2017高考(新课标)数学(文)二轮专题复习(检测):专题四第2讲空间中的平行与垂直 Word版含解析
- 格式:doc
- 大小:316.50 KB
- 文档页数:8
第1讲空间几何体空间几何体的三视图[学生用书P39]自主练透夯实双基1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先由俯视图确定底面,再利用正视图与侧视图确定几何体.[题组通关]1.(2016·东北四市联考(二))如图,在正方体ABCD。
A1B1C1D1中,P是线段CD的中点,则三棱锥P。
A1B1A的侧视图为( )D [解析] 如图,画出原正方体的侧视图,显然对于三棱锥P。
A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为 D.2.(2016·石家庄质量检测(二))一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()D [解析]分析三视图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D。
3.(2016·湖北“五个一名校联盟"考试)某四面体的三视图如图,则其四个面中最大的面积是()A.2 B.2错误!C。
错误! D.2错误!D [解析]在正方体ABCD.A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D 1.BCB 1,如图所示,其四个面的面积分别为2,2错误!,2错误!,2错误!,故选 D 。
由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.空间几何体的表面积与体积[学生用书P39]共研典例 类题通法1.柱体、锥体、台体的侧面积公式(1)S 柱侧=ch (c 为底面周长,h 为高);(2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高); (3)S 台侧=错误!(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).2.柱体、锥体、台体的体积公式(1)V 柱体=Sh (S 为底面面积,h 为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).(1)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.错误!B。
课时作业1.(2016·河南省八市重点高中质量检测)设平面α与平面β相交于直线m,直线a 在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件B [解析] 因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.2.已知两个不同的平面α,β和两条不重合的直线m,n,则下列四个命题中不正确的是( )A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥βC.若m⊥α,m∥n,n⊂β,则α⊥βD.若m∥α,α∩β=n,则m∥nD [解析] 由线面平行、垂直之间的转化知A、B正确;对于C,因为m⊥α,m∥n,所以n⊥α,又n⊂β,所以β⊥α,即C正确;对于D,m∥α,α∩β=n,则m∥n,或m与n是异面直线,故D项不正确.3.(2016·贵阳市监测考试)如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBCB [解析] A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A可以证明;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C可以证明;D中,由A知D可以证明;B中条件不能判断出AP⊥BC,故选B.4.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BCC [解析] A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC 与BD 是异面直线,则A ,B ,C ,D 四点不共面,则AD 与BC 是异面直线;C 中,若AB =AC ,DB =DC ,AD 不一定等于BC ;D 中,若AB =AC ,DB =DC ,可以证明AD ⊥BC .5.(2016·广州市五校联考)已知a ,b 是空间中两条不同的直线,α,β是空间中两个不同的平面,下列命题中正确的是( )A .若直线a ∥b ,b ⊂α,则a ∥αB .若平面α⊥β,a ⊥α,则a ∥βC .若平面α∥β,a ⊂α,b ⊂β,则a ∥bD .若a ⊥α,b ⊥β,a ∥b ,则α∥βD [解析] 构造长方体ABCD A 1B 1C 1D 1.