小学六年级奥数模拟试题含答案
- 格式:doc
- 大小:22.00 KB
- 文档页数:5
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学六年级奥数题及答案五篇》相关资料,希望帮助到您。
1.⼩学六年级奥数题及答案 1、今年哥俩的岁数加起来是55岁,曾经有⼀年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟的2倍,哥哥今年_________岁。
2、三块布共长220⽶,第⼆块布长是第⼀块的3倍,第三块布长是第⼆块的2倍,第⼀块布长_________⽶。
3、有两层书架,共有书173本。
从第⼀层拿⾛38本书后,第⼆层的书是第⼀层的2倍还多6本,则第⼆层有_________本书。
参考答案: 1、设那时弟弟的岁数是1份。
哥哥的岁数是2份,那么哥哥与弟弟的岁数之差为1份。
⼆⼈的岁数之差是不会变的,今年他们的年龄仍差1份。
⽽题⽬中说:“那时哥哥的岁数与今年弟弟的岁数相同”。
因此今年弟弟的岁数也是2份,⽽哥哥今年的岁数是2+1=3(份)。
今年,哥哥与弟弟的年龄之和是:3+2=5(份) 每份是:55÷5=11(岁)所以今年哥哥是:11×3=33(岁)。
2、设第⼀块布长为1份,第⼀块布长=220÷(1+3+3×2)=22(⽶) 3、设把第⼀层余下的书算作“1”份: 每⼀份=(173-38-6)÷3=43(本)第⼆层的书共有:43×2+6=92(本) 2.⼩学六年级奥数题及答案 1、南京长江⼤桥⽐美国纽约⼤桥长4570⽶,纽约⼤桥⽐我国武汉长江⼤桥长530⽶。
已知三座桥长10640⽶,这些桥长分别是_________⽶,_________⽶,_________⽶。
2、甲筐有梨400个,⼄筐有梨240个,现在从两筐取出数⽬相等的梨,剩下梨的个数,甲筐恰好是⼄筐的5倍,甲筐所剩的梨是_________个,⼄筐所剩下的梨是_________个。
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
六年级奥数试题及答案一、选择题(每题5分,共20分)1. 一个数的3倍加上5等于23,这个数是多少?A. 5B. 6C. 7D. 8答案:B2. 一个正方形的周长是24厘米,它的面积是多少平方厘米?A. 36B. 48C. 64D. 96答案:B3. 一个数的一半加上6等于11,这个数是多少?A. 10B. 8C. 9D. 12答案:A4. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 15D. 18答案:A二、填空题(每题5分,共20分)1. 一个数的4倍是32,这个数是______。
答案:82. 一个数的5倍减去8等于37,这个数是______。
答案:93. 一个数的6倍加上10等于46,这个数是______。
答案:64. 一个数的7倍是49,这个数是______。
答案:7三、解答题(每题15分,共30分)1. 一个数的2倍加上3倍等于45,求这个数。
解:设这个数为x,根据题意得方程:2x + 3x = 45 合并同类项得:5x = 45解方程得:x = 9答:这个数是9。
2. 一个数的4倍减去10等于20,求这个数。
解:设这个数为y,根据题意得方程:4y - 10 = 20 移项得:4y = 30解方程得:y = 7.5答:这个数是7.5。
四、应用题(每题15分,共20分)1. 小明有一本书,他第一天看了全书的1/4,第二天看了全书的1/3,第三天看了全书的1/2,请问小明三天一共看了全书的几分之几?解:1/4 + 1/3 + 1/2 = 3/12 + 4/12 + 6/12 = 13/12答:小明三天一共看了全书的13/12。
2. 一个班级有40名学生,其中男生人数是女生人数的1.5倍,请问这个班级有多少名男生?解:设女生人数为x,则男生人数为1.5x,根据题意得方程:x + 1.5x = 40合并同类项得:2.5x = 40解方程得:x = 16答:这个班级有24名男生。
小学六年级奥数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 12平方厘米3. 下列哪个数是质数?A. 27B. 29C. 35D. 494. 1千米等于多少米?A. 100米B. 1000米C. 10米D. 10000米5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,这个三角形的周长是?A. 18厘米B. 20厘米C. 22厘米D. 24厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个长方形的长是10厘米,宽是5厘米,它的面积是50平方厘米。
()3. 1吨等于1000克。
()4. 一个等边三角形的三个角都是60度。
()5. 任何数乘以1都等于它本身。
()三、填空题(每题1分,共5分)1. 1小时等于______分钟。
2. 一个长方形的长是8厘米,宽是4厘米,它的面积是______平方厘米。
