数学建模B题1
- 格式:doc
- 大小:1.08 MB
- 文档页数:18
模型建立出租车资源的“供求匹配”程度实际就是出租车的合理规模,而合理的规模是由供与需的关系决定的,当供需平衡时显然匹配程度高,供大于求或者供小于求都表示匹配程度低。
因此我们从供需平衡理论出发,试图建立描述出租车资源的“供求匹配”程度的模型。
然后选取几个具有代表性的城市出租车数据,用我们的模型进行分析,以此模拟全国出租车资源的“供求匹配”程度。
1.1出租车供需平衡关系分析当需求量与供给量达到一致时,即处于均衡状态,而这个量就称为供需平衡量,也是一个最佳量。
本文借鉴供需平衡理论的原理,对出租车供需关系进行分析。
出租车供需平衡关系分析模型:出租车流量F是关于出租车服务水平S与出租车出行总量V的函数,即F=f(S,V)(1.1)由出租车客运需求与供给的基本关系可知,当出租车供给量T和乘客出行次数A均为常数(即令T一几,A一而)时,就有唯一的解S*和V*。
由式((1.1)得出一个确定的出租车流量:F*=f(S*,V*).S*和V*可通过下面的方程组得出:(1.2)因此,出租车流量F*实际上是由To和A0决定的。
所以可以将F,写成:(1.3)图1.1描述了这种关系,在一般情况下,乘客主要关心的是候车时间,候车时间越长,乘客就认为出租车服务水平越差;相反,候车时间越短,就认为其服务水平越高,因此,出租车服务水平S常用候车时间的倒数又1/t表示。
由于候车时间比较直观,所以常用候车时间t代替服务水平S。
则式(1.2)中的函数J,D分别改写为:(1.4)因为候车时间t和服务水平S是成反比的,所以候车时间t对出行总量V的曲线形状也发生了变化,如图1.1所示。
图1.1出租车供需平衡关系1.2出租车供需平衡的动态关系分析1.2.1出租车在城市客运交通系统中的供需平衡分析城市客运交通需求与供给受城市经济的发展、城市人口及规模等多种因素的影响,当城市客运交通供需情况发生变化时,若城市客运交通需求量下降,出现城市客运交通供过于需的局面,出租车客运需求量也势必随着下降,则出租车供给量超出需求量,出租车空驶率上升,导致出租车行业利润下降,部分出租车将退出出租车市场;若城市客运交通需求量上升,出现城市客运交通供不应需的局面,相应的出租车也势必会承担一部分供给不足的部分,出租车需求量上升,出租车空驶率随之下降,出租车行业利润上涨,刺激市场增加出租车的供给。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2009 年 9 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床的合理安排摘要眼科病床安排问题是一个重要的问题,如果病床安排得不合理,不仅医院资源不能得到有效利用,而且会给病人造成一定得损失,也影响医院的发展。
建立合理的病床安排模型不仅能使医院资源得到有效分配,还能为病人带来方便。
首先,为确定病床安排模型的优劣,我们要建立一个合理的评价指标体系。
从总成本和效率两方面进行综合考虑,建立模型一评价指标模型。
第一个综合指标总成本包括病人在排队系统中等待的损失和医院服务成本,即总成本i i i Q ax by =+;第二个综合指标是用“归一分析法”来分析床位利用效率,其中:=⨯期内床位实际周转次数床位效率指数床位使用率期内床位标准周转次数然后采用模型一的这些指标对该问题的病床安排模型的优劣进行综合评价,得出结论是按照FCFS (First come, First serve )规则安排住院使总成本不断在大幅度增加,床位一直处于低效率运行状态。
2021高教社杯全国大学生数学建模竞赛B题参考答案交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。
并分别对题目的各问,作了合理的解答。
问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。
(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。
(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。
我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。
问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F 区域平台设置不合理。
