2018合肥市中考必备数学模拟试卷(1)附详细试题答案
- 格式:pdf
- 大小:226.37 KB
- 文档页数:9
2018年安徽省合肥市名校中考数学模拟试卷(一)一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.20182.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108 4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE 折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2= .12.(5分)因式分解:a3﹣16ab2=13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣416.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y218.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.2018年安徽省合肥市名校中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分)1.(4分)2018的相反数是()A.8102B.﹣2018C.D.2018【解答】解:2018的相反数﹣2018,故选:B.2.(4分)如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°【解答】解:如图,∵a∥b,∴∠3=∠2,由三角形外角性质,可得∠3=∠1+30°=20°+30°=50°,∴∠2=50°,故选:C.3.(4分)2017年11月8日﹣10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为()A.2.5×103B.2.5×1011C.0.25×1012D.2500×108【解答】解:2500亿用科学记数法表示为2.5×1011,故选:B.4.(4分)如图是由四个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.【解答】解:根据题意可得,几何体的主视图为:,故选:D.5.(4分)估计﹣2的值应该在()A.﹣1﹣0之间B.0﹣1之间C.1﹣2之间D.2﹣3之间【解答】解:∵1<3<4,∴,∴1﹣2<<2﹣2,即﹣1<0,故选:A.6.(4分)一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2,表示在数轴上,如图所示:故选:C.7.(4分)如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是()A.10人、20人B.13人、14人C.14分、14分D.13.5分、14分【解答】解:由频数分布直方图可知,11分的5人、12分的10人、13分的10人、14分的20人、15分的5人,共有5+10+10+20+5=50人,则中位数为第25、26个数据的平均数,即中位数为=13.5分,众数为14分,故选:D.8.(4分)如图,一次函数y=﹣x与二次函数为y=ax2+bx+c的图象相交于点M,N,则关于x的一元二次方程ax2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确【解答】解:∵一次函数y=﹣x与二次函数为y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=﹣x有两个不相等的实数根,ax2+bx+c=﹣x变形为ax2+(b+1)x+c=0,∴ax2+(b+1)x+c=0有两个不相等的实数根,故选:A.9.(4分)如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ABC=70°,∴∠ADC=180°﹣∠ABC=110°,∠BAC=90°﹣∠ABC=10°,∵D为的中点,∴AD=DC,∴∠EAC=∠DCA=×(180°﹣110°)=35°,∵EC为⊙O的切线,∴∠ECA=∠ABC=70°,∴∠AEC=180°﹣∠EAC﹣∠ECA=180°﹣35°﹣70°=75°,故选:B.10.(4分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE 折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A.2B.C.D.【解答】解:当点D'位于AC连线上时最小,∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,∴AD=AD'=BC=2,在Rt△ABC中,AC=,∴CD'=AC﹣AD'=2﹣2,故选:C.二、填空题(本题有4小题,每小题5分,共20分)11.(5分)计算(﹣)﹣2= 4 .【解答】解:==4.故答案为:4.12.(5分)因式分解:a3﹣16ab2= a(a+4b)(a﹣4b)【解答】解:原式=a(a2﹣16b2)=a(a+4b)(a﹣4b),故答案为:a(a+4b)(a﹣4b)13.(5分)如图,点A,B,C都在⊙O上,∠ACB=60°,⊙O的直径是6,则劣弧AB的长是2π.【解答】解:如图连接OA、OB.∵∠AOB=2∠ACB=120°,∴劣弧AB的长==2π,故答案为2π.14.(5分)在△ABC中,AB=6cm,点P在AB上,且∠ACP=∠B,若点P是AB的三等分点,则AC的长是.【解答】解:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.∴,即AC2=AP•AB.分两种情况:(1)当AP=AB=2cm时,AC2=2×6=12,∴AC==cm;(2)当AP=AB=4cm时,AC2=4×6=24,∴AC==;故答案为:.三、(本题有2题,每题8分,共16分)15.(8分)先化简,再求值:,其中x=﹣4【解答】解:,=•,=,=,当x=﹣4时,原式==.16.(8分)清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答.【解答】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据题意得:,解得:.答:每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田亩.四、(本题有2题,每题8分,共16分)17.(8分)已知:如图,一次函数y1=x+2与反比例函数y2=(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y2【解答】解:(1)∵点A(a,5)在一次函数y1=x+2的图象上,∴5=a+2,∴a=3,∴点A坐标为(3,5),∵点A(3,5)在反比例函数的图象上,∴5=,∴k=15,∴反比例函数的表达式为y2=(x>0);(2)由图象可知,当0<x<3时,y1<y2.18.(8分)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.五、(本题有2题,每题10分,共20分)19.(10分)观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题(1)填写下表:(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn【解答】解:(1)图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,则图4挖去中间的(1+3+32+33)个小三角形,即图4挖去中间的40个小三角形,故答案为:1+3+32+33;(2)由(1)知,图n中挖去三角形的个数wn=3n﹣1+3n﹣2+…+32+3+1;(3)∵wn+1=3n+3n﹣1+…+32+3+1,wn=3n﹣1+3n﹣2+…+32+3+1∴=3n.20.(10分)如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:=1.414.=1.732)【解答】解:设AB=x(m),在Rt△ABC中∵tan30°=BC==在Rt△BCD中,∵tan45°=,∴∵AD+AB=BD,∴100+x=x,解得x≈136.6(m),答:小山的铅直高度AB约为136.6m.六、(本题共12分)21.(12分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)【解答】解:(1)一共有四个开关按键,只有闭合开关按键K,灯泡才会发光,2所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.七、(本题共12分)22.(12分)已知:如图,抛物线y=﹣x2+bx+C经过点B(0,3)和点A(3,0)(1)求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点B(0,3)和点A(3,0),∴,解得,∴抛物线的函数表达式是y=﹣x2+2x+3;设直线AB:y=kx+m,根据题意得,解得,∴直线AB的函数表达式是y=﹣x+3;(2)如图,设点M横坐标为a,则点M的坐标为(a,﹣a2+2a+3),点N的坐标是(a,﹣a+3),又点M,N在第一象限,∴|MN|=﹣a2+2a+3﹣(﹣a+3)=﹣a2+3a,又|MN|=﹣a2+3a=﹣(a2﹣3a+)+=,当a=时,|MN|有最大值,最大值为,即点M与点N之间的距离有最大值,此时点M坐标为(,)点N的坐标为.八.(本题共14分)23.(14分)如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P 与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,∴,∴AP2=AF•AB=AF•AD;(本题也可以连接PD,证△APF∽△ADP)(2)由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∠PCQ=45°+45°=90°,∴tan∠CPQ=,由①得AP=CQ,又∵AP:PC=1:3,∴tan∠CPQ=,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ=.。
