2014年中考数学题汇编八年级下册练习题
- 格式:doc
- 大小:155.11 KB
- 文档页数:2
苏州工业园区2013-2014学年第二学期期中考试八年级数学试卷2014 年 4 月一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题卷相应位置上........) 1、下列图形中,中心对称图形有 ( )A .1个B .2个C .3个D .4个2、分式211x x -+的值为0,则( )A .x =-1 B .x =1 C .x =±1 D .x =03、一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是 ( )A .摸到红球是必然事件B .摸到白球是不可能事件C .摸到红球与摸到白球的可能性相等D .摸到红球比摸到白球的可能性大4、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )5、如果分式121-a 的值是正数,那么a 的取值范围是 ( )A .a >2B .a ≥12C .a <12D .a >126、已知两点P 1(x 1,y 1)、P 2(x 2、y 2)在反比例函数y =的图象上,当x 1>x 2>0时,下列结论正确的BC 的延长线于点E ,则△BDE 的面积为 ( ) A .22 B .24 C .48 D .448、如上图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)ky x x=>的图象经过顶点B ,则k 的值为( )A.12 B.20 C.24 D.32 9、如图,在直角梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =4,AB =5,BC =8.点P是AB 上一个动点,则PC +PD 的最小值是( )A .10 B.12 C .13 D.1110、如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4(第10题)二、填空题(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题..卷相应位置上......)11、某中学要了解八年级学生的视力情况,在全校八年级中抽取了40名学生进行检测,在这个问题中,总体是_________ ,样本是_________ .12、在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是.13、在平行四边形ABCD中,∠B+∠D=200o, 则∠A=,∠D=.14、如下图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.15、如下图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是8和6(AC>BC),反比例函数(0)ky xx=<的图象经过点C,则k的值为___;(第14题)(第15题)(第19题)(第20题)16、已知正比例函数2y x=-与反比例函数kyx=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为.17、已知关于x的方程2x m3x2+=-的解是正数,则m的取值范围是。
八年级下册数学期末试卷中考真题汇编[解析版]一、选择题1.若代数式82-x 有意义,则实数x 的取值范围是( ) A .4x ≤- B .4x ≤ C .4x ≥ D .4x ≥- 2.下列四组数据中,不能作为直角三角形三边长的是( ) A .5,12,13B .1,2,3C .6,8,10D .3,4,53.下列命题不是真命题的是( ) A .等边三角形的角平分线相等 B .线段的垂直平分线上的点到线段两端的距离相等C .有两个角相等的三角形是等腰三角形D .一组对边平行的四边形是平行四边形4.某校有甲、乙两个合唱队,两队队员的平均身高都为160cm ,标准差分别是S 甲、S 乙,且S S >甲乙,则两个队的队员的身高较整齐的是( ) A .甲队B .两队一样整齐C .乙队D .不能确定5.如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC =BD ,则四边形EFGH 为矩形; ②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分; ④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等. 其中正确的个数是( )A .1B .2C .3D .46.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒=D .20,A AD BC BD ∠=︒=+7.如图,在边长为12的等边△ABC中,D为边BC上一点,且BD=12CD,过点D作DE⊥AB于点E,F为边AC上一点,连接EF、DF,M、N分别为EF、DF的中点,连接MN,则MN的长为()A.3B.2 C.23D.48.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED=35;③当0≤x≤5时,y=225x;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=55522x+.其中正确的有()A.2个B.3个C.4个D.5个二、填空题9.若代数式11xx-+有意义,则x的取值范围是_____________.10.如图,在菱形ABCD中,E,F,G分别是AD,AB,CD的中点,且10cmFG=,6cmEF=,则菱形ABCD的面积是___2cm.11.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m 的A 处,C 处有食物,壁虎沿油罐的外侧面爬行到C 处捕食,它爬行的最短路线长为_____m .12.如图,在矩形ABCD 中,3cm AB =,在边CD 找一点E ,沿直线AE 把ADE 折叠,若点D 恰好落在边BC 上的点F 处,且ABF 的面积为26cm ,则DE 的长是__________cm .13.已知一次函数y x b =-+的图象过点()8,2,那么此一次函数的解析式为__________. 14.已知,如图,△ABC 中,E 为AB 的中点,DC ∥AB ,且DC =12AB ,请对△ABC 添加一个条件:_____,使得四边形BCDE 成为菱形.15.如图1,在长方形ABCD 中,动点P 从点A 出发,沿A B C D →→→方向运动至D 点处停止,设点P 出发时的速度为每秒cm b ,a 秒后点P 改变速度,以每秒1cm 向点D 运动,直到停止.图2是APD △的面积()2cm S 与时间()s x的图像,则b 的值是_________.16.如图,正方形ABCD边长为2,点P在BC边上,DP交AC于点E,ADE AED∠=∠,则BP的长度是_______.三、解答题17.计算:(1)4545842+-+;(2)2(32)(12)(12)++-;(3)解方程组23405x yx y+=⎧⎨-=-⎩;(4)解方程组7 438 32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.18.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m处,发现此时绳子末端距离地面1m,求旗杆的高度.(滑轮上方的部分忽略不计)19.如图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点.A,B 两点均在格点上,在给定的网格中,按下列要求画图:(1)在图①中,画出以AB 为底边的等腰△ABC ,并且点C 为格点. (2)在图②中,画出以AB 为腰的等腰△ABD ,并且点D 为格点.(3)在图③中,画出以AB 为腰的等腰△ABE ,并且点E 为格点,所画的△ABE 与图②中所画的△ABD 不全等.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.[观察]请你观察下列式子的特点,并直接写出结果: 221111111212++=+-= ; 221111112323++=+-= ; 221111113434++=+-= ; ……[发现]根据你的阅读回答下列问题: (1)请根据上面式子的规律填空: ()221111n n ++=+ (n 为正整数); (2)请证明(1) 中你所发现的规律. [应用]请直接写出下面式子的结果: ()222222221111111111111223341n n ++++++++++ . 22.甲、乙两个种子店都销售“黄金1号”玉米种子,在甲店,该玉米种子的价格为m 元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.某科技人员对付款金额和购买量这两个变量的对应关系用列表法做了分析,并绘制出函数图象,如表是该科技人员绘制的图象和表格的不完整资料,已知点A的坐标为(2,10).在乙店,不论一次购买该种子的数量是多少,付款金额T(元)与购买数量x(千克)的函数关系式为T=kx.付款金额(元)m7.51012n购买量(千克)1 1.52 2.53(1)根据题意,得m=,n=.(2)当x>2时,求出y关于x的函数解析式;(3)如果某农户要购买4千克该玉米种子,那么该农户应选择哪个店更合算?23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.24.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=3OA,直线l2:y=k2x+b经过点C(3,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD 为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.25.在直角坐标系xOy中,四边形ABCD是矩形,点A在x轴上,点C在y轴的正半轴上,点B,D分别在第一,二象限,且3AB=,4BC=.(1)如图1,延长CD交x轴负半轴于点E,若AC AE=.①求证:四边形ABDE为平行四边形②求点A的坐标.(2)如图2,F为AB上一点,G为AD的中点,若点G恰好落在y轴上,且CG平分DCF∠,求AF的长.(3)如图3,x轴负半轴上的点P与点Q关于直线AD对称,且AP AD=,若BCQ△的面积为矩形ABCD面积的18,则BQ的长可为______(写出所有可能的答案).【参考答案】一、选择题解析:B【分析】根据二次根式有意义的条件即可求的x的取值范围.【详解】∴820-≥.xx≤.解得4故选B.【点睛】本题考查了二次根式有意义的条件,掌握二次分式有意义的条件是解题的关键.2.B解析:B【分析】利用勾股定理逆定理进行求解即可.【详解】解:A、222+,能构成直角三角形,故此选项不符合题意;512=13B、222+≠,不能构成直角三角形,故此选项符合题意;123C、222+,能构成直角三角形,故此选项不合题意;68=10D、222+,能构成直角三角形,故此选项不合题意;34=5故选B.