并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。
(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。
关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
全国数学建模B题解析1.1太阳能小屋的概况1.2设计要求a. 小屋外表面的光伏电池的铺设方案,使小屋的全年太阳能光伏发电尽可能的大,而单位发电量尽可能的小。
b. 在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池可串联,而不型号的电池板不可串联。
在不同表面上的,即使是相同的型号的电池也不能进行串联、并联。
c.光伏分组阵列的端电压应满足逆变器直流输入电压范围。
d.光伏阵列的最大功率不能超过逆变器的额定容量。
e. 同一分组阵列中的组件在安装时,应尽可能保证具有相同的太阳辐射条件(朝向、倾角等)。
2 光伏发电系统运行方式的选择太阳能光伏发电系统的运行方式可分为两类。
即:独立运行和并网运行。
独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区。
由于必须有蓄电池储能装置,所以整个系统的造价很高。
在有公共电网的地区。
光伏发电系统一般与电网连接,即采用并网运行方式。
并网型光伏发电系统的优点是可以省去蓄电池,而将电网作为自己的储能单元。
由于蓄电池在存储和释放电能的过程中,伴随着能量的损失,且蓄电池的使用寿命通常仅为5~8年,报废的蓄电池又将对环境造成污染,所以,省去蓄电池后的光伏系统不仅可大幅度降低造价,还具有更高的发电效率和更好的环保性能,且维护简单、方便。
小屋外表面能够安装太阳能电池板的面积有限,且屋顶光伏发电系统的容量通常远远小于其变压器的容量,即光伏系统的发电功率始终小于小区负载的功率,没有剩余电能送入上级城市电网。
综合考虑,该光伏发电系统拟采用并网运行方式.并在小区内局部并网,不考虑将电能输入上级城市电网,系统原理图如图l所示。
采取小区内局部并网系统设计3.1设计依据该系统的设计依据有:《光伏系统并网技术要求》(GB/T19939—2005);山西省大同市的气象资料;1.2的五点要求;本题提供的附件资料等。
3.2光伏系统太阳能电池组件的配置方案3.2.1最佳方阵倾角的确定大同市位于北纬和东经之间,平均年日照数3086小时,太阳3.2.2太阳能电池组件的选择与分布3.2.2.1太阳能电池组件的选择目前,高效晶体硅太阳能电池的光电转换率已达2l%以上。
“互联网+”时代的出租车资源配置摘要随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。
本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。
对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日哈尔滨市南岗区出租车资源“供求匹配”程度。
通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出哈尔滨市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。
同理,也得到了哈尔滨市不同区县、不同时间的供求匹配程度,最后作出哈尔滨市出租车“供求匹配”程度图。
对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。
对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。
关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划一问题重述交通是社会生活众多产业当中的一项基础产业,不但和社会的经济发展关系紧密,与人们的生活也是息息相关。
2023本科数学建模b题
2023年本科数学建模竞赛B题
B题交通流量分配优化
问题:
交通流量分配是交通工程领域的重要研究内容,对于提高道路使用效率、缓解交通拥堵具有重要意义。
请你们建立数学模型,解决以下问题:
1. 对于一个城市的道路网络,如何进行最优的交通流量分配,使得总的行驶时间最短?
2. 如果在某些路段实施了交通限制措施(例如限行、限速等),如何调整交通流量分配,以使得总的行驶时间最短?
3. 如何评估交通流量分配的优化效果?
