教科版高中物理必修二第7章章末综合检测.docx
- 格式:docx
- 大小:154.56 KB
- 文档页数:7
模块综合测评(二)一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中至少有一项满足题设要求,全部选对得4分,选不全得2分,有错选不得分)1.对于做变速运动的物体而言,下列说法正确的是( )A .若改变物体速度的仅是重力,则物体的机械能保持不变B .若改变物体速度的不是重力和弹力,则物体的机械能一定改变C .改变物体速度的若是摩擦力,则物体的机械能一定改变D .在物体速度增大的过程中,其机械能可能反而减少解析:机械能守恒定律的适用条件是系统只有重力和系统内相互作用的弹力做功,若改变物体速度的仅是重力,说明物体仅受重力,物体的机械能保持不变,选项A 正确.若改变物体速度的不是重力和弹力而是其他力,但其他力仅改变物体速度的方向,不改变速度的大小,物体的机械能可能不变,选项B 错误.若改变物体速度的是摩擦力,如果摩擦力仅改变物体速度的方向,不改变速度的大小,物体的机械能也可能不变,选项C 错误.在物体速度增大的过程中,若转化为其他形式的能,则机械能可能减少,选项D 正确.答案:AD2.下列说法中正确的是( )A .做匀速圆周运动的质点所受合外力一定不为零B .做平抛运动的质点所受的合外力随速度的改变而改变C .匀速圆周运动是一种匀变速曲线运动D .平抛运动是一种变加速曲线运动解析:平抛运动是加速度恒定的匀变速曲线运动,故B 、D 错误.匀速圆周运动是曲线运动,所受合外力一定不为零,虽然加速度大小不变,但方向时刻变化,故是一种变加速曲线运动.A 正确,C 错误.答案:A3.2002年12月30日凌晨,我国的“神舟”四号飞船在酒泉载人航天发射场发射升空,按预定计划在太空飞行了6天零18个小时,环绕地球108圈后,在内蒙古中部地区准确着陆,圆满完成了空间科学和技术试验任务,为最终实现载人飞行奠定了坚实基础.若地球的质量、半径和引力常量G 均已知,根据以上数据可估算出“神舟”四号飞船的( )A .离地高度B .环绕速度C .发射速度D .所受的向心力解析:从信息中可知“神舟”四号的周期,由万有引力定律r Tm r Mm G 2224π=可确定轨道半径,从而可知环绕速度,但飞船的质量和重力势能未知,故无法计算所受的向心力和发射速度.答案:AB4.我国发射的“亚洲一号”地球同步通信卫星的质量为1.24 t ,在某一确定的轨道上运行.下列说法中正确的是( )A .它定点在北京正上方太空,所以我国可以利用它进行电视转播B .它的轨道平面一定与赤道平面重合C .若要发射一颗质量为2.48 t 的地球同步通讯卫星,则该卫星的轨道半径将比“亚洲一号”卫星轨道半径大D .要发射一颗质量为2.48 t 的地球同步卫星,则该卫星的轨道半径将比“亚洲一号”卫星轨道半径小解析:同步卫星必须在赤道正上方,并且具有确定的轨道、速度和周期.答案:B5.如图1所示,一阶梯高、宽都为0.4 m ,一球以水平速度v 飞出,欲打在第四级台阶上,则v 的取值范围是(g 取10 m /s 2)( )图1 A.s m v s m /22/6≤< B.s m v s m /5.3/22≤< C.s m v s m /6/2≤< D.s m v s m /6/22≤<解析:在竖直方向上:4h=221gt .水平方向上:x=vt ,且3h≤x≤4h ,故s m v s m /22/6≤<. 答案:A6.如图2所示,小球以大小为v 0的初速度由A 端向右运动,到B 端时的速度减小为v B ;若以同样大小的初速度由B 端向左运动,到A 端时的速度减小为v A .已知小球运动过程中始终未离开该粗糙轨道.比较v A 、v B 的大小,结论是( )A.v A >v BB.v A =v BC.v A <v BD.无法确定解析:小球向右通过凹槽C 时的速率比向左通过凹槽C 时的速率大,由向心力方程F N -mg=rv m 2可知,对应的弹力F N 一定大,滑动摩擦力也大,克服阻力做的功多;又小球向右通过凸起D 时的速率比向左通过凸起D 时的速率小,由向心力方程mg-F N =r v m 2可知,对应的弹力F N 一定大,滑动摩擦力也大,克服阻力做的功多.所以小球向右运动全过程克服阻力做功多,动能损失多,末动能小,选A .答案:A7.飞行员进行素质训练时,抓住秋千杆由水平状态开始下摆,到达竖直状态的过程中如图3所示,飞行员受重力的瞬时功率变化情况是( )图3A .一直增大B .一直减小C .先增大后减小D .先减小后增大解析:初始位置时,速率为零,重力功率为零;最低点时,重力与速度垂直,重力功率为零,故重力瞬时功率先增大后减小.答案:C8.