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理的逆定理是解题关键.主要看较短两边的平方和是否等于较长边的平方3.D解析:D【解析】【分析】根据等边三角形的性质、线段垂直平分线的性质定理、等腰三角形的判定定理、平行四边形的定义判断即可.【详解】解:A、等边三角形的角平分线相等,是真命题,不符合题意;B、线段的垂直平分线上的点到线段两端的距离相等,是真命题,不符合题意;C、有两个角相等的三角形是等腰三角形,是真命题,不符合题意;D、一组对边平行的四边形是平行四边形或梯形,本选项说法不是真命题,符合题意;故选:D.【点睛】本题考查了真假命题的判断,等边三角形,线段的垂直平分线,等腰三角形,平行四边形,掌握相关性质定理是解题的关键.解析:C 【解析】 【分析】根据标准差的定义:方差的算术平方根,因此标准差越小,代表方差越小,即越稳定,由此求解即可. 【详解】 解:∵S 甲>S 乙,∴S 2甲>S 2乙,∴乙队的队员的身高较整齐 故选C . 【点睛】本题主要考查了标准差,解题的关键在于能够熟练掌握标准差的定义.5.A解析:A 【分析】①由菱形的判定定理即可判断;②由矩形的判定定理,即可判断;③若四边形EFGH 是平行四边形,与AC 、BD 是否互相平分无任何关系;④根据中位线性质解题. 【详解】解:由题意得:四边形EFGH 平行四边形, ①若AC =BD ,则四边形EFGH 是菱形,故①错误; ②若AC ⊥BD ,则四边形EFGH 是矩形,故②错误;③若四边形EFGH 是平行四边形,不能判定AC 、BD 是否互相平分,故③错误; ④点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点 ////////EH GF BD HG EF AC ∴,1122EH GF BD HG EF AC ====, 若四边形EFGH 是正方形,EH HG ∴⊥,AC BD ∴⊥∴,AC 与BD 互相垂直且相等,故④正确.故选:A . 【点睛】本题考查矩形、正方形、菱形等特殊四边形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.6.D解析:D 【解析】 【分析】设∠ABC=∠C=2x,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF,BC=BE=EF,在△BDC中利用内角和定理列出方程,求出x值,可得∠A,再证明AF=EF,从而可得AD =BC+BD.【详解】解:∵AB=AC,BD平分∠ABC,设∠ABC=∠C=2x,则∠A=180°-4x,∴∠ABD=∠CBD=x,第一次折叠,可得:∠BED=∠C=2x,∠BDE=∠BDC,第二次折叠,可得:∠BDE=∠FDE,∠EFD=∠ABD=x,∠BED=∠FED=∠C=2x,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC,∴AD=AF+FD=BC+BD,故选D.【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.7.A解析:A【解析】【分析】根据题意求出BD,根据等边三角形的性质得到∠B=60°,根据含30°角的直角三角形的性质、勾股定理求出DE,根据三角形中位线定理计算,得到答案.【详解】CD,解:∵BC=12,BD=12∴BD=4,∵△ABC为等边三角形,∴∠B=60°,∵DE⊥AB,∴∠DEB=90°,∴∠BDE=30°,∴BE =12BD =2, 由勾股定理得:DE =2223BD BE -=,∵M 、N 分别为EF 、DF 的中点,∴MN =12DE =3,故选:A .【点睛】本题考查的是三角形中位线定理、等边三角形的性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 8.B解析:B【分析】根据图中相关信息即可判断出正确答案.【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小,∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=,35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=, AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确; 当6x = 时,5AQ AB cm ==,1742PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确;故选B .【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题9.1x ≤且1x ≠-【解析】【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:1-x ≥0,且x +1≠0,∴1x ≤且1x ≠-故答案为:1x ≤且1x ≠-.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.10.A解析:96【解析】【分析】连接AC ,BD ,交点为O ,EF 与AC 交于点M ,EG 与BD 交于点N ,由三角形中位线定理得出//EF BD ,12EF BD =,//EG AC ,12EG AC =,得出90FEG ∠=︒,由勾股定理求出EG 的长,根据菱形的面积公式可得出答案.【详解】解:如图,连接AC ,BD ,交点为O ,EF 与AC 交于点M ,EG 与BD 交于点N ,四边形ABCD 是菱形,AC BD ∴⊥, E ,F ,G 分别是AD ,AB ,CD 的中点,//EF BD ∴,12EF BD =,//EG AC ,12EG AC =, ∴四边形OMEN 是矩形,90FEG ∴∠=︒,10FG cm =,6EF cm =,22221068EG FG EF cm ∴=-=-=,16AC cm ∴=,12BD cm =,∴菱形ABCD 的面积是211161296()22AC BD cm ⋅=⨯⨯=. 故答案为96.【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,菱形的面积,根据三角形的中位线定理求出AC 和BD 的长是解题的关键.11.A解析:13【解析】【分析】根据题意画出圆柱的侧面展开图的平面图形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得:AD =5m ,CD =12m ,则AC =2212513+=(m),故答案为:13.【点睛】本题主要考查了平面展开图的最短路径问题,正确画出平面图形是解题的关键.12.53【分析】先求解,BF 再利用勾股定理求解,AF 可得CF 的长度,设,DE x = 则,3,EF x CE x ==- 再利用勾股定理列方程解方程即可.【详解】解: 矩形ABCD 中,3cm AB =,ABF 的面积为26cm ,3,,90,AB CD AD BC B C ∴===∠=∠=︒16,2AB BF ∴=4,5,BF AF ∴=由对折可得:5,1,,AD AF BC FC BC BF DE EF ====-==设,DE x = 则,3,EF x CE x ==-()22213,x x ∴=+-5,3x ∴= 5.3DE ∴= 故答案为:5.3【点睛】本题考查的是矩形的性质,轴对称的性质,勾股定理的应用,掌握以上知识是解题的关键. 13.10y x =-+【分析】用待定系数法即可得到答案.【详解】解:把()8,2代入y x b =-+得82b -+=,解得10b =,所以一次函数解析式为10y x =-+.故答案为10y x =-+【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14.A解析:AB =2BC .【分析】先由已知条件得出CD=BE ,证出四边形BCDE 是平行四边形,再证出BE=BC ,根据邻边相等的平行四边形是菱形可得四边形BCDE 是菱形.【详解】解:添加一个条件:AB =2BC ,可使得四边形BCDE 成为菱形.理由如下:∵DC =12AB ,E 为AB 的中点, ∴CD =BE =AE .又∵DC ∥AB ,∴四边形BCDE 是平行四边形,∵AB =2BC ,∴BE =BC ,∴四边形BCDE 是菱形.故答案为:AB =2BC .【点睛】本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.15.【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:时,点P 在AB 上,,点P 在BC 上,时,点P 在CD 上,∴,∵,∴解得 解析:43【分析】根据图像,结合题意,先求出AD 的长,再根据三角形的面积公式求出a ,即可求出b 的值.【详解】解:由函数图像可知:010x ≤≤时,点P 在AB 上,1016x <≤,点P 在BC 上,16x >时,点P 在CD 上,∴()161016cm BC AD =-⨯==, ∵()110136242AD a -⨯=-, ∴解得6a =,又∵1242AD ab =,即166242b ⨯⨯= ∴43b =, 故答案为:43. 【点睛】本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.16.【分析】先根据勾股定理求得AC 的长,继而求得CE 的长,证得CP=CE ,即可求解.【详解】∵正方形边长为,∴AC=2,∵,∴AE=AD=2,∴CE=AC=AE=,∵AD ∥PC ,∴,解析:4-【分析】先根据勾股定理求得AC 的长,继而求得CE 的长,证得CP=CE ,即可求解.【详解】∵正方形ABCD 边长为2,∴,∵ADE AED ∠=∠,∴AE=AD=2,∴CE=AC=AE=2,∵AD ∥PC ,∴ADE CPE ∠=∠,又∵AED CEP ∠=∠,且ADE AED ∠=∠,∴CEP CPE ∠=∠,∴CP=CE=2,∴BP=BC- CP=2-(2)=4-.故答案为:4-.【点睛】本题考查了正方形的性质,勾股定理,等腰三角形的性质和判定,求得CP=CE=2是解题的关键.三、解答题17.(1);(2);(3);(4)【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利解析:(1)2)11--3)510x y =⎧⎨=⎩;(4)6024x y =⎧⎨=-⎩ 【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利用加减消元法求解即可.【详解】解:(1)原式==;(2)原式()22921⎡⎤=+⨯-⎢⎥⎣⎦(()111=+⨯-11=-- (3)23405x y x y +=⎧⎨-=-⎩①② 由②可得:5x y =-,将5x y =-代入①得:()25340y y -+=,解得:10y =,∴1055x =-=,∴原方程组解为:510x y =⎧⎨=⎩; (4)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② 由①×4-②×3可得:43748332y y -=⨯-⨯, 解得:24y =-, 将24y =-代入①可得:24743x -+=, 解得:60x =,∴原方程组解为:6024x y =⎧⎨=-⎩. 