安徽省合肥市2018届初中毕业班第二次中考模拟测试数 学 试 题一、选择题(共10小题,每小题4分,满分40分)1.下列图形中,是轴对称图形的是( )2.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( )A .0.845³1010元B .84.5³108元C .8.45³109元D .8.45³1010元 3.64的立方根是( )A .4B .8C .±4D .±8 4.下列计算正确的是( )A .2x 2²2xy =4x 3y 4B .3x 2y -5xy 2=-2x 2yC .x -1÷x -2=x -1D .(-3a -2)(-3a +2)=9a 2-4 5.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )6.如图,在△ABC 中,AB =AC ,BC =6,△DEF 的周长是7,AF ⊥BC 于点F ,BE ⊥AC 于点E ,且点D 是AB 的中点,则AF 的长为( )A . 5B .7C . 3D .77.在同一平面坐标系内,若直线y =3x -1与直线y =x -k 的交点在第四象限的角平分线上,则k 的值为( )A .k =-12B .k =13C .k =12D .k =18.若x 1,x 2是一元二次方程x 2-2x -1=0的两个根,x 12-x 1+x 2的值为( )A .-1B .0C .2D .3 9.如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O移动的水平距离为()A .2π B .4π C .32 D .410.如图,直线l 的解析式为y=-x +4,它与x 轴分别相交于A ,B 两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴和y 轴分别相交于C ,D 两点,运动时间为t 秒(0≤t≤4),以CD 为斜边作等腰直角三角形CDE(E ,O 两点分别在CD 两侧).若△CDE 和△OAB 的重合部分的面积为S ,则S 与t 之间的函数关系的图象大致是( )二、填空简答题(共4小题,每小题5分,满分20分)11.分解因式:x ﹣4x 2﹣12x=.12.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为 .13.如图,OP 平分∠AOB ,∠AOP =15°,PC ∥OA ,PD ⊥OA 于点D ,PC =4,则PD = .14.如图,在菱形ABCD 中,AB=BD .点E 、F 分别在AB 、AD 上,且AE=DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论: ①△AED ≌△DFB ; ②S 四边形BCDG =CG 2; ③DE=CG ;④若AF=2DF ,则BG=6GF . 其中正确的结论 . 三、解答题(90分)15.(8分)计算:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;16.(8分)先化简,再求值:÷(x+2﹣),其中x=﹣3.17.(8分)如图所示,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.18.(8分)已知关于x的不等式22mxm>21x-1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.19.(10分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.20.(10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2)求小李每月的工资收入范围.21.(12分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A.非常喜欢”、“B.比较喜欢”、“C.不太喜欢”、“D.很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是________;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?22.(12分)关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.23. (14分)如图,点A在Y轴上,点B在X轴上,且OA=OB=1,经过原点O 的直线L交线段AB于点C,过C作OC的垂线,与直线X=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC 的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值。
2018年安徽省合肥市高新区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m63.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是1777.不等式组的解集在数轴上表示正确的是()A.B.C. D.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.210.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=.12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号(注:将你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.16.解方程:=.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.2018年安徽省合肥市高新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.故选:A.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m6【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:(m3)2÷m3=m6÷m3=m3,故选B.【点评】本题考查同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】本题给出了正视图与左视图,由所给的数据知凭据三视图的作法规则,来判断左视图的形状,由于正视图中的长与左视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是177【考点】方差;加权平均数;中位数;众数.【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,则方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴下列说法错误的是A;故选A.【点评】此题考查了平均数、方差、中位数和众数,掌握平均数、方差、中位数和众数的定义是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.2【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【专题】数形结合.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=3(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应提公因式,再用公式.【解答】解:12x2﹣3y2=3(2x﹣y)(2x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是9.【考点】尾数特征.【专题】规律型.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=503…3,∴3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故答案为:9.【点评】此题主要考查了尾数特征以及数字变化规律,根据已知得出数字变化规律是解题关键.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号①②④(注:将你认为正确结论的序号都填上).【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理和三角形全等的判定,此处可以运用排除法逐条进行分析.【解答】解:根据三角形的中线的概念得AE=2AB=2AC,①正确;②作CE的中点F,连接BF.根据三角形的中位线定理得AC=2BF,又AC=AB=2BD,所以BF=BD.根据三角形的中位线定理得到BF∥AC,则∠CBF=∠ACB=∠ABC.根据SAS得到△BCD≌△BCF,所以CF=CD,即CE=2CD.②正确;③根据②中的全等三角形得到∠BCD=∠BCE,若∠ACD=∠BCE,则需∠ACD=∠BCD.而CD只是三角形的中线.错误;④正确.故正确的是①②④.【点评】考查了三角形的中线的概念,能够熟练运用三角形的中位线定理,掌握全等三角形的判定和性质.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用去括号法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+1﹣+1+2﹣=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:=.【考点】解分式方程.【分析】因为3x﹣3=3(x﹣1),所以可确定方程的最简公分母为3(x﹣1),确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘3(x﹣1),得:3x=2,解得x=.经检验x=是方程的根.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.【考点】作图-平移变换.【分析】(1)直接把△A1B1C1是向左平移4个单位,再写出点A,B,C的坐标即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,A(﹣3,1),B(0,2),C(﹣1,4);(2)S△AOA1=×4×1=2.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过C作CD⊥AB,设CD=x米,则DB=CD=x米,AD=CD=x米,再根据AB相距2.1米可得方程x﹣x=2.1,再解即可.【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2.1米,∴x﹣x=2.1,解得:x=3.答:命所在点C与探测面的距离是3米.【点评】此题主要考查了解直角三角形的应用,关键是正确分析出CD、AD、BD的关系.五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:=.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把B(﹣3,﹣2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.【解答】解:(1)把B(﹣3,﹣2)代入数y=中,∴k2=6,∴反比例函数解析式为y=,把A(2,m)代入y=得,m=3,把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:解得k1=1,b=1,∴一次函数解析式为y=x+1.(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分两种情况:当P在第三象限时,要使y1>y2,p的取值范围为p<﹣2;当P在第一象限时,要使y1>y2,p的取值范围为p>0;故P的取值范围是p<﹣2或p>0.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【考点】四边形综合题.【分析】(1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG 为正方形;(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG 可得.