰色的多边形拼接而成,这些多边形(不包括大五边形)的所有内角和等于 .三、B 组填空题(每小题8分,共40分,每一题两个空,每空4分) 21.解分式方程225111mx x x +=+--会产生增根,则m = 或 . 22.Let A abcd = be a four-digit number. If 400abcd is a square of an integer, then A= 或 .(英汉词典:four-digit number 四位数;square 平方、平方数;integer 整数)23.国家规定的个人稿酬纳税办法是:①不超过800元的不纳税;②超过800元而不超过4000元的,超过800元的部分按14%纳税;③超过4000元的按全部稿酬的11%纳税.某人编写了两本书,其中一本书的稿酬不超过4000元,第二本书的稿酬比第一本书多700元,两本书共纳税915元,则两本书的稿酬分别是= 元和 元.24.直线l交反比例函数y =的图象于点A ,交x 轴于点B ,点A 、B 与坐标原点o 构成等边三角形,则直线l 的函数解析式为 或 . 25.若n 是质数,且分数417n n -+不约分或经过约分后是一个最简分数的平方,则n 或 .第十八届“希望杯”全国数学邀请赛答案(初二)提示:1、略2、原式可化为:m(1-m)=0,m=0或m=13、由题意得△BPP ´是等腰直角三角形,由勾股定理得PP ´4、解方程组得:461236x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩∵x>0,y<0 ∴601230a a ->⎧⎨-<⎩解得4<a<6, ∴a=5.5、当k>4时,2k>k 2>2k>k+2,所以选C6、顺次连接该四边形的四边中点所得的四边形是矩形,面积是:(12×10)×(12×8)=20 7、S 正=12a 2 , S 菱形=12bc ,∵b:a=a:c ,即a 2=bc ,∴S 正 :S 菱形 =1:18、设另两边为a ,b ,则a 2+b 2=112(不合题意舍去)或112= a 2- b 2=(a+b)(a-b)=121 =121×1; ∵a,b 是自然数 ∴a+b=121, ∴周长是121+11=1329、∵x2-9x+18=0,即(x-6)(x-3)=0 ,∴x=6或x=3,∴三角形三边分别是:3,3,3或6,6,6或6,6,3。
周长:9或15或18。
10、略 二、A 组填空题: 提示:11 ABCD ∴BC //BM∴NDC M ∠=∠66NDC MDA MDA MAM ADBA AD BA AM BM BC DC BA AD ABCD∠=∠∴∠=∠∴=∴+=+==∴+=+=∴ 周长为1212. 1110610++=++b a a b a)1)(10()1)(10(++=++∴a a b b b a 化简得(a-b)(a+b-9)=0b a ≠ 09=-+∴b a 9=+∴b a13.由题意得⎩⎨⎧-=-=+ab b a 3763解得⎩⎨⎧-==25b a288733==∴=-=∴x a M2±∴的平方根是x14由题意得AB=5 BC=12 169BC AB AC 222=+=∴ 13AC =∴ 15由题意得7a+196=213 a=7196213- 在b 最小时 a+b 值最大 ∴⎩⎨⎧==252a b 即a+b=27 16. 画出图形,由对称的性质和等边三角形的性质可设F 到BC 的距离为417 .由多边形外角和为3600,个外角是020,可设该多边形为3600=020=18边形30321≤≤∴≤-+-∴x x x∴所有整数解为和为0+1+2+3=618.19由题意设2=1a∴a=2 1202122-=-=∴=-+∴+=∴b b b b b b或 20. 5个三角形 10个四边形545003601018000=⨯+⨯°三、B 组填空题提示:21.去分母设2(x-1)-5(x+1)=m 当x=1时 m=-10 当x=-1时 m=-4 23.设第一本x 元 第二本x+700元915%11)700(%14)800(=⨯++⨯-x x 解得:x=3800 x+700=4500答:第一本3800元 第二本4500元 24.由题意得⎪⎩⎪⎨⎧=+=xy x xy 2322 解得⎩⎨⎧==31y x⎩⎨⎧-=-=31y x )3,1(A ∴或(1- 3-) )0.2(B ∴或(-2,0)解析式为y=323+-x 或y=323--=x 25.11;31。