【点睛】本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键.18.13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为m ,即,,中,即解得即旗杆的高度为13米.【点睛】本题考查了勾股解析:13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为x m ,即AD x =,1AB x =-,5BC =Rt ABC ∴中,222AB BC AC +=即()22215x x -+=解得13x =即旗杆的高度为13米.【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键. 19.(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB=,以AB 为底等腰直角三角形,两直角边为x, 根据勾股定理求出,找横1竖2个格,或横2竖1个格画线即可;(2)解析:(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据勾股定理AB =10,以AB 为底等腰直角三角形,两直角边为x , 根据勾股定理求出5x =,找横1竖2个格,或横2竖1个格画线即可;(2)以AB =10为腰的等腰△ABD ,AB =AD ,以点A 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD ; AB =BD ,以点B 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD .(3)以AB =10为腰的等腰△ABD ,AB =BE ,以点B 为起点找横1竖3个格,或横3竖1个格;如图△ABE .AB =AE ,以点A 为起点找横1竖3个格,或横3竖1个格;所画的△ABE 与图②中所画的△ABD 不同即可.【详解】解:(1)∵根据勾股定理AB =221310+=,以AB 为底等腰直角三角形,两直角边为x , 根据勾股定理()22210x x +=,解得5x =,横1竖2,或横2竖1个画线;如图△ABC ;(2)以AB =221310+=为腰的等腰△ABD ,AB =AD ,以点A 为起点找横1竖3个格,或横3竖1个格画线;如图△ABD ;AB =BD ,以点B 为起点找横1竖3个格画线,或横3竖1个格;如图△ABD ;(3)以AB =221310+=为腰的等腰△ABD ,AB =BE ,以点B 为起点找横1竖3个格,或横3竖1个格;如图△ABE .AB =AE ,以点A 为起点找横1竖3个格,或横3竖1个格;所画的△ABE 与图②中所画的△ABD 不全等.【点睛】本题考查网格作图,掌握网格作图方法与勾股定理,利用勾股定理确定腰长构造直角三角形是解题关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下: ∵D 为AB 的中点,∠ACB =90°, ∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形, ∴平行四边形CDBF 是菱形. 【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或. 【解析】 【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明; (2)运解析:[观察]32,76,1312;[发现](1)1111n n +-+或221n n n n+++;(2)证明见解析;[应用]1n n n ++或221n nn ++.【解析】 【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可. 【详解】[观察]32,76,1312,[发现](1)1111n n +-+或221n n n n+++(2)左=====∵n 为正整数, ∴()11111011n n n n +-=+>++ ∴左1111n n =+-=+右[应用11n +++111111111111223341n n =+-++-++-+++-+ (1111)n n =⨯+-+ 1n n n =++ 22=1n n n ++ ∴答案为:1n n n ++或221n nn ++. 【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22.(1)5,14;(2)y=4x+2;(3)当k <2.5时,到乙种子店花合算;当k=2.5时,个种子店花费的钱相同;k >2.5时,到甲种子店花合算. 【分析】(1)结合函数图象与表格即可得出购买量为解析:(1)5,14;(2)y =4x +2;(3)当k <2.5时,到乙种子店花合算;当k =2.5时,个种子店花费的钱相同;k >2.5时,到甲种子店花合算. 【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出m 值,结合超过2千克部分的种子价格打8折可得出n 值;(2)设当x >2时,y 关于x 的函数解析式为y =ax +b ,根据点的坐标利用待定系数法即可求出函数解析式;(3)当x =4时,分别求出两家店花费的钱即可. 【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x , ∵10÷2=5, ∴m =5,n =12+2=14.故答案为:5;14;(2)设当x>2时,y关于x的函数解析式为y=ax+b,将点(2.5,12)、(2,10)代入y=ax+b中,得:12 2.5102a ba b=+⎧⎨=+⎩,解得42ab=⎧⎨=⎩,∴当x>2时,y关于x的函数解析式为y=4x+2.(3)∵x>2,∴当甲、乙两个种子店花费的钱相同时,4×4+2=4k,解得k=2.5,∴当k<2.5时,到乙种子店花合算;当k=2.5时,两个种子店花费的钱相同;k>2.5时,到甲种子店花合算.【点睛】本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.23.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出AN,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出BD最大时,的面积最大,而BD最大是,即可得出结论.【详解】解:(1)点P,N是BC,CD的中点,,,点P,是CD,DE的中点,,,,,BD CE∴=,,,,,,,,,,故答案为:,;(2)是等腰直角三角形.由旋转知,,,,,,,利用三角形的中位线得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,MN∴最大时,的面积最大,且DE在顶点A上面,∴最大,MN连接,AN,在ADE∆中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大时,面积最大,∴点D在BA的延长线上,,,.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.24.(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【解析】【分析】(1)解析:(1)y3+6;(2)D33),S△BCD=33)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,36﹣30)或(﹣36,0)【解析】【分析】(1)根据待定系数法可得直线l 1的解析式;(2)如图1,过C 作CH ⊥x 轴于H ,求点E 的坐标,利用C 和E 两点的坐标求直线l 2的解析式,与直线l 1列方程组可得点D 的坐标,利用面积和可得△BCD 的面积; (3)分四种情况:在x 轴和y 轴上,证明△DMQ ≌△QNC (AAS ),得DM =QN ,QM =CN ,设D (m ,3m +6)(m <0),表示点Q 的坐标,根据OQ 的长列方程可得m 的值,从而得到结论. 【详解】解:(1)y =k 1x +6, 当x =0时,y =6, ∴OB =6, ∵OB =3OA , ∴OA =23, ∴A (﹣23,0),把A (﹣23,0)代入:y =k 1x +6中得:﹣23k 1+6=0, k 1=3,∴直线l 1的解析式为:y =3x +6; (2)如图1,过C 作CH ⊥x 轴于H ,∵C 31), ∴OH 3CH =1, Rt △ABO 中,()2262343AB =+∴AB =2OA ,∴∠OBA =30°,∠OAB =60°, ∵CD ⊥AB , ∴∠ADE =90°, ∴∠AED =30°, ∴EH 3∴OE =OH +EH =3 ∴E (30),把E (23,0)和C (3,1)代入y =k 2x +b 中得:2223030k b k b ⎧+=⎪⎨+=⎪⎩,解得:2332k b ⎧=-⎪⎨⎪=⎩,∴直线l 2:y =33-x +2, ∴F (0,2)即BF =6﹣2=4,则32336y x y x ⎧=-+⎪⎨⎪=+⎩,解得33x y ⎧=-⎪⎨=⎪⎩,∴D (﹣3,3),∴S △BCD =12BF (xC ﹣xD )=()1433432⨯⨯+=;(3)分四种情况:①当Q 在y 轴的正半轴上时,如图2,过D 作DM ⊥y 轴于M ,过C 作CN ⊥y 轴于N ,∵△QCD 是以CD 为底边的等腰直角三角形, ∴∠CQD =90°,CQ =DQ , ∴∠DMQ =∠CNQ =90°, ∴∠MDQ =∠CQN , ∴△DMQ ≌△QNC (AAS ), ∴DM =QN ,QM =CN 3设D (m 3+6)(m <0),则Q (0,﹣m +1), ∴OQ =QN +ON =OM +QM , 即﹣m +1335312331m --==-+ ∴Q (0,3②当Q 在x 轴的负半轴上时,如图3,过D 作DM ⊥x 轴于M ,过C 作CN ⊥x 轴于N ,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,3m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即3m+6-3=﹣m﹣1,m=5﹣43,∴Q(6﹣43,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m3+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,3﹣63m+1,m=﹣35,∴Q(﹣43﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN3设D(m3+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,3﹣3m﹣1,m=﹣31,∴Q(0,﹣3综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,36﹣30)或(﹣36,0).