【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴CG=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,=.∵a=﹣1<0,∴当x=时,y最大【点评】本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.【考点】二次函数的应用.【分析】(1)根据抛物线的顶点在直线y=kx上,抛物线为y=ax2+bx,k=1,且喷出的抛物线水线最大高度达3m,可以求得a,b的值;(2)根据k=1,喷出的水恰好达到岸边,抛物线的顶点在直线y=kx上,可以求得抛物线的对称轴x 的值,从而可以得到此时喷出的抛物线水线最大高度;(3)抛物线的顶点在直线y=2x上可得b的值,根据喷出的抛物线水线不能到岸边,而出水口离岸边18m可知其对称轴﹣<9,可得a的范围.【解答】解:(1)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=kx上,k=1,抛物线水线最大高度达3m,∴﹣=,=3,解得,a=﹣,b=2,即k=1,且喷出的抛物线水线最大高度达3m,此时a、b的值分别是﹣,2;(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18m,抛物线的顶点在直线y=kx上,∴此时抛物线的对称轴为x=9,y=x=9,即此时喷出的抛物线水线最大高度是9米;(3)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=2x上,∴﹣×2=﹣,解得:b=4,∵喷出的抛物线水线不能到岸边,出水口离岸边18m,∴﹣<9,即:﹣<9,解得:a>﹣,又∵a<0,∴﹣<a<0.【点评】本题考查二次函数的应用,解题的关键是明确题意,根据题目给出的信息列出相应的关系式,找出所求问题需要的条件.。
2018年安徽省合肥市长丰县中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列函数中,y关于x的二次函数的是()A.y=x3+2x2+3B.y=﹣C.y=x2+x D.y=mx2+x+1 2.(4分)如图,已知Rt△ABC中,∠C=90°,AB=10,AC=8,则tanB的值为()A.B.C.D.3.(4分)已知mx=ny≠0,则下面结论成立的是()A.=B.=C.=D.=4.(4分)如图,已知直线a∥b∥c,直线m、n分别与直线a、b、c分别交于点A、B、C、D、E、F,若DE=7,EF=10,则的值为()A.B.C.D.5.(4分)将抛物线y=2(x﹣1)2+7先沿x轴方向向左平移2个单位长度,再沿y 轴方向向下平移5个单位长度后,得到的二次函数的表达式为()A.y=2x2+4x+4B.y=2x2﹣12x+20C.y=2x2+4x+14D.y=2x2﹣12x+30 6.(4分)在△ABC中,已知∠A、∠B都是锐角,|sinA﹣|+(1﹣tanB)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°7.(4分)二次函数y=﹣x2+(12﹣m)x+12,时,当x>2时,y随x的增大而减小;当x<2时,y随x的增大而增大,则m的值为()A.6B.8C.10D.128.(4分)如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan ∠DAC的值为()A.2+B.2C.3D.39.(4分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与四边形BCEF的面积之比为()A.9:16B.9:19C.9:28D.3:410.(4分)如图1,△ABC中,∠A=30°,点P从点A出发以2m/s的速度沿折线A→C→B 运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,下列结论中,错误的是()A.α=1B.sinB=C.△APQ面积的最大值为2D.图2中图象C2段的函数表达式为y=﹣x2+x二、填空题(每小题5分,共20分)11.(5分)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,△AOB的面积为5,则k=12.(5分)一个小球沿着坡度为1:3的坡面向下滚动了10米,此时小球下降的垂直高度为米.13.(5分)如图,在△ABC中,D、E分别为边AB、AC上的点.=,点F为BC边上一点,添加一个条件:,可以使得△FDB与△ADE相似.(只需写出一个)14.(5分)已知关于x的二次函数y=ax2﹣4ax+a2+2a﹣3在﹣1≤x≤3的范围内有最小值5,则a的值为.三、(每小题8分,共16分)15.(8分)计算.2cos60°+4sin60°•tan30°﹣cos245°16.(8分)如图,E是边长为8的正方形ABCD的边AB上的点,且AE=2,EF⊥DE交BC于点F.求线段CF的长.四、(本大题共2小题,每小题8分,共16分)17.(8分)已知二次函数y=﹣x2+4x(1)求出该二次函数图象的顶点坐标和对称轴方程;(2)在所给坐标系中画出该函数的函数;(3)根据图象直接写出不等式﹣x2+4x>3的解集.18.(8分)如图,△ABC与△A1B1C1是位似图形.在网格上建立平面直角坐标系,使得点A的坐标为(1,﹣6).(1)在图上标出点,△ABC与△A1B1C1的位似中心P.并写出点P的坐标为;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1:2,并写出点C2的坐标为.五、(本大题共2小题,每小题10分,共20分)19.(10分)如果一个矩形的宽与长的比值为,则称这个矩形为黄金矩形,如图,将矩形ABCD剪掉一个正方形ADFE后,剩余的矩形BCFE(BC>BE)是黄金矩形,则原矩形ABCD是否为黄金矩形?请说明理由.20.(10分)如图所示,一次函数y=kx+b交y轴于点D,交x轴于点E,且与反比例函数y=的图象交于A(2,3).B(﹣3,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴于点C,过点A作AF⊥y轴于点F,求四边形AFCB的面积S;(3)当kx+b<时,x的取值范围是.六、(本题满分12分)21.(12分)如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,™向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°(1)求证:AB=BD;(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41 )七、(本题满分12分)22.(12分)合肥周谷堆农副产品批发市场某商铺购进一批红薯,通过商店批发和在淘宝网上进行销售,首月进行了销售情况的统计.其中商店日批发量y1(百斤)与时间x(x为整数,单位:天)的部分对应值如下表所示;在淘宝网上的日销售量y2(百斤)与时间x(x为整数,单位:天)的部分对应值如图所示.时间x(天)0510********日批发量y1(百斤)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与x之间的函数关系式;(2)求y2与x之间的函数关系式;(3)设这个月中,日销售总量为y,求y与x之间的函数关系式;并求出当x 为何值时,日销售总量y最大,最大值为多少?八、(本题满分14分)23.(14分)如图1,已知△ABC中,AB=20cm,AC=16cm,BC=12cm.点P沿B 出发,以5cm/s的速度沿BA方向向点A匀速运动,同时点Q由A出发,以4cm/s 的速度沿AC向点C匀速运动.连接PQ,设运动的时间为t(单位:s)(0≤t ≤4).(1)求点P到AC的距离(用含t的代数式表示);(2)求t为何值时,线段PQ将△ABC的面积分成的两部分的面积之比为3:13;(3)当△APQ为直角三角形时,求t的值.2018年安徽省合肥市长丰县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列函数中,y关于x的二次函数的是()A.y=x3+2x2+3B.y=﹣C.y=x2+x D.y=mx2+x+1【分析】根据二次函数的定义求解即可.【解答】解:A、是三次函数,故A不符合题意;B、最高次是不是2,故B不符合题意;C、是二次函数,故C符合题意;D、m=0时是一次函数,故D不符合题意;故选:C.【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键.2.(4分)如图,已知Rt△ABC中,∠C=90°,AB=10,AC=8,则tanB的值为()A.B.C.D.【分析】根据勾股定理,可得BC的长,根据正切函数的意义,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得BC===6,由正切函数的意义,得tanB===,故选:D.【点评】本题考查了锐角三角函数的定义,利用正切函数等于对边比邻边是解题关键.3.(4分)已知mx=ny≠0,则下面结论成立的是()A.=B.=C.=D.=【分析】根据比例的性质,可得答案.【解答】解:A、,正确;B、,错误;C、,错误;D、,错误;故选:A.【点评】本题考查了比例的性质,利用比例的性质是解题关键.4.(4分)如图,已知直线a∥b∥c,直线m、n分别与直线a、b、c分别交于点A、B、C、D、E、F,若DE=7,EF=10,则的值为()A.B.C.D.【分析】根据题意求出DF,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵DE=7,EF=10,∴DF=DE+EF=17,∵a∥b∥c,∴==,故选:D.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.(4分)将抛物线y=2(x﹣1)2+7先沿x轴方向向左平移2个单位长度,再沿y 轴方向向下平移5个单位长度后,得到的二次函数的表达式为()A.y=2x2+4x+4B.y=2x2﹣12x+20C.y=2x2+4x+14D.y=2x2﹣12x+30【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y=2(x﹣1)2+7先变为y=2(x+1)2+7,再沿y轴方向向下平移5个单位抛物线y=2(x+1)2+7﹣5,即变为:y=2(x+1)2+2.故所得抛物线的解析式是:y=2x2+4x+4.故选:A.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.6.(4分)在△ABC中,已知∠A、∠B都是锐角,|sinA﹣|+(1﹣tanB)2=0,那么∠C的度数为()A.75°B.90°C.105°D.120°【分析】直接利用绝对值的性质以及偶次方的性质得出sinA=,tanB=1,进而得出∠A=30°,∠B=45°,即可得出答案.【解答】解:∵|sinA﹣|+(1﹣tanB)2=0,∴|sinA﹣|=0,(1﹣tanB)2=0,∴sinA=,tanB=1,∴∠A=30°,∠B=45°,∴∠C的度数为:180°﹣30°﹣45°=105°.故选:C.【点评】此题主要考查了特殊角的三角函数值以及偶次方的性质,正确得出sinA=,tanB=1是解题关键.7.