对于A ,若AB ∥CD ,CD ⊂平面ABCD ,但AB ⊂平面ABCD ,A 错;对于B ,平面ABB 1A 1⊥平面ABCD ,AD ⊥平面ABB 1A 1,但AD ⊂平面ABCD ,B 错;对于C ,若平面A 1B 1C 1D 1∥平面ABCD ,B 1C 1⊂平面A 1B 1C 1D 1,AB ⊂平面ABCD ,但B 1C 1不平行于AB ,C 错;对于D ,若A 1B 1⊥平面BCC 1B 1,AB ⊥平面ADD 1A 1,AB ∥A 1B 1,则平面BCC 1B 1∥平面ADD 1A 1,D 正确.故选D.6.如图,在正方体ABCD A1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C与PM 相交;④NC 与PM 异面.其中不正确的结论是( )A .①B .②C .③D .④B [解析] 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.7.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AMMB =AN ND ,则直线MN 与平面BDC 的位置关系是________.[解析] 由AM MB =AN ND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC ,所以MN ∥平面BDC .[答案] 平行8.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.[解析] 若E ,F ,G ,H 四点不共面,则直线EF 和GH 肯定不相交,但直线EF 和GH 不相交,E ,F ,G ,H 四点可以共面,例如EF ∥GH .[答案] 充分不必要9.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是________.[解析] 对于①,因为PA⊥平面ABC,所以PA⊥BC.因为AB为⊙O的直径,所以BC⊥AC,所以BC⊥平面PAC,又PC⊂平面PAC,所以BC⊥PC;对于②,因为点M为线段PB的中点,所以OM∥PA,因为PA⊂平面PAC,所以OM∥平面PAC;对于③,由①知BC⊥平面PAC,所以线段BC的长即是点B到平面PAC的距离,故①②③都正确.[答案] ①②③10.α、β是两个平面,AB、CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α、β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.[解析] 由题意得,AB∥CD,所以A,B,C,D四点共面,①:因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABCD,又因为BD⊂平面ABCD,所以BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③:由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,所以平面ABCD⊥α.因为平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,所以EF⊥平面ABCD,又BD⊂平面ABCD,所以BD⊥EF,故③正确;④:由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.[答案] ①③11.(2016·云南省第一次统一检测)如图,在三棱锥ABCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥DABC的体积.[解] (1)证明:设BD的中点为O,连接AO,EO,因为AB=AD,所以AO⊥BD.又E为BC的中点,所以EO∥CD.因为CD⊥BD,所以EO⊥BD.又OA∩OE=O,所以BD ⊥平面AOE .又AE ⊂平面AOE ,所以AE ⊥BD .(2)由已知得三棱锥D ABC 与C ABD 的体积相等.因为CD ⊥BD ,平面ABD ⊥平面BCD ,所以CD ⊥平面ABD ,BD =BC 2-CD 2=2 3.由已知得S △ABD =12×BD ×AD 2-BD 24= 3.所以三棱锥C ABD 的体积V C ABD =13×CD ×S △ABD =233. 所以三棱锥D ABC 的体积为233. 12.(2016·河南省八市重点高中质量检测)如图,过底面是矩形的四棱锥F ABCD 的顶点F 作EF ∥AB ,使AB =2EF ,且平面ABFE ⊥平面ABCD ,若点G 在CD 上且满足DG =GC .(1)求证:FG ∥平面AED ;(2)求证:平面DAF ⊥平面BAF .[证明] (1)因为DG =GC ,AB =CD =2EF ,AB ∥EF ∥CD ,所以EF ∥DG ,EF =DG .所以四边形DEFG 为平行四边形,所以FG ∥ED .又因为FG ⊄平面AED ,ED ⊂平面AED ,所以FG ∥平面AED .(2)因为平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD =AB ,AD ⊥AB ,AD ⊂平面ABCD ,所以AD ⊥平面BAF ,又AD ⊂平面DAF ,所以平面DAF ⊥平面BAF .13.