【点睛】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.25.(1)①见解析;②;(2);(3)或【分析】(1)①利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;②设A(a,0),C(0,b),利用勾股定解析:(1)①见解析;②7,05A⎛⎫⎪⎝⎭;(2)43AF=;(34610【分析】(1)①利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;②设A(a,0),C(0,b),利用勾股定理求出225AC AE AB BC==+,则CE=CD+DE=6,E(a-5,0),则()222225102536EC a b a a b=-+=-++=,22225AC a b=+=,由此即可求解;(2)延长BA 到M 于y 轴交于M ,先证明△DGC ≌△AGM ,得到∠DCG =∠AMG ,AM =CD =AB =3,再由角平分线的定义即可推出CF =MF ,设AF =m ,则CF =MF =3+m ,BF =AB -AF =3-m ,由222CF CB BF =+,得到()()222343m m +=+-,解方程即可; (3)分Q 在矩形ABCD 内部和外部两种情况求解即可. 【详解】解:(1)①∵四边形ABCD 是矩形, ∴∠ADC =90°,AC =BD ,DC =AB ∵AC =AE , ∴CD =ED ,AE =BD ∴ED =AB ,∴四边形ABDE 是平行四边形; ②设A (a ,0),C (0,b ), ∵四边形ABCD 是矩形, ∴∠ABC =90°,CD =AB =DE =3,∴225AC AE AB BC ==+=,CE =CD +DE =6, ∴E (a -5,0),∴()222225102536EC a b a a b =-+=-++=,22225AC a b =+=,∴25102536a -+=, 解得75a =, ∴7,05A ⎛⎫ ⎪⎝⎭;(2)如图,延长BA 到M 于y 轴交于M , ∵G 为AD 中点, ∴AG =DG ,∵四边形ABCD 是矩形, ∴∠D =∠DAB =∠GAM =∠B =90°, 又∵∠DGC =∠AGM , ∴△DGC ≌△AGM (ASA ), ∴∠DCG =∠AMG ,AM =CD =AB =3∵CG 平分∠DCF ,∴∠DCG =∠FCM =∠AMG ,∴CF =MF ,设AF =m ,则CF =MF =3+m ,BF =AB -AF =3-m ,∵222CF CB BF =+,∴()()222343m m +=+- 解得43m =,∴43AF =;(3)当Q 在矩形内部时,如图所示,过点Q 作QE ⊥BC 于E ,延长EQ 交AD 于F ,连接AQ∵111===288BCQ ABCD S BC EQ S BC AB ⋅⋅△矩形, ∴1344EQ AB ==; ∵BC ∥AD ,EF ⊥AD ,BA ⊥AD ,∴EF ∥AB ,∴四边形ABEF 是矩形,∴EF =AB =3,BE =AF ,∴94FQ EF EQ =-=, ∵点P 与点Q 关于直线AD 对称,且AP =AD ,∴AP =AD =AQ =4∴222281=1616AF BE AQ FQ =-=-,22281923=1616162BQ BE EQ +=-+=, ∴46BQ =;当Q 在矩形ABCD 的外部时,如图所示过点Q 作QE ⊥BC 于E ,延长QE 交AD 于F ,连接AQ同理求得1344EQ AB ==,154FQ EF EQ =+=, ∴2222225=1616AF BE AQ FQ =-=-, ∴22222595=1616162BQ BE EQ +=-+=, ∴10BQ = ∴综上所述,46BQ =10 4610 【点睛】 本题主要考查了矩形的性质,勾股定理,两点距离公式,等腰三角形的性质与判定,平行四边形的判定等等,解题的关键在于能够熟练掌握相关知识进行求解.。
八年级数学全册全套试卷中考真题汇编[解析版]一、八年级数学三角形填空题(难)1.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.2.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。
所以x的值是3.故填3.3.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.【答案】22【解析】【分析】先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-9=0,解得a=4,b=9,①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长=9+9+4=22.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.4.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.5.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .【答案】280°【解析】试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.∠__________.6.如图,五边形ABCDE的每一个内角都相等,则外角CBF=【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72 .【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.二、八年级数学三角形选择题(难)7.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.8.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°【答案】C【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE,问题得解.【详解】在△ABC中,∵∠ABC=34°,∠ACB=64°,∴∠BAC=180°−∠B−∠C=82°,∵AE 是∠BAC 的平分线,∴∠BAE=∠CAE=41°.又∵AD 是BC 边上的高,∴∠ADB=90°,∵在△ABD 中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°. 【点睛】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.9.如图,△ABC 中,E 是 AC 的中点,延长 BC 至 D ,使 BC :CD =3:2,以 CE ,CD 为邻边做▱CDFE ,连接 AF,BE,BF ,若△ABC 的面积为 9,则阴影部分面积是( )A .6B .4C .3D .2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】 解:在ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2▱CDFE 中,CD=EF1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯1262=⨯⨯6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.10.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.B.C.D.不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333 =S△ABC=1111••••2222BC AH AB PD BC PE AC PF ==+∴1111 3?3?3?3? 2222AH PD PE PF ⨯=⨯+⨯+⨯∴PD+PE+PF=AH=33 2即点P到三角形三边距离之和为33 2.故选B.11.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.12.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、八年级数学全等三角形填空题(难)13.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.33【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=11 3,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)3314.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=32,则EC=______【答案】6【解析】【分析】延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【详解】如图,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC,∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,∴∠HEK=∠FAH,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF,∴∠AHB=∠APC,在△ABH与△APC中,ABE PACAB ACAHB APC∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABH≌△APC(ASA),∴AH=CP,在△AHF与△EPF中,90AHF EPFAFH EFPAF EF∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHF≌△EPF(AAS),∴AH=EP,∠CED=∠HAF,∴EC=2AH,∵∠DEC=30°,∴∠HAF=30°,∴AH=2FH=2×32=3,∴EC=2AH=6.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.15.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠D=__________.【答案】30°【解析】试题解析:(1)连接CE,∵△ABC是等边三角形,∴AC=BC,在△BCE与△ACE中,{AC BCAE BECE CE===∴△BCE≌△ACE(SSS)∴∠BCE=∠ACE=30°∵BE平分∠DBC,∴∠DBE=∠CBE,在△BDE与△BCE中,{BD BCDBE CBEBE BE∠∠===∴△BDE≌△BCE(SAS),∴∠BDE=∠BCE=30°.16.