(4分)二次函数y=﹣x2+(12﹣m)x+12,时,当x>2时,y随x的增大而减小;当x<2时,y随x的增大而增大,则m的值为()A.6B.8C.10D.12【分析】根据题意可以顶点的横坐标是x=2,从而可以求得m的值.【解答】解:∵二次函数y=﹣x2+(12﹣m)x+12,时,当x>2时,y随x的增大而减小;当x<2时,y随x的增大而增大,∴,解得,m=8,故选:B.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.(4分)如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为()A .2+B .2C .3D .3【分析】在直角三角形ABC 中,根据AB=2AC 求出∠ABC 的度数,分别设出DC 与AC ,即可求出所求.【解答】解:在Rt △ABC 中,BA=2AC ,∴∠ABC=30°,∠BAC=60°,∵设BD=BA=2x,∴AC=x ,BC=x,∴DC=DB +BC=2x +x ,则tan ∠DAC==2+, 故选:A . 【点评】此题考查了解直角三角形,涉及的知识有:含30度直角三角形的性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.9.(4分)如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与四边形BCEF 的面积之比为( )A .9:16B .9:19C .9:28D .3:4【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S △EFD :S △BEF =3:4,S △BDE :S △BEC =3:1,可求△DEF 的面积与四边形BCEF 的面积的比值.【解答】解:连接BE∵DE:EC=3:1∴设DE=3k ,EC=k ,则CD=4k∵ABCD 是平行四边形∴AB ∥CD ,AB=CD=4k ∴∴S △EFD :S △BEF =3:4∵DE :EC=3:1∴S △BDE :S △BEC =3:1设S △BDE =3a ,S △BEC =a则S △EFD =,S △BEF =∴S BCEF =S △BEC +S △BEF =∴则△DEF 的面积与四边形BCEF 的面积之比9:19故选:B .【点评】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.10.(4分)如图1,△ABC 中,∠A=30°,点P 从点A 出发以2m/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以a (cm/s)的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,下列结论中,错误的是( )A .α=1B .sinB=C.△APQ面积的最大值为2D.图2中图象C2段的函数表达式为y=﹣x2+x【分析】根据图象确定点Q的速度,AB长,再由锐角三角函数用∠B的正弦值和x表示y将(4,)代入问题可解.【解答】解:当点P在AC上运动时,y=当x=1,y=时,a=1由图象可知,PQ同时到达B,则AB=5,AC+CB=10当P在BC上时y=,当x=4,y=时,代入解得sin∠B=∴y==﹣x2+x=当x=﹣时,y最大故选:C.【点评】本题时动点问题的函数图象探究题,考查了分段表示函数关系式,应用了锐角三角函数,解答关键是理解图象反映出来的数学关系.二、填空题(每小题5分,共20分)11.(5分)如图,点A在反比例函数y=(x>0)的图象上,AB⊥x轴于点B,△AOB的面积为5,则k=10【分析】根据反比例函数y=(k≠0)中比例系数k的几何意义得到S=|△AOB k|=5,然后根据反比例函数性质确定k得值.【解答】解:∵AB⊥x轴,∴S=|k|=5,△AOB∵k>0,∴k=10.故答案为:10.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.12.(5分)一个小球沿着坡度为1:3的坡面向下滚动了10米,此时小球下降的垂直高度为米.【分析】根据i可以求得AB、BC的长度的比值,已知AC=10米,根据勾股定理即可求AB的值,即可解题.【解答】解:小球沿着坡面向下前进了10m假设到A处,过C作CB⊥AB,∵i=1:3,∴tanA=,设BC=xcm,AB=3xcm,x2+(3x)2=102,解得:x=或x=﹣(不合题意,舍去),故答案为:.【点评】本题主要考查了勾股定理在直角三角形中的运用i的定义,本题中根据勾股定理求BC的值是解题的关键.13.(5分)如图,在△ABC中,D、E分别为边AB、AC上的点.=,点F为BC边上一点,添加一个条件:DF∥AC,或∠BFD=∠A,可以使得△FDB与△ADE 相似.(只需写出一个)【分析】结论:DF∥AC,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可.【解答】解:DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为DF∥AC,或∠BFD=∠A.【点评】本题考查相似三角形的判定和性质.平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(5分)已知关于x的二次函数y=ax2﹣4ax+a2+2a﹣3在﹣1≤x≤3的范围内有最小值5,则a的值为4或﹣8.【分析】由y=ax2﹣4ax+a2+2a﹣3=a(x﹣2)2+(a2﹣2a﹣3)可知当a>0时,最小值是a2﹣2a﹣3=5,当a<0时,x=﹣1时,y有最小值5,则a+4a+a2+2a﹣3=5,解关于a的方程即可求得.【解答】解:y=ax2﹣4ax+a2+2a﹣3=a(x﹣2)2+(a2﹣2a﹣3),其对称轴为x=2,当a>0时,最小值是a2﹣2a﹣3=5,解得a1=4,a2=﹣2(舍去);当a<0时,x=﹣1时,y有最小值5,则a+4a+a2+2a﹣3=5,整理得a2+7a﹣8=0,解得a1=1(舍去),a2=﹣8,所以a的值为4或﹣8,故答案为:4或﹣8【点评】本题考查了二次函数的最值,注意,只有当自变量x在整个取值范围内,函数值y才在顶点处取最值.而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.三、(每小题8分,共16分)15.(8分)计算.2cos60°+4sin60°•tan30°﹣cos245°【分析】直接把特殊角的三角函数值代入求出答案.【解答】解:原式=2×+4××﹣()2=1+2﹣=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.(8分)如图,E是边长为8的正方形ABCD的边AB上的点,且AE=2,EF⊥DE 交BC于点F.求线段CF的长.【分析】由于EF⊥DE以及正方形的性质可证明∠ADE=∠FEB,从而可证明△ADE ∽△BEF.利用相似三角形的性质即可求出CF的长度.【解答】解:∵ABCD是正方形,∴∠A=∠B=90°,∴∠ADE+∠DEA=90°,又EF⊥DE,∴∠AED+∠FEB=90°,∴∠ADE=∠FEB,∴△ADE∽△BEF.∴=,∴=,∴BF=∵BC=8,∴CF=BC﹣BF=.【点评】本题考查相似三角形的性质与判定,解题的关键是利用正方形的性质证明∠ADE=∠FEB,本题属于中等题型.四、(本大题共2小题,每小题8分,共16分)17.(8分)已知二次函数y=﹣x2+4x(1)求出该二次函数图象的顶点坐标和对称轴方程;(2)在所给坐标系中画出该函数的函数;(3)根据图象直接写出不等式﹣x2+4x>3的解集.【分析】(1)利用配方法对函数解析式进行变形,从而可判断出抛物线的顶点坐标和对称轴方程;(2)先求得抛物线与x轴的交点坐标,然后依据抛物线与x轴的交点坐标以及抛物线的顶点坐标可画出函数图象即可;(3)不等式﹣x2+4x>3的解集为抛物线位于直线y=3下方时,自变量x的取值范围.【解答】解:(1)y=﹣x2+4x=﹣x2+4x﹣4+4=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),对称为x=2.(2)当y=0时,﹣x2+4x=0,解得:x=0或x=4,∴抛物线与x轴的交点坐标为(0,0)和(4,0).所以抛物线的图象如图所示:(3)不等式﹣x2+4x>3的解集为抛物线位于直线y=3下方时,自变量x的取值范围,∴﹣x2+4x>3的解集x<1或x>3.【点评】本题主要考查的是二次函数与不等式,数形结合是解题的关键.18.(8分)如图,△ABC与△A1B1C1是位似图形.在网格上建立平面直角坐标系,使得点A的坐标为(1,﹣6).(1)在图上标出点,△ABC与△A1B1C1的位似中心P.并写出点P的坐标为(﹣1,﹣2);(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1:2,并写出点C2的坐标为(1,﹣3).【分析】(1)直接利用位似图形的性质连接对应点进而得出位似中心;(2)利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:点P即为所求,P(﹣1,﹣2);故答案为:(﹣1,﹣2);(2)如图所示:△AB2C2即为所求,点C2(1,﹣3);故答案为:(1,﹣3).【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.五、(本大题共2小题,每小题10分,共20分)19.(10分)如果一个矩形的宽与长的比值为,则称这个矩形为黄金矩形,如图,将矩形ABCD剪掉一个正方形ADFE后,剩余的矩形BCFE(BC>BE)是黄金矩形,则原矩形ABCD是否为黄金矩形?请说明理由.【分析】根据黄金分割设出矩形BCFE的长和宽,然后表示出矩形ABCD的宽,再求出宽与长的比值即可得证.【解答】解:原矩形ABCD是为黄金矩形.理由如下:设矩形BCFE的长BC为x,∵四边形BCFE为黄金矩形,∴宽FC为x,∵四边形AEFD是正方形,∴AB=x+x=x,则==,∴原矩形ABCD是为黄金矩形.【点评】本题考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键,要熟记黄金分比.20.(10分)如图所示,一次函数y=kx+b交y轴于点D,交x轴于点E,且与反比例函数y=的图象交于A(2,3).B(﹣3,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴于点C,过点A作AF⊥y轴于点F,求四边形AFCB的面积S;(3)当kx+b<时,x的取值范围是x<﹣3或0<x<2..【分析】(1)利用待定系数法即可解决问题;(2)连接CD,根据S△AFCB=S△ADF+S△CDF+S△BCD计算即可解决问题;(3)观察图象,写出一次函数的图象在反比例函数的图象下方的自变量的取值范围即可;【解答】解:(1)∵点A(2,3)在y=上,∴m=6,∴y=,∵B(﹣3,n)在y=上,∴n=﹣2,∴B (﹣3,﹣2),把A 、B 两点坐标代入y=kx +b,则有, 解得, ∴y=x +1.(2)连接CD .由题意F (0,3),D (0,1),C (﹣3,0),∴S △AFCB =S △ADF +S △CDF +S △BCD =×3×2+×2×3+×2×3=8.(3)观察图象可知,当kx +b <时,x 的取值范围是x <﹣3或0<x <2.故答案为x <﹣3或0<x <2.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用分割法求四边形面积,学会利用图象解决自变量的取值问题.六、(本题满分12分)21.(12分)如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C 点处测得A点的仰角为45°,™向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°(1)求证:AB=BD;(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41 )【分析】(1)延长AB交CD延长线于点E,由∠ADE=60°、∠BDE=30°求得∠ADB=∠DAE=30°即可;(2)设BE=x,则AB=DB=2x,据此得DE=x、CE=CD+DE=18+x、AE=AB+BE=3x,根据∠ACE=45°知CE=AE,由此建立关于x的方程,解之求得x的值即可得.【解答】解:(1)如图,延长AB交CD延长线于点E,则AE⊥CE,∵∠ADE=60°,∴∠DAE=30°,∵∠BDE=30°,∴∠ADB=∠ADE﹣∠BDE=30°,则∠ADB=∠DAE=30°,∴AB=DB;(2)设BE=x,则AB=DB=2x,∴DE=BDcos∠BDE=2x•=x,∵CD=18,∴CE=CD+DE=18+x、AE=AB+BE=3x,∵∠ACE=45°,∴CE=AE,即18+x=3x,解得:x=9+3,所以AB=2x=18+6≈28。