3. 下列哪个数是合数?______4. 1千米等于______米。
5. 一个等腰三角形的底边长是10厘米,腰长是6厘米,这个三角形的周长是______厘米。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述长方形的面积公式。
3. 请简述质数和合数的区别。
4. 请简述等边三角形的性质。
5. 请简述周长的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是12厘米,宽是6厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
3. 1吨等于多少克?4. 一个正方形的边长是5厘米,求这个正方形的面积。
5. 下列哪个数是质数?27、29、35、49六、分析题(每题5分,共10分)1. 请分析并解答下列问题:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长。
小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。
每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。
小学六年级奥数题50道题及解答(可直接打印)精品文档练习(一)姓名得分1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?做最好的自己5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自动身的车站,到站时已经是下战书2 点。
甲车每小时行40千米,乙车每小时行45 千米,两地相距几何千米?(交换乘客的时间略去不计)6.学校构造两个课外乐趣小组去郊野活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存食粮32.5吨。
甲仓的存粮吨数比乙仓的4倍少5 吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队配合修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?做最好的本人佳构文档9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,恰好是一把椅子代价的(10-1)倍,由此可求得一把椅子的价钱。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。
⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。
专题:简单应⽤题和⼀般复合应⽤题。
分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。
这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。
可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。
⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。
已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。
由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。
小学六年级奥数题及答案(三篇)篇一原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土()方。
答案:方法一:调走6人还剩18人,那么18个人还干24个人的活,即3个人干4个人的活,每个人要多干原来的三分之一的活,而多三分之一就是要多挖1方土,所以每个人要挖3方土;方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。
解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,原计划每人每天挖土的方数:1÷(1/3)=3(方)。
方法二:设每人每天挖x方,完成任务的天数为y天,则共有24xy方土需要挖,5天内挖了24×5x方土,所以24x(y-5)=18(x+1)×(y-5),根据题意得出y必须大于5,所以24x=18x+186x=18x=3答:原计划每人每天挖土3方。
故答案为:3。
篇二甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。
每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。
半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局。
那么整个训练中的第3局当裁判的是_______。