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D, QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从C点出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t= 时,△APD和△QBE全等.【答案】2或4.【解析】试题分析:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2;②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4;综上所述:当t=2s或4s时,△ADP≌△QBE.考点:1.全等三角形的判定;2.动点型;3.分类讨论.17.把两个三角板如图甲放置,其中90ACB DEC∠=∠=︒,45A∠=︒,30D∠=︒,斜边12AB =,14CD =,把三角板DCE 绕着点C 顺时针旋转15︒得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为_________.【答案】10【解析】试题分析:如图所示,∠3=15°,∠1E =90°, ∴∠1=∠2=75°, 又∵∠B=45°, ∴∠OF 1E =∠B+∠1=45°+75°=120° ∴∠1D FO=60° ∵∠C 11D E =30°,∴∠5=∠4=90°, 又∵AC=BC ,AB=12, ∴OA=OB=6 ∵∠ACB=90°,∴CO=12AB=6, 又∵C 1D =CD=14, ∴O 1D =C 1D -OC=14-6=8, 在Rt △A 1D O 中,222211A 6810D OA OD =+=+=点睛:本题主要考查的就是旋转的性质、三角形的外角性质、直角三角形的性质及判定以及勾股定理的应用.解决这个问题的关键就是首先根据三角形外角的性质以及旋转图形的性质得出△AO 1D 为直角三角形,然后根据直角三角形的性质得出AO 和O 1D 的长度,最后根据直角三角形的勾股定理得出答案.18.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;其中正确的是_________【答案】①②③【解析】如图,(1)∵AC=AD ,∠CAD=30°,∴∠ACD=∠ADC=18030752-=,∵CE⊥DC,∴∠DCE=90°,∴∠ACE=∠ACD+∠DCE=165°.故①正确;(2)由(1)可知:∠ACB=∠DCE=90°,∴∠ACE-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE,∴BE=AD=BC.故②正确;(3)延长AD交BE于点F,∵△ACD≌△BCE,∴∠2=∠CAD=30°,∵AC=BC,∠ACB=90°,∴∠CAB=∠3=45°,∴∠1=∠CAB-∠CAD=15°,∴∠AFB=180°-∠1-∠2-∠3=90°,∴AD⊥BE.故③正确;综上所述:正确的结论是①②③.四、八年级数学全等三角形选择题(难)19.如图,ABC∆中,45ABC∠=,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G,下列结论正确的有( )个①BF AC=;②12AE BF=;③67.5A∠=;④DGF∆是等腰三角形;⑤ADGE GHCES S=四边形四边形.A.5个B.4个C.3个D.2个【答案】B【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF =∠DFG =67.5°,即可判断①②③④正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断⑤错误.【详解】∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°−45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中BDF CDA A DFBBD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△BDF ≌△CDA (AAS ),∴BF =AC ,故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC ,∴∠A =∠BCA =67.5°,故③正确,∴BA =BC ,∵BE ⊥AC ,∴AE =EC =12AC =12BF ,故②正确, ∵BE 平分∠ABC ,∠ABC =45°,∴∠ABE =∠CBE =22.5°,∵∠BDF =∠BHG =90°,∴∠BGH =∠BFD =67.5°,∴∠DGF =∠DFG =67.5°,∴DG =DF ,故④正确.作GM ⊥AB 于M .∵∠GBM =∠GBH ,GH ⊥BC ,∴GH =GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故⑤错误,∴①②③④正确,故选:B .【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.20.如图,点B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,BF=CE,添加一个适当的条件后,仍不能使得△ABC≌△DEF()A.AC=DF B.AC∥DF C.∠A=∠D D.AB=DE【答案】A【解析】【分析】根据AB∥DE证得∠B=∠E,又已知BF=CE证得BC=EF,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,若添加AC=DF,则不能判定△ABC≌△DEF,故选项A符合题意;若添加AC∥DF,则∠ACB=∠DFE,可以判断△ABC≌△DEF(ASA),故选项B不符合题意;若添加∠A=∠D,可以判断△ABC≌△DEF(AAS),故选项C不符合题意;若添加AB=DE,可以判断△ABC≌△DEF(SAS),故选项D不符合题意;故选:A.【点睛】此题考查三角形全等的判定定理,熟练掌握定理,并能通过定理去判断条件是否符合全等是解决此题的关键.21.下列两个三角形中,一定全等的是( )A.两个等边三角形B.有一个角是40︒,腰相等的两个等腰三角形C.有一条边相等,有一个内角相等的两个等腰三角形D.有一个角是100︒,底相等的两个等腰三角形【答案】D【解析】【分析】根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.【详解】解:A、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;B、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;C、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;D、等腰三角形的100°角只能是顶角,则两个底角是40°,它们对应相等,所以由全等三角形的判定定理ASA或AAS证得它们全等,故本选项正确;故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.23.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.24.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°;② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.五、八年级数学轴对称三角形填空题(难)25.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.26.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.27.如图,点P 是∠AOB 内任意一点,OP =5,M ,N 分别是射线OA 和OB 上的动点,若△PMN 周长的最小值为5,则∠AOB 的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN 周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.28.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.29.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.30.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.六、八年级数学轴对称三角形选择题(难)31.如图,△ABC的周长为32,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32以及BC=12,可得DE=8,利用中位线定理可求出PQ.【详解】∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=32﹣BC=32﹣12=20,∴DE=BE+CD﹣BC=8,∴PQ=12DE=4.故选:B.【点睛】本题考查了三角形的中位线定理和等腰三角形的性质和判定,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.32.如图,∠AOB=60°,点P是∠AOB内的定点且3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6 D.3【答案】D【解析】分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=12OC=3,CH=3OH=3 2 ,∴CD=2CH=3.故选D.点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.33.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E 为△ABC 外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是()A.①... B.①③... C.② ... D.①②③【答案】B【解析】【分析】连接DC,证ACD BCD DAC DBC∠∠≅=得出①,再证BED BCD≅,得出BED BCD30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC,∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵DB=DA,DC=DC,在△ACD与△BCD中,AB BCDB DADC DC=⎧⎪=⎨⎪=⎩,∴△ACD≌△BCD (SSS),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB∠=︒∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,BE BCDBE DBCBD BD=⎧⎪∠=∠⎨⎪=⎩,∴△BED ≌△BCD (SAS ),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC ∥AD ,∴∠DAC=∠ECA ,∵∠DBE=∠DBC ,∠DAC=∠DBC ,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA ,∴BE=BC ,∴∠BCE=∠BEC=60°+∠1,在△BCE 中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC ∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.34.