2018届安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)解析版数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 在﹣1,﹣2,0,1四个数中最小的数是()A. -1B. -2C. 0D. 1【答案】B【解析】【分析】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.所以解答此题可以根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数即可.【详解】∵﹣2<﹣1<0<1,∵最小的数是﹣2.故选B.2. 如图,a∥b,点B在直线b上,且AB∥BC,若∥1=36°,则∥2的大小为()A. 34°B. 54°C. 56°D. 66°【答案】B【解析】【详解】分析:根据a∵b求出∠3的度数,然后根据平角的定义求出∠2的度数.详解:∵a∵b∵ ∵∵3=∵1=36°∵ ∵∵ABC=90°∵ ∵∵2+∵3=90°∵∵∵2=90°∵36°=54°,故选B∵点睛:本题主要考查的是平行线的性质以及平角的性质,属于基础题型.明白平行线的性质是解决这个问题的关键.3. 如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图的定义判断即可.【详解】水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个正方形,故选D∵【点睛】几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.4. 一个扇形的半径等于一个圆的半径的2倍,且扇形面积是圆的面积的一半,则这个扇形的圆心角度数是( )A. 45°B. 60°C. 90°D. 75°【答案】A【解析】【详解】分析:首先设圆的半径为r ,则扇形的半径为2r ,然后根据扇形和圆的面积计算法则得出答案.详解:设圆的半径为r ,则扇形的半径为2r ,则扇形的面积=212r π,即()22π213602n r r π=∵ 解得:n=45°,故选A∵点睛:本题主要考查的是扇形的面积计算法则,属于基础题型.明白扇形的面积计算公式是解决这个问题的关键.5. 下列说法正确的是( )A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似【答案】C【解析】【详解】分析:根据相似多边形的判定法则即可得出答案.如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形∵ 详解:根据定义可知:要使多边形相似则需要满足对应角相等,还要满足对应边成比例,则故选C∵点睛:本题主要考查的是相似多边形的判定定理,属于基础题型.理解相似多边形的定义是解题的关键.6. 如果点A (x 1,y 1)和点B (x 2,y 2)是直线y=﹣kx+b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y=k x 的图象位于象限( ) A. 一、四B. 二、四C. 三、四D. 一、三 【答案】B【解析】【详解】分析:根据一次函数的增减性得出k 的取值范围,然后根据反比例函数的性质得出答案.详解:∵当12x x <时12y y <∵ ∵∵k∵0,则k∵0∵ ∴反比例函数y k x =在二、四象限,故选B∵点睛:本题主要考查的是一次函数和反比例函数的性质,属于基础题型.明白函数的增减性是解题的关键.7. 如图,在Rt∵ABC 中,CD 是斜边AB 上的高,则下列结论正确的是( )A. BD=12ADB. BC 2=AB•CDC. AD 2=BD•ABD. CD 2=AD•BD【答案】D【解析】【详解】分析:根据题意得出△ACD 和△CBD 相似,从而得出答案. 详解:∵∵ACD∵∵CBD∵ ∵=CD BD AD CD∵ 即2CD AD BD =⋅∵ 故选D∵ 点睛:本题主要考查的是相似三角形的判定与性质,属于基础题型.得出三角形相似是解决这个问题的关键.8. 一组从小到大排列的数据:a ∵3∵5∵5∵6∵∵a 为正整数),唯一的众数是5,则该组数据的平均数是( )A. 3.8B. 4C. 3.6或3.8D. 4.2或4【答案】D【解析】【分析】根据众数的定义得出正整数a 的值,再根据平均数的定义求解可得.【详解】解:∵数据:a ∵3∵5∵5∵6∵a 为正整数),唯一的众数是5∵ 1a ∴=或2∵ 当1a =时,平均数为1355645, 当2a =时,平均数为23556 4.25, 故选:D∵【点睛】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a 的值是解题的关键.9. 反比例函数y=21m x+图象上三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),已知x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 3>y 1>y 2B. y 3>y 2>y 1C. y 1>y 2>y 3D. y 2>y 1>y 3【答案】A【解析】【详解】分析:首先根据题意得出函数所在的象限,然后根据反比例函数的增减性得出答案.详解:∵210m +>∵ ∴函数在每一个象限内y 随着x 的增大而减小, 当x∵0时y∵0∵x∵0时y∵0∵ ∵312y y y >>,故选A∵点睛:本题主要考查的是反比例函数的增减性,属于基础题型.理解反比例函数的增减性是解题的关键.10. 如图,在正方形ABCD 对角线BD 上截取BE BC =,连接CE 并延长交AD 于点F ,连接AE ,过B 作BG AE ⊥于点G ,交AD 于点H ,则下列结论错误的是( )A. AH DF =B. DEF AGH EFHG S S S =+四边形C. 45AEF ∠=︒D. ABH DCF ≅△△【答案】B【解析】 【分析】根据正方形的性质和BE BC =,得出ADE 与CDE 全等,22.5DAE DCE ∠=∠=︒,ABH DCF ∠=∠,再判断Rt ABH △与Rt DCF △全等,即可判断A 、C 、D 三个选项是否符合题意;连接HE ,判断EFH S与EFD S 的面积关系,即可判断B 选项是否符合题意∵【详解】解:在正方形ABCD 中,∵45ABE ADE CDE ∠=∠=∠=︒,AB BC =,∵BE BC =∵AE BE =∵BH 是线段AE 的垂直平分线,22.5ABH DBH ∠=∠=︒,在Rt ABH △中,9067.5AHB ABH ∠=︒-∠=︒,∵90AGH ∠=︒,∵22.5DAE ABH ∠=∠=︒, ADE 和CDE 中45DE DE ADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩,∵()SAS ADE CDE ≅,∵22.5DAE DCE ∠=∠=︒,∵ABH DCF ∠=∠,在Rt ABH △和Rt DCF △中BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵()ASA Rt ABH Rt DCF ≅△△,∵AH DF =,67.5CFD AHB ∠=∠=︒∵CFD EAF AEF ∠=∠+∠,∵67.522.545AEF CFD EAF ∠=∠-∠=︒-︒=︒,故A ,C ,D 正确;如图,连接HE ,∵BH 是AE 垂直平分线,∵AG EG =,∵AGH HEG S S =△△,∵67.5EHG AHG ∠=∠=︒,∵45DHE ∠=︒,∵45ADE ∠=︒,∵90DEH ∠=︒,45DHE HDE ∠=∠=︒,∵EH ED =,∵DEH △是等腰直角三角形,∵EF 不垂直DH ,∵FH FD ≠,∵EFH EFD S S ≠△△,∵HEG EFH AGH EFH DEF AGH EFHG S S S S S S S =+=+≠+△△△△△△四边形,故B 错误, 故选B∵【点睛】本题考查了正方形的性质,全等三角形的判定和性质,三角形的内角和以及三角形的外角和,解答此题的关键是判断出ADE CDE ≅△△,难点是作辅助线.二、填空题(本大题共4小题,每小题5分,共20分)11. 因式分解:216x y xy -=__.【答案】()161xy x -【解析】【分析】先找出公因式,再提取公因式得出答案.【详解】216(161)x y xy xy x -=-.故答案为:(161)xy x -.【点睛】本题主要考查了提公因式法分解因式,掌握提公因式法的步骤是解题的关键.即先确定公因式,再提出公因式写成整式乘积的形式.12. 2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.2%,其中数据5950.05万用科学记数法可表示为_____.【答案】5.95005×107【解析】【详解】分析:科学记数法是指a×10n ,且110a ≤<∵n 为原数的整数位数减一∵ 详解:5950.05万=59500500=75.9500510⨯∵点睛:本题主要考查的是科学记数法的表示方法,属于基础题型.明确科学记数法的方法是解题的关键.13. 如图,△ABC 绕C 点顺时针旋转37°后得到了△A ′B ′C ,A ′B ′⊥AC 于点D ,则∠A=______°.【答案】53【解析】【详解】分析:首先根据垂直得出∠A′DC=90°,根据旋转的性质得出∠A′CD=37°,根据三角形内角和定理得出∠A′的度数,从而得出∠A 的度数.详解:∵A′B′⊥AC, ∴∠A′DC=90°, ∵旋转角度为37°, ∴∠A′CD=37°, ∴根据△A′DC 的内角和定理可得:∠A′=90°-37°=53°,∴∠A=∠A′=53°.点睛:本题主要考查的是旋转图形的性质以及三角形内角和定理,属于中等难度的题型.明白旋转图形的性质是解题的关键.14. 