(2016·昆明市两区七校调研)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比.[解] (1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN .因为M ,N 分别是BC ,GH 的中点,所以OM ∥CD ,且OM =12CD , NH ∥CD ,且NH =12CD ,所以OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,所以MN ∥OH ,又因为MN ⊄平面BDH ,OH ⊂平面BDH ,所以MN ∥平面BDH .(3)由(2)知OM ∥NH ,OM =NH ,连接GM ,MH ,过点M ,N ,H 的平面就是平面GMH ,它将正方体分割为两个同高的棱柱,高都是GH ,底面分别是四边形BMGF 和三角形MGC ,体积比等于底面积之比,即3∶1.14.(2016·长春市质量检测(二))在四棱锥P ABCD 中,底面ABCD是菱形,PD ⊥平面ABCD ,点D 1为棱PD 的中点,过D 1作与平面ABCD 平行的平面与棱PA ,PB ,PC 相交于点A 1,B 1,C 1,∠BAD =60°.(1)证明:B 1为PB 的中点;(2)已知棱锥的高为3,且AB =2,AC ,BD 的交点为O ,连接B 1O .求三棱锥B 1ABO 外接球的体积.[解] (1)证明:连接B 1D 1.⎭⎪⎬⎪⎫平面ABCD ∥平面A 1B 1C 1D 1平面PBD ∩平面ABCD =BD 平面PBD ∩平面A 1B 1C 1D 1=B 1D 1⇒BD ∥B 1D 1, 即B 1D 1为△PBD 的中位线, 即B 1为PB 的中点. (2)由(1)可得,OB 1=32,AO =3,BO =1,且OA ⊥OB ,OA ⊥OB 1,OB ⊥OB 1,即三棱锥B 1ABO 的外接球为以OA ,OB ,OB 1为长,宽,高的长方体的外接球,则该长方体的体对角线长d =12+(3)2+⎝⎛⎭⎪⎫322=52,即外接球半径R =54.4 3πR3=43×π×⎝⎛⎭⎪⎫543=125π48.则三棱锥B1ABO外接球的体积V=。
2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。
2017届高考数学二轮复习第一部分专题篇专题四立体几何第二讲空间点、线、面位置关系的判断课时作业理1.(2016·正定摸底)已知直线a与平面α,β,α∥β,a⊂α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:设直线a和点B所确定的平面为γ,则α∩γ=a,记β∩γ=b,∵α∥β,∴a ∥b,故存在唯一一条直线b与a平行.答案:D2.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是( )A.1 B.2C.3 D.4解析:易知①正确;②错误,l与α的具体关系不能确定;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例证明,故选B.答案:B3.如图所示,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C1解析:由题意知,A1C1⊥平面DD1B1B,又OB1⊂面DD1B1B,所以A1C1⊥OB1,故选D.答案:D4.(2016·某某模拟)设m、n为两条不同的直线,α、β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥α,则m∥n;④若m⊥α,n⊥α,则m∥n.上述命题中,所有真命题的序号是( )A.①④B.②③C.①③D.②④解析:由线面垂直的性质定理知①④正确;平行于同一条直线的两个平面可能相交,也可能平行,故②错;平行于同一平面的两条直线可能平行,也可能相交或异面,故③错.选A. 答案:A5.如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B6.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是( ) A.垂直B.相交不垂直C .平行D .重合 解析:如图,分别取另三条棱的中点A ,B ,C 将平面LMN 延展为平面正六边形AMBNCL ,因为PQ ∥AL ,PR ∥AM ,且PQ 与PR 相交,AL与AM 相交,所以平面PQR ∥平面AMBNCL ,即平面LMN ∥平面PQR .答案:C7.一个面截空间四边形的四边得到四个交点,如果该空间四边形的两条对角线与这个截面平行,那么此四个交点围成的四边形是________.解析:如图,由题意得AC ∥平面EFGH ,BD ∥平面EFGH .∵AC ⊂平面ABC ,平面ABC ∩平面EFGH =EF ,∴AC ∥EF ,同理AC ∥GH ,所以EF ∥GH .同理,EH ∥FG ,所以四边形EFGH 为平行四边形.