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】A【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;②先求出∠APB =∠FPB ,再利用“角边角”证明△ABP 和△FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;③根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明△AHP 与△FDP 全等,根据全等三角形对应边相等可得DF =AH ;④求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后根据即可得到DG GH =+. 【详解】解:①∵∠ABC 的角平分线BE 和∠BAC 的外角平分线,∴∠ABP =12∠ABC , ∠CAP =12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB =180°−∠BAP−∠ABP ,=180°−(45°+12∠ABC +90°−∠ABC )−12∠ABC , =180°−45°−12∠ABC−90°+∠ABC−12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB =45°(已证),∴∠APB =∠FPB =45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴FG=GH,AF=2PA故2DG PA GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.35.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线∴11562822BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =,∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线, ∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.36.如图,ABC △是等边三角形,ABD △是等腰直角三角形,∠BAD =90°,AE ⊥BD 于点E .连CD 分别交AE ,AB 于点F ,G ,过点A 做AH ⊥CD 交BD 于点H ,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为()A.5 B.4 C.3 D.2【答案】B【解析】【分析】①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证EHG DFA∠=∠,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知AH DF=,即可作出判断.【详解】①正确:∵ABC△是等边三角形,∴60BAC︒∠=,∴CA AB=.∵ABD△是等腰直角三角形,∴DA AB=.又∵90BAD︒∠=,∴150CAD BAD BAC︒∠=∠+∠=,∴DA CA=,∴()1180150152ADC ACD︒︒︒∠=∠=-=;②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH︒∠=∠=,DA AB=,∵AE BD⊥,AH CD⊥.∴180EHG EFG︒∠+∠=.又∵180?DFA EFG∠+∠=,∴EHG DFA∠=∠,在DAF△和ABH中()AFD BHADAF ABH AASDA AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF△≌ABH.∴DF AH=.⑤正确:∵150CAD︒∠=,AH CD⊥,。
2014中考数学试题及答案2014年中考数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比?A. 2:3B. 1.5:2.5C. 0.6:0.2D. 3.14:2.72. 绝对值不大于5的所有整数之和为:A. 0B. 10C. 15D. 203. 若a、b、c是等差数列,且a+b+c=6,b+c+d=9,则d的值为:A. 1B. 2C. 3D. 44. 一个圆的半径是7厘米,求这个圆的周长(π取3.14):A. 42厘米B. 28厘米C. 18厘米D. 14厘米5. 下列哪个选项是反比例函数的图象?A. 过原点的直线B. 经过第二象限的曲线C. 经过第一、三象限的曲线D. 双曲线6. 一个等腰三角形的底边长为6厘米,腰长为5厘米,这个三角形的面积是多少平方厘米?A. 12B. 14C. 16D. 187. 下列哪个选项是一元二次方程的解?A. x = 2B. x = -2C. x = 1或x = -1D. x = 08. 已知函数f(x) = 2x + 1,求f(3)的值:A. 7B. 6C. 5D. 49. 下列哪个选项是正确的小数与分数之间的转换?A. 0.75 = 3/4B. 0.8 = 4/5C. 0.125 = 1/8D. 0.2 = 1/510. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,求这个长方体的体积:A. 24立方厘米B. 21立方厘米C. 16立方厘米D. 12立方厘米二、填空题(共5小题,每小题4分,满分20分)11. 已知一个等差数列的前三项分别是2、5、8,那么第100项是______。
12. 一个圆的直径是10厘米,那么这个圆的面积(π取3.14)是______平方厘米。
13. 一个三角形的三个内角之比为2:3:5,那么这个三角形的最大内角是______度。
14. 已知函数g(x) = x^2 - 3x + 2,求g(4)的值是______。
2014年中考试题汇编(反比例函数)一、选择题1、(2014浙江金华)下列函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2、(2014湖北孝感)在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <03、(2014河北省)如图1,某反比例函数的图像过点M (2-,1)表达式为( ) A .2y x = B .2y x =-C .12y x =D .12y x =-4、(2014山东临沂)已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定6、(2014山东枣庄)反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-47、(2014江西省)对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 8、(2014浙江丽水)已知反比例函数2y x=,则这个函数的图象一定经过( ) A . (2,1) B . (2,-1) C . (2,4) D . (-12,2) 9、(2014四川眉山)如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21 B .41 C.81 D .161 10、(2014湖南岳阳)在下图中,反比例函数xk y 12+=的图象大致是( )11、(2014四川绵阳)若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( ) A .b 1<b2B .b 1 = b2C .b 1>b 2D .大小不确定12、(2014江苏南京)反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限13、(2014浙江宁波)如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-114、(2014湖南益阳)已知正比例函数x k y 11=和反比例函授xk y 22=的图像都经过点(2,1),则1k 、2k 的值分别为:( ) A. 1k =21,2k =2 B. 1k =2,2k =21 C. 1k =2,2k =2 D. 1k =21,2k =21 15、(2014福建龙岩)函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )xA .xB .xC .xD .二、填空题1、(2014浙江义乌)已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____. 3、(2014福建龙岩)已知点(12)-,在反比例函数ky x=的图象上,则k = . 4、(2014哈尔滨)已知反比例函数ky x=的图象经过点(36)A --,,则这个反比例函数的解析式是 . 8、(2014南充)已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是__.10、(2014湖北潜江)如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.11、(2014陕西)在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 13、(2014广东梅州)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 . 三、解答题1、(2014四川资阳)如图6,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.2、(2014四川乐山)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分. 题甲:如图(12),反比例函数ky x=的图象与一次函数y mx b =+(1)B n -,两点.图6 图(12)(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.3、(2014四川成都)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.4、(2014福建福州)如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P图12。