答案:本题是一道逻辑推理要求较高的试题。
首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的。
那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数。
⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
六年级奥数模拟试题(时间:90分钟总分:100分)一、选择题(每题2分,共20分)1. 如果甲堆煤的重量比乙堆煤少,那么下列说法中正确的有()。
①乙堆的重量比甲堆多20%;②甲、乙两堆重量的比是6:7;③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多;④甲堆煤占两堆煤总重量的。
A. ①②③B. ①②④C. ①③④D. ②③④2. 钟面上如果分针旋转周,那么时针旋转的度数是()。
A. 15°B. 180°C. 30°D. 60°3. 一个两位数,交换它的十位数字和个位数字,所得的两位数是原数的,则这样的两位数有()。
A. 1个B. 2个C. 4个D. 无数个4. 最小的合数除最小的质数,商是()。
A. 整数B. 循环小数C. 有限小数D. 无限不循环小数5. 从和式中必须去掉()两个分数,才能使余下的分数之和等于1。
A. B. C. D.6. 一辆汽车往返于甲、乙两地,去时用了5小时,回来时速度提高,比去时少用了()小时。
A. B. C. D.7. 如图,算得小红家到公路上的最短路程长为()。
A. 4千米B. 2.4千米C. 3千米D. 3.8千米8. 在一个密封的不透明的袋子里装了两只红球、两只黄球,明明伸手任意抓一只球,抓到红球的机会是()。
A. B. C. D. 不确定9. 一根铁丝剪成两段,第一段长米,第二段占全长的,那么()。
A. 第一段长B. 第二段长C. 无法确定谁长D. 一样长10. 1997个空格排成一行,预先在左边第1格放入一枚棋子,然后甲、乙两人交替走棋。
先甲后乙,每步可向右移1格、2格、3格、4格,规定谁先到最右一格为胜。
甲为了保证获胜,他第一步必须把棋子向右移()。
A. 1格B. 2格C. 3格D. 4格二、填空题(每题2分,共20分)1. 三十亿零八十一万七千零九写作(),四舍五入到万位是()万。
2. 如下图所示,用“十字形”分割正方形。
分割一次,分成了4个正方形;分割两次,分成了7个正方形。
如果连续用“十字形”分割20次,分成了()个正方形。
如果分成了361个正方形,共用“十字形”分割了()次。
3. 如图所示,已知∠1=21°,∠2=64°,∠3=35°,则∠4=()。
4. 如图,在2×2的方格中,画一条直线最多可穿过3个方格,那么在12×12的方格中,画一条直线最多可穿过()个方格。
5. 把,,,这四个分数按从小到大的顺序排列是:()<()<()<()。
6. 甲、乙两个长方形,它们的周长相等。
甲的长与宽之比是4:3,乙的长与宽之比是5:6,甲、乙两个长方形的面积之比是()。
7. 从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗。
现在要改成每隔5米插一面,有()面小红旗不用移动。
8. 现有12个小球,其中有一个次品,若次品比正品重一点,利用一架天平,最少称()次,一定能把次品找到。
9. 已知一个容器内已注满水,有大、中、小三个球,第一次把小球沉入水中,第二次取出小球再将中球沉入水中,第三次取出中球,把小球和大球一起沉入水中,现在知道,第一次溢出的水是第二次的,第三次是第一次的 2.5倍,则大、中、小三球的体积比是()。
10. 学生书店进了一批学生英语辅导书,带有碟片,书和碟片的定价相同,可以单卖。
已知书和碟片的份数比是3:2。
进货时,书需按定价的78%付款,碟片需按定价的82%付款。
卖完这批书学生书店可获利()%。
三、计算题(每题4分,共20分)1. 99999×77778+33333×666662. ++++3. 规定A⊙B=A×B+A+B,那么当(A⊙2)⊙1=29时,A等于几?4. +++++5. 小马虎将乘一个数,误写成2.08乘一个数,结果与正确答案正好相差2.08,那么正确的答案应该是多少?四、解答题(前2题每题6分,后4题每题7分,共40分)1. (6分)如图所示,已知点O是圆心,圆中直角三角形的面积是30平方厘米,求圆的面积。
(π取3.14)2. (6分)如图所示,BD、CF将长方形ABCD分成4块,△DFE的面积是4平方厘米,△CDE的面积是6平方厘米。
问:四边形ABEF的面积是多少平方厘米?3. (7分)兄妹二人同时从家里出发去上学,哥哥骑车每分钟行400米,妹妹步行每分钟行100米。
哥哥到校门时,发现忘了带课本,立即沿原路返回,途中与妹妹相遇。
已知家与学校相距1000米,求兄妹二人从出发到相遇共用了多少分钟?4. (7分)一种浓度为30%的新农药,稀释到2%时,灭虫最有效。
那么,用多少千克浓度为30%的农药加多少千克水,才能配成2%的农药150千克?5. (7分)有若干堆围棋棋子,每堆棋子数目一样多,且每堆中白子都占30%。