答案:平行四边形8.(2016·某某模拟)如图,在正方体ABCD A 1B 1C 1D 1中,P 为棱DC 的中点,则D 1P 与BC 1所在直线所成角的余弦值等于________.解析:连接AD 1,AP (图略),则∠AD 1P 就是所求角,设AB =2,则AP =D 1P =5,AD 1=22,∴cos ∠AD 1P =12AD 1D 1P =105. 答案:1059.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值X 围是________.解析:取B 1C 1中点M ,则A 1M ∥AE ;取BB 1中点N ,则MN ∥EF (图略),∴平面A 1MN ∥平面AEF .若A 1P ∥平面AEF ,只需P ∈MN ,则P 位于MN 中点时,A 1P 最短;当P 位于M 或N 时,A 1P 最长.不难求得A 1P 的取值X 围为⎣⎢⎡⎦⎥⎤324,52. 答案:⎣⎢⎡⎦⎥⎤324,52 10.(2016·某某模拟)如图,在四面体ABCD 中,平面BAD ⊥平面CAD ,∠BAD =90°.M ,N ,Q 分别为棱AD ,BD ,AC 的中点.(1)求证:CD ∥平面MNQ ;(2)求证:平面MNQ ⊥平面CAD .证明:(1)因为M ,Q 分别为棱AD ,AC 的中点,所以MQ ∥CD ,又CD ⊄平面MNQ ,MQ ⊂平面MNQ ,故CD ∥平面MNQ .(2)因为M ,N 分别为棱AD ,BD 的中点,所以MN ∥AB ,又∠BAD =90°,故MN ⊥AD .因为平面BAD ⊥平面CAD ,平面BAD ∩平面CAD =AD ,且MN ⊂平面ABD ,所以MN ⊥平面CAD ,又MN ⊂平面MNQ ,所以平面MNQ ⊥平面CAD .11.(2016·某某五校联考)如图,四棱锥P ABCD 中,底面ABCD 是菱形,PA =PD ,∠BAD =60°,E 是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证:PA ∥平面BDQ ;(3)若V P BCDE =2V Q ABCD ,试求CP CQ的值.解析:(1)证明:由E 是AD 的中点,PA =PD 可得AD ⊥PE .又底面ABCD 是菱形,∠BAD =60°,所以AB =BD ,又因为E 是AD 的中点,所以AD ⊥BE ,又PE ∩BE =E ,所以AD ⊥平面PBE .(2)证明:连接AC (图略),交BD 于点O ,连接OQ .因为O 是AC 的中点, Q 是PC 的中点,所以OQ ∥PA ,又PA ⊄平面BDQ ,OQ ⊂平面BDQ ,(3)设四棱锥P BCDE ,Q ABCD 的高分别为h 1,h 2.所以V P BCDE =13S 四边形BCDE h 1, V Q ABCD =13S 四边形ABCD h 2.又因为V P BCDE =2V Q ABCD ,且S 四边形BCDE =34S 四边形ABCD ,所以CP CQ =h 1h 2=83. 12.(2016·某某模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比.解析:(1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN .∵M ,N 分别是BC ,GH 的中点,∴OM ∥CD ,且OM =12CD ,NH ∥CD ,且NH =12CD , ∴OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形,∴MN ∥OH ,又∵MN ⊄平面BDH ,OH ⊂平面BDH ,(3)由(2)知,OM∥NH,OM=NH,连接GM,MH,过点M,N,H的平面就是平面GMH,它将正方体分割为两个同高的棱柱,高都是GH,底面分别是四边形BMGF和三角形MGC,体积比等于底面积之比,即3∶1.。
2017年新课标全国卷2高考文科数学试题及答案2017年普通高等学校招生全国统一考试(新课标II卷)文科数学注意事项:1.在答题卡和试卷上填写姓名和准考证号。
2.选择题用铅笔在答题卡上涂黑对应选项,非选择题写在答题卡上。
3.考试结束后,将试卷和答题卡一并交回。
一、选择题(共12小题,每小题5分,共60分)1.设集合A={1,2,3},B={2,3,4},则A∪B=A。
{1,2,3,4}B。
{1,2,3}C。
{2,3,4}D。
{13,4}2.计算(1+i)(2+i)=A。
1-iB。
1+3iC。
3+iD。
3+3i3.函数f(x)=sin(2x+π/3)的最小正周期为πA。
4πB。
2πC。
πD。
24.设非零向量a,b满足a+b=a-b,则A。
a⊥bB。
a=bC。
a∥bD。
a>b5.若a>1,则双曲线2y=1的离心率的取值范围是aA。
(1,2)B。
(2,+∞)C。
(2,2)D。
(1,2)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A。
90πB。
63πC。
42πD。
36π7.设x、y满足约束条件2x+3y-3≤02x-3y+3≥0y+3≥0则z=2x+y的最小值是A。