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
2013—2014年度八年级数学下册中考试题A 卷 100分 一.填空题(每题3分,共30分)1、下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,72. 能判定四边形ABCD 为平行四边形的题设是 ( )(A )A B∥CD,AD=BC (B )AB=CD ,AD=BC (C )∠A=∠B,∠C=∠D(D )AB=AD ,CB=CD3.菱形和矩形一定都具有的性质是 ( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分且相等D 、对角线互相平分 4、如图所示,平行四边形ABCD 中,已知∠ABC =60°,则∠BAD 的度数是( )A. 60°B. 120°C. 150°D. 无法确定 5、平行四边形具有而一般四边形不具有的性质是( ).A. 内角和等于360°B. 外角和等于360°C. 不稳定性D.对边平行且相等.6、在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可能是( )A 1:2:3:4 B. 2:2:3:3 C. 2:3:2:3 D. 2:3:3:2 7x 的取值范围是A .1x >B .1x ≥C .1x <D .1x ≤ 8. 实数a 、b 在数轴上的位置如图所示,下列各式正确的是( ) (A )a >0 (B )b <0 (C )a >b (D )a <b9、,在平行四边形ABCD 中,∠A =125°,∠B 度数为 ( )A 60°B 55° C125° D 65°10.下列各曲线中,不能表示y 是x 的函数的是( )3分,共30分) 11.如图正方形的对角线为4,则它的边长AB = . 12.如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是______米.13.一艘帆船由于风向的原因先向正东方向航行了60km ,然后向正北方向航行了80km ,这时它离出发点有____________km. 14. 在Rt △ABC 中,∠C =90°,∠B =60°,AB =12,则BC = .15. 人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法表示为_______________m 16.命题“在同一个三角形中,等边对等角”的逆命题是:___________________.是________(填“真命题”或“假命题”)17,已知直角三角形三边长为3cm 、4cm 、5cm ,那么它斜边上的高为 cm 。
统计一、选择题1.(2014年天津市,第11题3分)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁考点:加权平均数.菁优网分析:根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答:解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.点评:此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.2.(2014•新疆,第7题5分)某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()360×=2523.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A. 9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()8.(2014•毕节地区,第5题3分)下列叙述正确的是()9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()11.(2014•襄阳,第6题3分)五箱梨的质量(单位:kg)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分别为()12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()=1.513.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()D15.(2014·台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34分析:先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选D.点评:此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是()A.0 B.C.2D.4分析:先求出这组数据的平均数,再根据方差的公式进行计算即可.解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,∴数据﹣2,﹣1,0,1,2的方差是:[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.点评:本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17. (2014•株洲,第3题,3分)下列说法错误的是()=218. (2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是()19. (2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是()20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是()21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()中位数为:=2923.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90 分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二.填空题1. (2014•福建泉州,第12题4分)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.2. (2014•广西玉林市、防城港市,第15题3分)下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9℃.3. (2014•广西贺州,第15题3分)近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x=22.考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.4.(2014年广东汕尾,第14题5分)小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.分析:根据众数和平均数的概念求解.解:6出现的次数最多,故众数为6,平均数为:=6.故答案为:6,6.点评:本题考查了众数和平均数的概念:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.(2014•孝感,第14题3分)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃; ③掷一次骰子,向上一面的数字是2; ④度量四边形的内角和,结果是360°. 其中是随机事件的是 ①③ .(填序号)6.(2014·云南昆明,第11题3分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).7.(2014•浙江湖州,第14题4分)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b 天,则a+b=.分析:根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案是:12.点评:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.(2014·浙江金华,第14题4分)小亮对60名同学进行节水方法的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是▲ .【答案】240°. 【解析】试题分析:根据扇形圆心角的计算方法,表示“一水多用”的扇形圆心角的度数是4036024040578⨯︒=+++︒.考点:扇形圆心角的计算.9.(2014•浙江宁波,第15题4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 150 支.10. (2014•湘潭,第11题,3分)未测试两种电子表的走时误差,做了如下统计则这两种电子表走时稳定的是甲.11. (2014•益阳,第11题,4分)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是2.16米.12. (2014•株洲,第12题,3分)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为108°.等级所占的百分比为:13. (2014年江苏南京,第10题,2分)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.考点:众数、极差分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.解答:168出现了3次,出现的次数最多,则她们身高的众数是168cm;极差是:169﹣166=3cm;故答案为:168;3.点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.14. (2014•扬州,第12题,3分)如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.×15.(2014•呼和浩特,第12题3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.=)))∴这组数据的方差是[3×的平均数为[)))三.解答题1. (2014•福建泉州,第23题9分)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?1300×=5202. (2014•广东,第22题7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3. (2014•珠海,第14题6分)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.1000×4. (2014•广西贺州,第22题8分)学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16万人次到图书馆阅读,其中商人占百分比为12.5%;(2)将条形统计图补充完整;(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?