要求:
1. 请根据以上问题,建立数学模型。
模型应包括目标函数、约束条件和决策变量。
2. 在模型中,应考虑实际的道路网络特性,如道路的长度、宽度、车流量等。
3. 对于第二个问题,应考虑不同限制措施对交通流量分配的影响,并给出相应的优化方案。
4. 对于第三个问题,应提出一种有效的评估方法,以量化优化效果。
5. 最后,请根据给定的数据(见附件),对模型进行验证和求解,并给出相应的结果分析。
“拍照赚钱”任务定价模型摘要问题(1)是研究任务定价规律和任务未完成的原因,首先将附件一中的任务信息与附件二中的会员信息联系在一起,挖掘任务定价分别与任务经纬度、会员经纬度、会员与任务之间的距离、会员预定任务限额、会员信誉值之间的关系。
我们发现,任务的定价与高限额会员(会员限额在20以上,这5%的人群占据了任务份额的40%)的分布有关,越靠近高份额会员的,定价越低,反之越高,但是对于80和85的定价却不遵循此规律,这些高价任务的价格由一些特殊因素而决定着,比如交通非常不便利,不易到达,或者说不是每个都能去的地方,又或者拍照难的地方等等。
而影响任务完成率的主要因素有三:第一是任务密度和高限额会员密度的比值,二是任务和高限额会员之间的距离与价格的比值,三是特殊因素,而这几个因素对不同价格区间的任务影响又不尽相同,价格由低到高,第一点因素影响逐渐减小,而二三点因素的影响逐渐增大。
针对问题(2),需要究更具体的影响价格的因素,从而得到一个更合的定价方案。
我们将整个任务和会员分布以经纬地图的形式,用MATLAB将其位置标出,并将这份经纬地图分为40×50方格,用C语言程序依次统计每个方格中的任务总数、完成数、平均价格、会员总数、限额数等信息,依次来探究这些因素对定价和完成度的影响。
得到任务完成率=F(价格,会员限额密度,任务密度) 和价格= F(任务密度,会员限额密度) 这样两个关系。
从而对附件一中的任务重新定价,得到一个更合理的方案,这个方案在控制成本的基础上是会员尽量多的完成任务。
同样受到第三个问题的启发,我们提出了局部打包法的概念,就是讲一些没有完成那个的任务和比较容易完成的任务打包在一起,同样可以提高任务完成率。
问题(3)中涉及了会员之间的竞争,需要考虑他们的信誉、开始领取任务的时间和任务限额,目的是要防止早开始预定任务的人将容易完成的任务预定完,而只剩一些不容易完成的或价格低的任务。
鉴于此,我们在一定的区域范围内,将难易程度不同价格不等的任务打包在一起,最大一包包含5个任务,考虑到会员中有限额为一的会员,因此也有部分不打包的任务。
2019高教社杯全国大学生数学建模竞赛B题目及优秀论文精选B题“同心协力”策略研究“同心协力”(又称“同心鼓”)是一项团队协作能力拓展项目。
该项目的道具是一面牛皮双面鼓,鼓身中间固定多根绳子,绳子在鼓身上的固定点沿圆周呈均匀分布,每根绳子长度相同。
团队成员每人牵拉一根绳子,使鼓面保持水平。
项目开始时,球从鼓面中心上方竖直落下,队员同心协力将球颠起,使其有节奏地在鼓面上跳动。
颠球过程中,队员只能抓握绳子的末端,不能接触鼓或绳子的其他位置。
图片来源:https:///_mediafile/yjs/2017/10/26/32yuesec78.png 项目所用排球的质量为270 g。
鼓面直径为40 cm,鼓身高度为22 cm,鼓的质量为3.6 kg。
队员人数不少于8人,队员之间的最小距离不得小于60 cm。
项目开始时,球从鼓面中心上方40 cm处竖直落下,球被颠起的高度应离开鼓面40 cm以上,如果低于40cm,则项目停止。
项目的目标是使得连续颠球的次数尽可能多。
试建立数学模型解决以下问题:1. 在理想状态下,每个人都可以精确控制用力方向、时机和力度,试讨论这种情形下团队的最佳协作策略,并给出该策略下的颠球高度。
2. 在现实情形中,队员发力时机和力度不可能做到精确控制,存在一定误差,于是鼓面可能出现倾斜。
试建立模型描述队员的发力时机和力度与某一特定时刻的鼓面倾斜角度的关系。
设队员人数为8,绳长为1.7m,鼓面初始时刻是水平静止的,初始位置较绳子水平时下降11 cm,表1中给出了队员们的不同发力时机和力度,求0.1 s时鼓面的倾斜角度。
表1 发力时机(单位:s)和用力大小(单位:N)取值3. 在现实情形中,根据问题2的模型,你们在问题1中给出的策略是否需要调整?如果需要,如何调整?4. 当鼓面发生倾斜时,球跳动方向不再竖直,于是需要队员调整拉绳策略。
假设人数为10,绳长为2m,球的反弹高度为60cm,相对于竖直方向产生1度的倾斜角度,且倾斜方向在水平面的投影指向某两位队员之间,与这两位队员的夹角之比为1:2。