已知关于x 的二次函数22423=-++-y ax ax a a 在13x -≤≤的范围内有最小值5,则a 的值为________.【答案】4或﹣8【解析】【详解】分析:根据题意得出函数的对称轴为直线x=2,然后分a∵0和a∵0两种情况分别求出a 的值.详解:根据函数解析式可得函数的对称轴为直线x=2∵当a∵0,则当x=2时函数的最小值为5∵ 即24a 8a 2a 35a -++-=∵ 解得:a=4或a=∵2(舍去)∵当a∵0时,则当x=∵1时函数的最小为5,即2a 4a 2a 35a +++-=∵ 解得:a=∵8或x=1(舍去)∵综上所述a=4或a=∵8∵点睛:本题主要考查的是二次函数的最值问题以及分类讨论思想的应用,属于中等难度的题型.理解二次函数的最值是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15. 计算:﹣22+tan60°﹣(3.14﹣π)0﹣|1.【答案】-4【解析】【详解】分析:首先根据幂的计算法则、绝对值以及特殊角的三角函数求出各式的值,然后进行求和得出答案.详解:原式=﹣4+﹣1﹣(﹣1)=﹣4+﹣1﹣+1=﹣4.点睛:本题主要考查的是实数的计算,属于基础题型.理解各种计算法则是解题的关键.16. 先化简:(21x x -﹣x ﹣1)÷22121x x x --+,然后求当﹣1时代数式的值.【解析】 【详解】分析:首先将括号里面的分式进通分,然后将分式的分子和分母进行因式分解,约分化简得出答案,最后将x 的值代入进行计算得出答案. 详解:原式=(﹣)•=•=, 当x=﹣1时,原式===. 点睛:本题主要考查的是分式的化简求值问题,属于基础题型.明白因式分解的方法是解决这个问题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17. 在12×12的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题.(1)将∥ABC围绕这原点O按顺时针方向旋转90°,得到∥A1B1C1;(2)以坐标原点O为位似中心,作出与∥A1B1C1位似且位似比为1:2的∥A2B2C2,并写出点A2的坐标.【答案】答案见解析【解析】【详解】分析:(1)、根据旋转图形的画法画出图形即可;(2)、根据位似图形的性质画出图形,根据坐标系得出点A2的坐标.详解:(1)如图所示,∥A1B1C1即为所求;(2)如图所示,∥A2B2C2即为所求,点A2的坐标为(2,2)或(﹣2,﹣2).点睛:本题主要考查的是旋转图形的性质以及位似图形的性质,属于基础题型.明确性质是解题的关键.18. 如图,在∵ABC中,∵B=45°∵∵C=60°∵AC=20∵∵1)求BC的长度;∵2)若∵ADC=75°,求CD的长.;(2)20【答案】(1)【解析】【详解】分析:(1)、分别根据Rt∵ACE和Rt∵ABE的性质求出CE和BE的长度,从而得出BC的长度;(2)、根据内角和定理求出∠BAC的度数,然后结合公共角得出△CDA和△CAB相似,从而得出CD的长度.详解:(1)作AE∥BC于E,如图,在Rt∥ACE中,∥∥C=60°,∥CE=AC=10,AE=CE=10,在Rt∥ABE中,∥∥B=45°,∥BE=AE=10,∥BC=BE+CE=10+10;(2)∥∥BAC=180°﹣45°﹣60°=75°,而∥ADC=75°,∥∥ADC=∥ABC,∥∥ACD=∥BCA,∥∥CDA∥∥CAB,∥=,即=,∥CD=20﹣20.点睛:本题主要考查的是直角三角形的性质以及三角形相似的判定与性质,属于中等难度的题型.明确特殊直角三角形的性质是解题的关键.五、解答题(本大题共2小题,每小题10分,满分20分)19. 某中学为了解七年级学生的体育成绩,从全年级学生中随机抽取部分学生进行“双飞”跳绳测试,结果分为A,B,C,D四个等级,请跟进两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该学校七年级共有400名学生,请你估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有多少名.【答案】(1)本次抽样调查共抽取了50名学生;(2)16(3)估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名【解析】【详解】分析:(1)、根据A等的人数和百分比求出样本容量;(2)、根据总人数减去各组的人数得出C等级的人数,从而补全图形;(3)、根据样本容量中的百分比得出全校的人数.详解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)400×=32,所以估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名.点睛:本题主要考查的是条形统计图的实际应用,属于基础题型.明确频数、频率与样本容量之间的关系是解题的关键.20. “白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?【答案】(1)裤子的定价应该是70元或90元;(2)定价为每条80元可以使每天的利润最大,最大利润是4500元【解析】【详解】分析:(1)、首先设设裤子的定价为每条x元,根据题意列出一元二次方程,从而得出答案;(2)、根据题意得出关于x的函数解析式,然后根据二次函数的增减性得出最大值.详解:(1)设裤子的定价为每条x元,根据题意,得:(x﹣50)[50+5(100﹣x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x ﹣27500,=﹣5(x﹣80)2+4500,∥a=﹣5<0,∥抛物线开口向下.∥50≤x≤100,对称轴是直线x=80,∥当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.点睛:本题主要考查的是一元二次方程的应用以及二次函数的应用,属于中等难度题型.列出方程是解决这个问题的关键.六、解答题(本大题满分12分)21. 在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是12,求放入袋中的黑球的个数.【答案】(1)310(2)2【解析】【分析】(1)、根据题意画出树状图,从而根据概率的计算法则得出答案;(2)∵设放入袋中的黑球的个数为x,根据概率列出方程从而得出答案.【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率=632010=; (2)设放入袋中的黑球的个数为x , 根据题意得211252x x x +=++, 解得x=2, 所以放入袋中的黑球的个数为2.【点睛】本题主要考查的是概率的计算法则,属于基础题型.画出树状图是解决概率问题的关键.七、解答题(本大题满分12分)22. 如图,抛物线2122y x bx =-++与x 轴交于A ,B 两点,与y 轴交于C 点,且点A 的坐标为(1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,并证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当△ACM 的周长最小时,求点M 的坐标.【答案】(1)顶点D 的坐标为(﹣32,258);(2)△ABC 是直角三角形(3)当M 的坐标为(﹣32,54) 【解析】 【分析】(1)将点A 的坐标代入函数解析式求出b 的值,然后将二次函数进行配方从而得出顶点坐标;(2)根据二次函数的解析式分别得出点A 、B 、C 的坐标,然后分别求出AC 、BC和AB 的长度,然后根据勾股定理的逆定理得出答案;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,则BC 与对称轴的交点就是点M ,根据一次函数的交点求法得出点M 的坐标.【详解】解:(1)∵点A (1,0)在抛物线2122y x bx =-++上, ∴12-+b +2=0,解得,32b =-, 抛物线的解析式为22131325222228y x x x ⎛⎫=--+=-++ ⎪⎝⎭, 则顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭; (2)△ABC 是直角三角形,证明:点C 的坐标为(0,2),即OC =2, 当213x x 2022--+=, 解得,x 1=﹣4,x 2=1,则点B 的坐标为(﹣4,0),即OB =4,OA =1,OB =4,∴AB =5,由勾股定理得,ACBC=∴ AC 2+BC 2=25=AB 2,∴△ABC 是直角三角形;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,连接BC 交对称轴于M ,此时△ACM 的周长最小,设直线BC 的解析式为:y =kx +b ,由题意得,402k b b -+=⎧⎨=⎩, 解得,122k b ⎧=⎪⎨⎪=⎩, 则直线BC 的解析式为:122y x =+, 当x =32-时,54y =,∴当M的坐标为35,24⎛⎫-⎪⎝⎭.【点睛】本题主要考查的是二次函数的性质以及一次函数的交点坐标,属于中等难度的题型.待定系数法求函数解析式是解决这个问题的关键.八、解答题(本大题满分14分)23. 如图1,在矩形ABCD中,AB=9,BC=12,点M从点A出发,以每秒2个单位长度的速度沿AB方向在AB上运动,以点M为圆心,MA长为半径画圆,如图2,过点M作NM∥AB,交∥M于点N,设运动时间为t秒.(1)填空:BD= ,BM=;(请用准确数值或含t的代数式表示)(2)当∥M与BD相切时,①求t的值;②求∥CDN的面积.(3)当∥CND为直角三角形时,求出t的值.【答案】(1)15,9﹣t;(2)①t=2②36;(3)t=4.5秒【解析】【详解】分析:(1)、根据Rt∵ABD的勾股定理求出BD的长度,根据AM=t得出BM的长度;(2)①、判断出△BME和△BDA相似,得出比例式建立方程即可得出答案;②、先求出MN∵CD边上的高,利用三角形的面积公式得出答案;(3)∵过点N作直线FG∥MN,分别交AD,BC于点F,G,分别求出2DN和2CN与t的关系式,然后分∥DNC=90°和∥DCN=90°两种情况求出t的值.详解:(1)∥四边形ABCD是矩形,∥AD=BC=12,∥BAD=90°,在Rt∥ABD中,AB=9,BC=12,根据勾股定理得,BD==15,由运动知,AM=t.∥BM=AB﹣AM=9﹣t;(2)①如图1,∥M且BD于E,∥ME∥BD,∥∥BEM=∥BAD=90°,∥∥EBM=∥ABD,∥∥BME∥∥BDA,∥,∥,∥t=2,②∥MN=AM=2t=4,∥CD边上的高为AD﹣MN=12﹣4=8,∥S△CDN=×9×8=36;(3)如图2,过点N作直线FG∥MN,分别交AD,BC于点F,G,∥FN=2t,GN=9﹣2t,DF=CG=12﹣2t,∥DN2=DF2+FN2=(12﹣2t)2+(2t)2,∥CN2=CG2+GN2=(12﹣2t)2+(9﹣2t)2,①当∥DNC=90°时,DN2+CN2=CD2,∥(12﹣2t)2+(2t)2+(12﹣2t)2+(9﹣2t)2=81,化简,得4t2﹣33t+72=0,∥∥=(﹣33)2﹣4×4×72<0,∥此方程无实数根;②当∥DCN=90°时,点N在BC上,BN=BA=2t=9,∥t=4.5,综上所述,t=4.5秒.点睛:本题主要考查的是直角三角形的勾股定理、圆的切线的性质以及三角形相似的应用,综合性比较强.解决这个问题的关键就是切线的性质的应用.。