考点:条形统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)根据学生的人数除以占的百分比,求出总人数;求出商人占的百分比即可;(2)求出职工的人数,补全条形统计图即可;(3)由职工的百分比乘以28000即可得到结果.解答:解:(1)根据题意得:4÷25%=16(万人次),商人占的百分比为×100%=12.5%;(2)职工的人数为16﹣(4+2+4)=6(万人次),补全条形统计图,如图所示:(3)根据题意得:×100%×28000=10500(人次),则估计其中约有10500人次读者是职工.故答案为:(1)16;12.5%点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.5. (2014•广西玉林市、防城港市,第22题8分)第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?0.12×=0.686.(2014年四川资阳,第18题8分)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.考点:条形统计图;列表法与树状图法.菁优网分析:(1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防知识“特别熟悉”的居民人数的百分比乘以900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.解答:解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.7.(2014年天津市,第20题8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?考点:条形统计图;用样本估计总体;扇形统计图;中位数;众数.菁优网专题:计算题.分析:(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.解答:解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.8.(2014•新疆,第18题8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?9.(2014年云南省,第18题9分)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.10.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E 五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可))=,11.(2014•舟山,第19题6分)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?=0.2512.(2014•毕节地区,第24题12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.则概率是:=13.(2014•襄阳,第20题7分)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率..14.(2014•孝感,第21题10分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40;(2)图1中∠α的度数是54°,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为700.(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.=40×=54°3500×=.15.(2014•邵阳,第22题8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.××=40016.(2014•四川自贡,第20题10分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:。
2014——2015八年级下数学期中考试题(3)班级名 姓名 学号一、选择题(每小题2分,共12分)1.下列式子中,属于最简二次根式的是( ) A.9 B. 7 C. 20 D.31 2. 如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上, 连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53D.543.若代数式1-xx 的取值范围是( ) A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是 ( ) A.12 B. 24 C. 312 D. 316 5. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 º, EF ⊥AB ,垂足为F ,则EF 的长为( ) A .1 B . 2 C .4-2 2 D .32-4 6.在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ) A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2 二、填空题:(每小题3分,共24分) 7.计算:()()3132-+-= .8.若x 31-在实数范围内有意义,则x 的取值范围是 . 9.若实数a 、b 满足042=-++b a ,则ba= . 10.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数书为 . 11.如图,在直角坐标系中,已知点A (﹣3,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 . 12.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCDNMDBCA4题图5题图10题图成为菱形.(只需添加一个即可)13 .如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2cm,∠A=120°,则EF= .14.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_________.三、解答题(每小题5分,共20分)15.计算:121128-⎪⎭⎫⎝⎛+--+π16. 如图8,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.17.先化简,后计算:11()ba b b a a b++++,其中12a=,12b-=.E CDBAB′OFEDCBA 11题图12题图13题图14题图16题图18. 如图,在平行四边形ABCD 中,对角线AC,BD 交于点O,经过点O 的直线交AB 于E ,交CD 于F.求证:OE=OF.四、解答题(每小题7分,共28分)19. 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F . (1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ∠ABC ,P 是BD 上一点,过点P 作PM ⊥AD ,PN ⊥CD ,垂 足分别为M 、N 。
1、、如图折叠一张矩形纸片,已知∠1=70°,则∠2
的度数是____.
2、已知函数y=ax+b
经过(1,3)(0,-2)求a-b()
A.-1
B.-3
C.3
D.7
3、,90,,6,8,
Rt ABC C AD CAB AC BC CD
∆∠=︒∠===
在中平分________
4、
如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度v(单位∶m/s)与运动时
间t(单位s)关系的函数图像中,正确的是 ·······················································()
4、如图,在等腰
1
Rt OAA
∆中,
1
OAA
∠=90,OA=1,以OA1为直角边作等腰
12
Rt OA A
∆,
以OA2为直角边作等腰
23
Rt OA A
∆,•则OA3的长度为。
5、有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行
这种运算的过程如下∶
…
y3=
2y2
y2+1
第 3 次
第 2 次
y2=
2y1
y1+1
y1=
2x
x+1
第 1 次
输入x
则第n次的运算结果=____(含字母x和n的代数式表示).
6、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485
7、如图1是某公共汽车前挡风玻璃的雨刮器,其工作原理如图2,雨刷EF丄AD,垂足为
A,AB=CD,且AD=BC.这样能使雨刷EF在运动时.始终垂直于玻璃窗下沿BC.请证明这一结论.
t
v
O
A
t
v
O
B
t
v
O
C
t
v
O
15
2
1
8、已知BD 垂直平分AC ,∠BCD=∠ADF ,AF ⊥AC , (1)证明ABDF 是平行四边形 (2)若AF=DF=5,AD=6,求AC 的长
9、某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同。
(1)求甲、乙进货价;
(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460
元,求有几种方案?
10、为庆祝商都正式营业,商都推出了两种购物方案。
方案一:非会员购物所有商品价格可
获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠•
(1)以x (元)表示商品价格,y (元)表示支出金额,分别写出两种购物方案中y 关于x 的函数解析式
(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱? 11、阅读下列材料:
解答“已知2x y -=,且1,0x y >
<,试确定x y +的取值范围”有如下解法: 解
2,2x y x y -=∴=+、又1,2 1.x y +>>
1.y ∴>-又0,10y y ∴-<<<。
…………①
同理得: 1x <<2。
…………②、 由①+②得-1102y x +++<<
x y ∴+的取值范围是02x y +<<
请按照上述方法,完成下列问题:
(1)已知3x y -=,且,x y >2<1,则x y +的取值范围是 .
(2)已知,y x >1<-1,若x y a -=成立,求x y +的取值范围(结果用含a 的式子表示)。
E
A
F
C
B
D
图1 A B C
D E F
图2。