2016高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B .我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):大连理工大学城市学院.参赛队员(打印并签名) :1. 穆兴达.2. 徐王杰.3. 韩钰倩.指导教师或指导教师组负责人(打印并签名):高旭彬.日期: 2016 年 9 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):2016 高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):小区开放对道路通行的影响摘要随着城市经济的快速发展和城市人口的不断增加,今年国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。
为了给科学决策提供定量依据,要建立数学模型,解决问题。
在问题一中,首先根据层次分析法分析,可以得出小区开放对于周边道路的影响。
小区开放对周边交通影响是多方面的,各个评价指标对道路交通的影响程度是不同的。
对于道路通行的评价是一个多目标决策问题,因此必须采用多目标原则,对居住小区可能影响到的各个方面进行定性分析和定量计算,确定评价标准和方法,达到对交通影响程度评价目的。
为了准确的衡量小区开放对周边的交通的影响,需要确定合理的评价指标。
在问题二中,要解决小区数学模型的构建,就要先要对评价指标进行量化,将定性分析的指标变为定量分析。
利用定量分析的指标并结合层次分析法确定指标权重,对指标加权,得出最后的数学模型。
在问题三中,根据小区内的路况不同,选择了三种路网类型的小区。
分别是网格路网型小区、内环路网型小区和外环路网型小区。
三种类型的小区在出行高潮时间、出行人数等方面各不相同,但具有代表型。
三种类型的小区分别通过元胞自动机进行模拟得出数据并分析。
进行结果的对比,得出结论。
在问题四中,依据不同小区处在的位置不同,通行情况不同等情况对城市规划和交通管理部门两方面提出合理化的意见。
综上,可以根据提出的意见进行规划,以便提升通行能力关键词:开放小区,模糊综合评价法,层次分析法,道路通行;一、问题重述1.1 问题的背景2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。
1.2 题目的所给信息及参数除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。
一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。
小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。
也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。
还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。
1.3 所要解决的问题现要通过数学建模来完成以下任务:1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。
2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。
3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。
请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。
4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。
二、问题的假设1) 假设我们搜集整理的数据都是真实有效的;2) 假设在小区里和小区外所有人及车辆都按照交通法通行;3) 假设除我们选取的因素以外,其他的影响因素的影响效果都可以忽略不计;4) 假设天气不会影响正常的出行。
三、问题的分析3.1 问题的总分析3.2 对具体问题的分析3.2.1 问题一的分析本问需要选取合适的评价指标体系,用以研究小区开放对周边道路通行的影响。
对于该问的前半问,选择了对指标进行了赋权,对各个定义有一个确定定义,在此基础上并结合各种文献资料,建立了开放小区对道路影响的评价指标体系,然后结合不同小区不同情况,分析了内外结构对交通的影响,使用的数学模型为层次分析法。
3.2.2 问题二的分析本问建立关于车辆通行的数学模型,用以研究小区开放对周边通行的影响。
使用交通流元胞自动机数学模型,对此类问题具体分析。
得出各个不同的变量下的单车通过率,一天的高峰期时间图,并得出各个公式。
后半问,在前半问中的公式中带入具体数,消除变量等一连串的数学方法得出结果3.2.3 问题三的分析本问小区开放产生的效果,可能会与小区结构及周边结构,车流量有关,选取或构建不同劣性的小区,应用建立的模型,定量的比较各小区的影响。