-15B。
-9C。
1D。
98.函数f(x)=ln(x2-2x-8)的单调递增区间是A。
(-∞,-2)B。
(-∞,-1)C。
(1,+∞)D。
(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A。
乙可以知道两人的成绩B。
丁可能知道两人的成绩C。
乙、丁可以知道对方的成绩D。
乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A。
2B。
3C。
4D。
511.从五张卡片中随机抽取两次,求第一次抽到的数大于第二次的概率。
2017年全国统一高考新课标版Ⅱ卷全国2卷文科数学试卷及参考答案与解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.(5分)(1+i)(2+i)=( )A.1-iB.1+3iC.3+iD.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|-|则( )A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线-y2=1的离心率的取值范围是( )A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.-15B.-9C.1D.98.(5分)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=-1,则输出的S=( )A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A. B. C. D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C 的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. B.2 C.2 D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{an }的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{bn}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P-ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;.K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
山东省2017年高考数学(理科)专题练习(四)空间中的平行与垂直关系答 案真题回访回访1 异面直线的性质 1.A 2.D回访2 面面平行的性质与线面位置关系的判断 3.D 4.②③④热点题型1 空间位置关系的判断与证明 例1.(1)①③(2)[证明]①.因为EF DB P , 所以EF DB 与确定BDEF 平面. 如图①,连接DE .因为AE EC =,D 为AC 的中点, 所以DE AC ⊥.同理可得BD AC ⊥. 又BD DE D I =,所以AC BDEF ⊥平面. 因为FB BDEF ⊂平面,所以AC FB ⊥.②②.如图②,设FC 的中点为I ,连接GI HI ,. 在CEF △中,因为G 是CE 的中点, 所以GI EF P .又EF DB P ,所以GI DB P .8分 在CFB △中,因为H 是FB 的中点,1π专题限时集训(十一) 空间中的平行与垂直关系 [建议A .B 组各用时:45分钟] [A 组高考达标] 一、选择题 1~5:BABDB 二、填空题 6.3 7.①③⑤ 8.①②③ 三、解答题9.[解](1)证明:因为PC ABCD ⊥平面,所以PC DC ⊥.又因为DC AC ⊥,且PC AC C =I , 所以DC PAC ⊥平面.(2)证明:因为AB DC DC AC ⊥P ,, 所以AB AC ⊥.因为PC ABCD ⊥平面,所以PC AB ⊥. 又因为PC AC C =I ,所以AB PAC ⊥平面. 又AB PAB ⊂平面,所以PAB PAC ⊥平面平面. (3)棱PB 上存在点F ,使得PA CEF P 平面. 理由如下:取PB 的中点F ,连接EF ,CE ,CF . 又因为E 为AB 的中点,所以EF PA P . 又因为PA CEF ⊄平面,且EF CEF ⊂平面, 所以PA CEF P 平面.10.[解](1)证明:法一:取AD 中点O ,连接OP ,OC ,AC ,依题意可知PAD △,ACD △均为正三角形,所以OC AD OP AD ⊥⊥,,又OC OP O =I ,OC POC ⊂平面,OP POC ⊂平面,所以AD POC ⊥平面,又PC POC ⊂平面,所以PC AD ⊥.法二:连接AC ,AM ,DM ,依题意可知PAD ACD △,△均为正三角形,又M 为PC 的中点,所以AM PC DM PC ⊥⊥,,又AM DM M =I ,AM AMD ⊂平面,DM AMD ⊂平面, 所以PC AMD ⊥平面,又AD AMD ⊂平面,所以PC AD ⊥.