小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在白子占所有棋子的40%,那么共有棋子多少堆?6. 单独修一条公路,甲队需100天完成,乙队需150天完成。
甲、乙两队合修50天后,余下的工程由乙队单独做,还需几天才能完成?六年级奥数通用版北京市重点中学招生模拟试题一(上)试卷分析参考答案一、选择题1. C 分析:甲堆煤的重量比乙堆煤少,可以假设甲是5份,乙是6份。
①(6-5)÷5×100%=20%,正确;②很明显甲、乙的重量比是5:6,所以错误;③甲、乙两堆煤的重量差是乙的,所以如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多,正确;④甲堆煤占两堆煤总重量的=,正确。
所以选C。
2. A 分析:每个小格旋转的度数:,分针每分钟转:1个小格,时针每分钟转:个小格,分针旋转了周,经过了30分钟,所以时针旋转的度数为:3. C 分析:,(10a+b)=10b+a,变形为2a=b,两位数分别为12、24、36、48,故选C。
4. C 分析:2÷4=0.5,选C。
5. D 分析:=1,所以去掉的两个分数是和。
6. A 分析:根据比例关系,路程一定,时间与速度成反比。
即:,,,则回来时比去时少用了(小时)。
7. B 分析:3×4÷5=2.4(千米)8. A 分析:2÷(2+2)=,故选A。
9. A 分析:第一段占全长的,全长为:,第二段绳子长:,所以第一段绳子长。
10. A 分析:要想让走最后一步的人胜,则甲必须保证手中的棋子为(1+4)n+1枚,即5n+1枚。
1997=5×399+2,因左边第一格已预先放入一枚棋子,所以第一步只需向右移动1格即可。
二、填空题1. 3000817009 300082 分析:300081∣7009,所以进1为300082万。
2. 61 120 分析:第一次分成4个;第二次分成7个;第三次分成10个;第四次分成13个;由此可知这是一个等差数列,通项公式为。
则分割20次后:(个)。
分为361个是第几项,相当于求项数:(项)。
3. 120°分析:∠4=180°-∠5-∠6;∠1+∠2+∠3=180°-∠5-∠6,所以∠4=∠1+∠2+∠3=21°+64°+35°=120°。
4. 23 分析:在n×n的方格中,一条直线最多能穿过2n-1个方格,12×2-1=23。
5. 分析:=,比其他数都小;=+,=+,=+,所以。
6. 242:245 分析:设甲、乙的长宽之和均为1,则甲的长为,甲的宽为,甲的面积为;乙的长为,乙的宽为,则乙的面积为;甲的面积:乙的面积=。
7. 6 分析:4和5的最小公倍数是20,所以每隔20米的红旗不用移动,即求总长100米时每隔20米需要插多少根小红旗,100÷20+1=6(面)。
8. 3 分析:第一次:可以把12个球平均分为2份,每份6个球,哪边沉一些,次品就在那一堆当中;第二次:把6个球平均分为2份,每份3个球,哪边沉一些,次品就在那一堆当中;第三次:把3个球平均分成3份,如果有一边沉说明那个就是次品,如果天平平衡的话,证明剩下那个没称重的是次品。
9. 11:8:2 分析:第一次溢出的水的体积=小球体积第二次溢出的水的体积=中球体积-小球体积第三次溢出的水的体积=大球体积+小球体积-中球体积第一次=第二次2.5第一次=第三次设小球体积=1,则可求出小球体积=1;中球体积=4;大球体积=5.5。
则大:中:小=11:8:210. 25.6 分析:设每本书与每张碟片的定价都为100元。
每本书可以赚:元每张碟片可以赚:元则利润率为:三、计算题1. 解:原式=99999×77778+99999×22222=99999×(77778+22222)=99999×100000=99999000002. 解:原式=+++…+==3. A=4 分析:A⊙2=2A+A+2=3A+2,(A⊙2)⊙1=1×(3A+2)+(3A+2)+1=6A+5,6 A+5=29,A=4。
4. 解:利用分数裂项的变形公式+++++5. 解:x-2.08x=2.08,先将化成分数,因为×100=,×10=,所以=,即得x-2.08x =2.08,解得x=234。
所以正确的答案应该是2.08×234+2.08=488.8。
四、解答题1. 解:在求圆的面积时,有的时候不一定非要求出半径r,我们只要知道即可。
=(平方厘米)(平方厘米)2. 解:根据蝴蝶定理可知所以,,,3. 解:如遇到两人往返或者多次相遇的情况,考虑两个人一共所行的路程和。
两人共行了两个全程:(米)所用时间:(分钟)4. 解:根据浓度十字相乘法可得,设需要浓度为30%的农药x千克,需要水(150-x)千克。
,解得x=10150-10=140(千克)则需要浓度为30%的农药10千克,加水140千克。
5. 解:不妨设共有n堆棋子,则白子总数为30%n;拿走某堆的一半黑子后,所有的棋子还剩下;,n=2所以共有2堆棋子。
6. 解:甲的工作效率:,乙的工作效率:,两队合修50天的工作量:还需天数:(天)。