此问首先选取了多个不同的小区模型,对多个不同类型的小区进行单独的分析,应用第二问选用的数学模型,在结合软件分析路网情况,画出图像。
定量的比较各个实验对象不同时间,不同情况的通过率。
运用交通仿真软件模拟了道路情况。
3.2.4问题四的分析对城市规划部门和交通管理部门提出合理化意见。
此问结合上述三问的结果,并结合实情,自由发挥。
四、符号说明五、模型的建立与求解5.1 小区开放对周边道路影响评价指标经过对小区开放对于周边道路影响的分析可以得知,小区开放对周边交通影响是多方面的,各个评价指标对道路交通的影响程度是不同的,对于道路通行的评价是一个多目标决策问题,因此必须采用多目标原则,对居住小区可能影响到的各个方面进行定性分析和定量计算,确定评价标准和方法,达到对交通影响程度评价目的。
为了准确的衡量小区开放对周边的交通的影响,需要确定合理的评价指标。
5.1.1评价指标原则1、对比原则要求指标可以反映在小区开放前后对周边道路的影响,可以通过对指标的分析可以明确的客观的反映小区开放对于周边路网交通的影响2、独立性原则各个指标间应该具有明显的独立性,避免重复和冲突,为之后的权重分析减小困难,同时各个指标之间应该具有良好的相互协调,相互补充的能力,避免指标评判不全面问题的发生3、实用性原则评价指标应有良好的实用性,简单,明确。
同时各项指标应该是易于获取的,以便计算,优化。
5.1.2评价指标体系小区交通影响评价指标应该能全面的反映小区开放后对周边路网的交通影响情况。
而小区开放后小区周边路网由有小区内部路网和原小区周边路网共同构成,而公共交通系统不占用小区内部路网应该单独讨论。
综合小区和周边交通性能指标,根据科学建立指标体系原则,提出如下指标体系:单车通过效率:单车通过目标小区路段的时间反应了单车在小区开放前后通过该处路段的效率问题;路段小时饱和度:目标小区周边路网小时通过最多车辆数对比;公交系统高峰小时负荷度:公共交通系统高峰时期小区路段单位时间内通过人数。
5.2 车辆通行数学模型对于小区数学模型的构建需要首先对评价指标进行量化,将定性分析的指标变为定量分析。
而后对定量分析的指标用层次分析法确定指标权重对指标加权得出最后的数学模型。
5.2.1 对指标进行量化1.路段小时饱和度:应用小区附近路段饱和度带权平均的方法处理,该处权重指路段通行能力与所有路段通行能力比值2.单车通过效率:单车通过小区周边路网的各个路段所用时间与路网支路比值3.公交系统高峰小时负荷度:目标小区高峰时期满载率的平均值5.2.2 应用层次分析法确定指标权重采用层次分析法确定各指标权重进行分析,层次分析法是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
层次分析法的基本步骤:首先要建立层次分析结构,确立模型构造,并判断矩阵权重值的确定以及一致性检验1.建立层次分析结构模型2.构造判断矩阵层次分析法中标度的定义及描述见下表对于每一层的因素之间的重要程度,选用两两比较的方式来确定,构造判断矩阵如下其中aij 是判断矩阵A的元素表示ai相对于aj的重要程度3.权重值的确定及权重值的一致性检验1)最大特征值和特征向量解矩阵A的特征方程|A-λE|=0,E为单位矩阵得到特征值λi,记为最大特征值λmax ,对应λmax的标准化特征向量为则yi即为权重系数,也即是对应于判断矩阵的最大特征值的特征向量表示相对重要程度. 2)一致性检测对于矩阵A 由于矩阵中元素aij 不一定具有传递性,即aij*ajk一般不等于aik,可能会导致一致性偏差过大为了防止一致性偏差太大而影响评价结果,常常要求我们进行一致性检验,方法如下①求一致性指标CICI=(λmax-n)/(n-1),N为矩阵维数当λ=n时即CI=0矩阵满足一致性条件,不满足时λmax>n 即CI>0.②平均随机一致性指标RI在单层次情况下对RI随维数变化情况如下③相对一致性指标CRCR=CI/RI;当CR<=0.1时认为判断矩阵具有良好的一致性可以接受;如果CR>0.1则说明该判断矩阵设置不合理,需要从新设置。
按以上方法对准则层进行分析确定指标权重,指标层也用相同方法分析,得出设置的各个指标的权重如下:1. 单车通过效率权重 s1:0.42.公交系统高峰时段负荷度权重 s2:0.293.路段小时饱和度权重 s3:0.315.2.3 建立数学模型采用模糊评价的方式对小区开放对周边道路的影响问题求解将单车通过效率、公交系统高峰时段负荷度以及路段小时饱和度三个评价指标作为道路通行是否拥堵的评判标准。
(1) 确定评价因素集与评语集根据以上评价指标的选取和拥堵级别的划分,确定评价因素集为{}321,,xxxX=分别对应于单车通过效率、公交系统高峰时段负荷度以及路段小时饱和度。