(2)由题可知,点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知PO AD ⊥,又PAD ABCD ⊥平面平面,PAD ABCD AD =I 平面平面,PO PAD ⊂平面,所以PO ABCD ⊥平面,即PO 为三棱锥P ADC 的高.在36Rt POC PO OC PC ===△中,,,在PAC △中,26PA AC PC ===,,边PC 上的高22102AM PA PM =-=, 所以11101562222PAC S PC AM =⨯⨯==g △. 设点D 到平面P AC 的距离为h ,由--D PAC P ACD V V =得1133PAC ACD S h S PO =g g △△,又23234ACD S =⨯=△, 所以115133323h ⨯=⨯⨯g ,解得2155h =,所以点D 到平面P AM 的距离为2155.[B 组名校冲刺] 一、选择题 1~4:ADAD 二、填空题 5.①③④ 6.4π3三、解答题7.[解](1)取棱AD 的中点()M M PAD ∈平面,点M 即为所求的一个点. 理由如下:因为12AD BC BC AD =P ,,所以BC AM BC AM =P ,且. 所以四边形AMCB 是平行四边形, 所以CM AB P .又AB PAB CM PAB ⊂⊄平面,平面, 所以CM PAB P 平面.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明:由已知,PA AB PA CD ⊥⊥,, 因为12AD BC BC AD =P ,,所以直线AB 与CD 相交, 所以PA ABCD ⊥平面,所以PA BD ⊥. 因为12AD BC BC AD =P ,,M 为AD 的中点,连接BM , 所以BC MD BC MD =P ,且, 所以四边形BCDM 是平行四边形, 所以12BM CD AD BD AB ==⊥,所以. 又AB AP A =I ,所以BD PAB ⊥平面.又BD PBD ⊂平面,所以PAB PBD ⊥平面平面.8.[解](1)证明:过点M 作MP EF ⊥于点P ,过点N 作NQ FD ⊥于点Q ,连接PQ 。
专题四立体几何初步
第2讲空间中的平行与垂直
一、选择题
1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()
A.m∥l B.m∥n
C.n⊥l D.m⊥n
解析:∵α∩β=l,∴l⊂β.
∵n⊥β,∴n⊥l.
答案:C
2.(2016·江西南昌二模)设α为平面,a,b为两条不同的直线,则下列叙述正确的是()
A.若a∥α,b∥α,则a∥b
B.若a⊥α,a∥b,则b⊥α
C.若a⊥α,a⊥b,则b∥α
D.若a∥α,a⊥b,则b⊥α
解析:若a∥α,b∥α,则a与b相交、平行或异面,故A错误;易知B正确;
若a⊥α,a⊥b,则b∥α或b⊂α,故C错误;
若a∥α,a⊥b,则b∥α或b⊂α或b与α相交,故D错误.
答案:B
3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()
(导学号53130126)
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BCD
C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE
解析:∵AB=CB,且E是AC的中点,∴BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.∵AC⊂平面ABC,∴平面ABC⊥平面BDE.又AC ⊂平面ACD,∴平面ACD⊥平面BDE.
答案:C
4.(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交
B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交
D.l至少与l1,l2中的一条相交
解析:由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.
答案:D
5.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()
A.直线
B.抛物线
C.椭圆
D .双曲线的一支
解析:∵∠PAB =30°,∴点P 的轨迹为以AB 为轴线,PA 为母线的圆锥面与平面α的交线,且平面α与圆锥的轴线斜交,故点P 的轨迹为椭圆.
答案:C 二、填空题
6.已知集合A ,B ,C ,A ={直线},B ={平面},C =A ∪B .若a ∈A ,b ∈B ,c ∈C ,给出下列四个命题:
①⎩⎪⎨⎪⎧a ∥b , c ∥b ⇒a ∥c ;②⎩⎪⎨⎪⎧a ⊥b c ⊥b ⇒a ∥c ;③⎩⎪⎨⎪⎧a ∥b ,c ⊥b ⇒a ⊥c ; ④⎩
⎪⎨⎪⎧a ⊥b ,c ∥b ⇒a ⊥c . 其中所有正确命题的序号是________.