2018年安徽省合肥市中考模拟测试数学试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四题号 1 2 3 4 5 6 7 8 9 10答案1.在算式(-2)□(-3)的□中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号2.如图所示的几何体的俯视图是()A B C D3.下列计算中正确的是()A. a·a2=a2B. 2a·a=2a2C. (2a2)2=2a4D. 6a8÷3a2=2a44.二次根式x x3中x的取值范围是()A.x>3 B.x≤3且x≠0C.x≤3 D.x<3且x≠05.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°第5题图第8题图第10题图6.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+17.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度得分评卷人数为()A.15°B.75°或15°C.105°或15°D.75°或105°8.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是()A. 5B. 18C. 10D. 49.若关于x的一元二次方程ax2+bx+1=0(a≠0)的解是x=1,则2015-a-b的值是()A. 2014B. 2015C. 2016D. 201710.如图,动点S从点A出发,沿线段AB运动至点B后,立即按原路返回,点S在运动过程中速度不变,则以点B为圆心,线段BS长为半径的圆的面积m与点S的运动时间t之间的函数关系图象大致为()A.B.C.D.得分评卷人二、填空题(每题5分,共20分)11.据安徽省旅游局信息,2018年春节假日期间全省旅游总收入约为196.19亿元,196.19亿用科学记数法表示为.12.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则弧BC的长为(结果保留π).第12题图第13题图第14题图13.根据图中的程序,当输入x=2时,输出的结果y=.14.如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AM•AD;③MN=3-5;④S△EBC=25-1,其中正确的结论是(把你认为正确结论的序号都填上).得分评卷人三、解答题(共90分)15.(8分)先化简:(2x -x x 12+) ÷ xx x 122+-,然后从0,1,-2中选择一个适当的数作为x 的值代入求值.16.(8分)观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256,…. 通过观察,能用你所发现的规律写出232的个位数字是多少吗?那32018的个位数字呢?17.(8分)如图,在边长为1个单位长度的小正方形网格中. (1)画出△ABC 向上平移6个单位长度,再向右平移5个单位长度后的△A 1B 1C 1.(2)以点B 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2.18.(8分)如图①,②分别是某吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角. 吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A距地面的高度是多少米?(精确到0.1米. 参考数据:sin10°=cos80°≈0.17,cos10°=sin80°≈0.98,sin20°=cos70°≈0.34,tan70°≈2.75,sin70°≈0.94)19.(10分)目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?20.(10分)小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A 、B 、C 三个班,他俩希望能再次成为同班同学. (1)请你用列举法,列出所有可能的结果; (2)求两人再次成为同班同学的概率.21.(12分)已知,如图,反比例函数y=xk的图象与一次函数y=x+b 的图象交于点A (1,4),点B (m ,-1),(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出不等式x+b >x k的解.22.(12分)已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.(1)求出抛物线的解析式及点C的坐标;(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(14分)已知,如图1,AD是△ABC的角平分线,且AD=BD,(1)求证:△CDA∽△CAB;(2)若AD=6,CD=5,求AC的值;(3)如图2,延长AD至E,使AE=AB,过E点作EF∥AB,交AC于点F,试探究线段EF 与线段AD的大小关系.2018年安徽省合肥市中考模拟测试数学试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .2.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A【解析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABCA 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=,即可求出12k k 8-=. 【详解】AB//x 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABCA 121111SAB y a b h ah bh k k 42222=⋅=-=-=-=, 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.3.已知一个多边形的内角和是1080°,则这个多边形是( ) A .五边形 B .六边形C .七边形D .八边形【答案】D【解析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解. 【详解】设所求多边形边数为n , ∴(n ﹣2)•180°=1080°, 解得n =8. 故选D. 【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.若23,则a 的值可以是( ) A .﹣7 B .163C .132D .12【答案】C【解析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵23, ∴4<a-2<9, ∴6<a <1. 又a-2≥0,即a≥2.∴a 的取值范围是6<a <1. 观察选项,只有选项C 符合题意. 故选C . 【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.5.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原A.480480420x x-=-B.480480204x x-=+C.480480420x x-=+D.480480204x x-=-【答案】C【解析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个【答案】B【解析】解:∵二次函数y=ax3+bx+c(a≠3)过点(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵抛物线的对称轴在y轴右侧,∴bx2a=-,x>3.∴a与b异号.∴ab<3,正确.②∵抛物线与x轴有两个不同的交点,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正确.④∵抛物线开口向下,∴a<3.∵ab<3,∴b>3.∴a+b+c=3b >3. ∵b <3,c=3,a <3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3. ∴3<a+b+c <3,正确.⑤抛物线y=ax 3+bx+c 与x 轴的一个交点为(﹣3,3),设另一个交点为(x 3,3),则x 3>3, 由图可知,当﹣3<x <x 3时,y >3;当x >x 3时,y <3. ∴当x >﹣3时,y >3的结论错误.综上所述,正确的结论有①②③④.故选B .7.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A .B .C .D .【答案】C【解析】根据题意可以写出y 关于x 的函数关系式,然后令x=40求出相应的y 值,即可解答本题. 【详解】解:由题意可得, y=308x ⨯=240x, 当x=40时,y=6, 故选C . 【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.8.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .【答案】D【解析】根据二次函数的图象可以判断a 、b 、a b -的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案. 【详解】由二次函数的图象可知,a 0<,b 0<,当x 1=-时,y a b 0=-<,()y a b x b ∴=-+的图象经过二、三、四象限,观察可得D 选项的图象符合, 故选D .【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.9.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( ) A . B .C .D .【答案】D【解析】根据k 值的正负性分别判断一次函数y=kx-k 与反比例函数ky x=(k≠0)所经过象限,即可得出答案. 【详解】解:有两种情况,当k>0是时,一次函数y=kx-k 的图象经过一、三、四象限,反比例函数ky x =(k≠0)的图象经过一、三象限; 当k<0时,一次函数y=kx-k 的图象经过一、二、四象限,反比例函数ky x=(k≠0)的图象经过二、四象限;根据选项可知,D 选项满足条件.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.10.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<2【答案】C【解析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题(本题包括8个小题)11.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.【答案】a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.12.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.【解析】试题分析:根据题意可得圆心角的度数为:180π,则S=221802360360n rπππ⨯==1.考点:扇形的面积计算.13.