解析:由题意知:c 可以是直线,也可以是平面.当c 表示平面时,①②③都不对,故选④.
答案:④
7.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:
①PA ∥平面MOB ; ②MO ∥平面PAC ; ③OC ⊥平面PAC ; ④平面PAC ⊥平面PBC .
其中正确的命题是________(填上所有正确命题的序号).
解析:①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC .
答案:②④
8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF =G ,现在沿AE 、EF 、FA 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -
AEF 中必有________.
①AP ⊥△PEF 所在平面; ②AG ⊥△PEF 所在平面; ③EP ⊥△AEF 所在平面; ④PG ⊥△AEF 所在平面. 解析:
在折叠过程中,AB ⊥BE , AD ⊥DF 保持不变.
∴
⎭⎪
⎬⎪
⎫AP ⊥PE
AP ⊥PF PE ∩PF =P ⇒
AP ⊥平面PEF . 答案:① 三、解答题
9.(2016·四川卷)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,
∠ADC=∠PAB=90°,BC=CD=1
2AD.(导学号53130127)
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
(1)解:
取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:
∵AD∥BC,BC=1
2AD,
∴BC∥AM,且BC=AM.
∴四边形AMCB是平行四边形,
∴CM∥AB.
又AB⊂平面PAB,CM⊄平面PAB,
∴CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)
(2)证明:由已知,PA⊥AB,PA⊥CD,
∵AD∥BC,BC=1
2AD,
∴直线AB与CD相交,∴PA⊥平面ABCD,
∴PA⊥BD.
∵AD∥BC,BC=1
2AD,M为AD的中点,连接BM,
∴BC∥MD,且BC=MD,
∴四边形BCDM是平行四边形,
∴BM=CD=1
2AD,
∴BD⊥AB.
又AB∩AP=A,
∴BD⊥平面PAB.
又BD⊂平面PBD,
∴平面PAB⊥平面PBD.
10.(2016·浙江卷)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(导学号53130128)
(1)求证:BF⊥平面ACFD;
(2)求直线BD与平面ACFD所成角的余弦值.
(1)证明:
延长AD,BE,CF相交于一点K,如图所示.
∵平面BCFE⊥平面ABC,又平面BCEF∩平面ABC=BC,且AC⊥BC,AC⊂平面ABC,
∴AC⊥平面BCK,
因此,BF ⊥AC .
又∵EF ∥BC ,BE =EF =FC =1,BC =2, ∴△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK . ∴BF ⊥平面ACFD . (2)解:∵BF ⊥平面ACK ,
∴∠BDF 是直线BD 与平面ACFD 所成的角. 在Rt △BFD 中,BF =3,DF =3
2,
得cos ∠BDF =21
7
,
∴直线BD 与平面ACFD 所成角的余弦值为
217
. 11.(2016·合肥三次质检)如图,直角三角形ABC 中,A =60°,沿斜边AC 上的高BD 将△ABD 折起到△PBD 的位置,点E 在线段CD 上.
(1)求证:PE ⊥BD ;
(2)过点D 作DM ⊥BC 交BC 于点M ,点N 为PB 的中点,若PE ∥平面DMN ,求
DE
DC
的值. (1)证明:∵BD ⊥PD ,BD ⊥CD 且PD ∩DC =D , ∴BD ⊥平面PCD , 而PE ⊂平面PCD , ∴BD ⊥PE .
(2)解:由题意得BM =1
4
BC ,
取BC的中点F,则PF∥MN,
∴PF∥平面DMN.
由条件PE∥平面DMN,PE∩PF=P,∴平面PEF∥平面DMN,
∴EF∥DM,
∴DE
DC=
MF
MC=
1
3.。