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.【答案】1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x+=2/3解得:x=1.∴黄球的个数为1.14.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.【答案】1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6c m,根据两点之间线段最短,AB′=2286+=1cm.故答案为1.考点:平面展开-最短路径问题.15.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.【解析】分析:设输出结果为y ,观察图形我们可以得出x 和y 的关系式为:32y x =-,将y 的值代入即可求得x 的值. 详解:∵32,y x =-当y=127时,32127,x -= 解得:x=43; 当y=43时,3243,x -=解得:x=15; 当y=15时,3215,x -= 解得17.3x = 不符合条件. 则输入的最小正整数是15. 故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键. 16.计算:2(a -b )+3b =___________. 【答案】2a+b .【解析】先去括号,再合并同类项即可得出答案. 【详解】原式=2a-2b+3b =2a+b .故答案为:2a+b . 17.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__. 【答案】-1.【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9... ∴第n 行=n 2,第11行=112=121, 又∵左起第一个数比右侧的数大一, ∴第11行左起第一个数是-1. 【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.【答案】75°【解析】试题解析:∵直线l 1∥l 2, ∴130.A ∠=∠=,AB AC = 75.ACB B ∴∠=∠=2180175.ACB ∴∠=-∠-∠=故答案为75.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB=32.求反比例函数的解析式;若P (1x ,1y )、Q (2x ,2y )是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.【答案】(1)3y x=-;(2)P 在第二象限,Q 在第三象限. 【解析】试题分析:(1)求出点B 坐标即可解决问题;(2)结论:P 在第二象限,Q 在第三象限.利用反比例函数的性质即可解决问题; 试题解析:解:(1)由题意B (﹣2,32),把B (﹣2,32)代入k y x=中,得到k=﹣3,∴反比例函数的解析式为3y x=-. (2)结论:P 在第二象限,Q 在第三象限.理由:∵k=﹣3<0,∴反比例函数y 在每个象限y 随x 的增大而增大,∵P (x 1,y 1)、Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,∴P 、Q 在不同知识解决问题,属于中考常考题型.20.关于x 的一元二次方程230xm x m -++=有两个实数根,则m 的取值范围是( ) A .m≤1 B .m <1C .﹣3≤m≤1D .﹣3<m <1【答案】C【解析】利用二次根式有意义的条件和判别式的意义得到230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=,然后解不等式组即可. 【详解】根据题意得230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩=, 解得-3≤m≤1. 故选C . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 21.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.求每台A 型电脑和B 型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】 (1) 每台A 型100元,每台B 150元;(2) 34台A 型和66台B 型;(3) 70台A 型电脑和30台B 型电脑的销售利润最大【解析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m )x ﹣150(100﹣x ),即y=(m ﹣50)x+15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m=50时,m ﹣50=0,y=15000,③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,分别进行求解.【详解】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.【答案】(1)4yx;(2)1<x<1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.23.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图24.如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC =DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DP DF EF DE==求出DG,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标.【详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3),∴10{3b c c -+==-,解得2{3b c =-=-, 故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP ,解得DP=3, 过点P 作PG ⊥y 轴于点G ,则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0,所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时,∵△DOC ∽△CDP , ∴OC ODDP DC=,即3DP ,解得,过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE ==,即31DG PG ==, 解得DG=9,PG=3,当点P 在点D 的左边时,OG=DG ﹣OD=9﹣1=8,所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG=OD+DG=1+9=10,所以,点P 的坐标是(3,﹣10),综上所述,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,满足条件的点P 共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.【答案】见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.26.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.求证:△ABF≌△CDE;如图,若∠1=65°,求∠B的大小.【答案】(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=1035【答案】B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.2.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.3.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.4.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4【答案】A【解析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;5.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<1【答案】D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程2x2x m0-+=有两个不相同的实数根,∴()2240=-->,m解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.7.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b【答案】A【解析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.8.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.9.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选C.10.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将度55000用科学记数法表示为5.5×1.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本题包括8个小题)11.已知|x|=3,y2=16,xy<0,则x﹣y=_____.【答案】±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.12.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d=R﹣r=5﹣2=1cm,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.13.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲°.【答案】1.【解析】试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=12∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.14.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.【答案】2﹣1【解析】连接DB,若Q点落在BD上,此时和最短,且为2,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=2﹣1,根据三角函数的定义即可得到结论.【详解】如图:连接DB,若Q点落在BD2,设AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD2PQ,即1﹣x=2,∴x2﹣1,。