(2006北京高考)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运动周期D.行星的质量解析:飞船贴着行星表面飞行,则2R Mm G =m(T π2)2R,M=2324GT R π,行星的密度为ρ=232323334434GTR GT R R M V M ππππ===,知道飞船的运行周期就可以确定该行星的密度.所以C 选项正确.答案:C9.一轻杆一端固定一质量为m 的小球,以另一端O 为圆心,使小球在竖直平面内做半径为R 的圆周运动,以下说法正确的是( )A .小球过最高点时,杆所受的弹力可以为零B .小球过最高点时最小速度为gRC .小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定大于杆对球的作用力D .小球过最高点时,杆对球的作用力一定与小球所受重力方向相反解析:小球在最高点的最小速度可以是零,此时,小球的重力等于轻杆对小球的支持力;在最高点,当轻杆对小球的支持力为零时,重力提供向心力,则mg=Rv m 2,所以v=gR .轻杆对球的作用力可以向下为拉力,也可以向上为支持力,还可以为零.答案:AC10.如图4所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速度地释放,让它自由摆下,不计空气阻力.在重物由A 点摆向最低点的过程中( )图4A .重物的重力势能减小B .重物的重力势能增加C .重物的机械能不变D .重物和弹簧组成的系统的机械能不变 解析:重物由A 点下摆到B 点过程中,重力做正功,重力势能减小,弹簧被拉长,弹性势能增加,弹簧对重物做了负功,根据功能关系可知,重物的机械能减小,但重物和弹簧组成的系统的机械能不变.答案:AD二、填空题(共4小题,每小题6分,共24分)11.(2006广东广州模拟)如图5所示,水平桌面上固定着斜面体A ,斜面体的曲面末端与桌面的右边缘平齐,且切线沿水平方向.现要设计一个实验测出小铁块B 自斜面顶端由静止开始下滑到底端的过程中,摩擦力对小铁块做的功W f ,实验器材可根据实验需要自选.图5(1)写出需要补充的实验器材:__________________________.(2)简要说明实验中要直接测量的物理量并写出其英文字母符号:_________________.(3)已知重力加速度为g,写出用第(2)问中直接测量的物理量符号所表示的W f 的表达式:____________________________________________________________解析:由动能定理:mgH+W f =21mv 2-0,故需要测量的物理量为物体的质量m 、斜面体的顶端到桌面的高度H ;因v=t x ,h=221gt ,故要测量铁块离开桌面右边缘做平抛运动的水平距离s,桌面离地面的高度h.将测量值代入得:W f =221mv -mgH=hm gs 42-mgH. (1)需要补充的实验器材:天平、直尺、重垂线、白纸和复写纸.(2)直接测量的物理量:小铁块的质量m 、曲面顶端离桌面的高度H 、桌面离地面的高度h 、桌面右边缘到铁块落地点的水平距离s.(3)W f 的表达式为W f =hm gs 42-mgH. 答案:(1)天平、直尺、重垂线、白纸和复写纸(2分,漏重垂线的扣1分)(2)曲面顶端离桌面高度H 、桌面离地高度h 、桌面右边缘到铁块落地点的水平距离s 、小铁块质量m (4分)(3)W f =hm gs 42-mgH (2分) 12.一同学要研究轻质弹簧的弹性势能与弹簧长度改变量的关系.他的实验如下:在离地面高度为h 的光滑水平桌面上,沿着与桌子边缘垂直的方向放置一轻质弹簧,其左端固定,右端与质量为m 的一小钢球接触.当弹簧处于自然长度时,小钢球恰好在桌子边缘,如图6所示.让钢球向左压缩弹簧一段距离后由静止释放,使钢球沿水平方向射出桌面,小球在空中飞行后落到水平地面,水平距离为s .图6(1)请你推导出弹簧的弹性势能E p 与小钢球质量m 、桌面离地面高度h 、水平距离s 等物理量的关系式:____________________________________________________________.(2)弹簧的压缩量x 与对应的钢球在空中飞行的水平距离s 的实验数据如下表所示:从上面的实验数据,请你猜测弹簧的弹性势能E p 与弹簧长度的压缩量x 之间的关系,并说明理由:________________________________________________________________________. 解析:由表中数据可知,在误差范围内,x ∝s .而从(1)中关系式有E p ∝s 2,因而可猜测E p ∝s 2.答案:(1)E p =hm gs 42(2)E p 与x 的关系:E p 与x 2成正比(E p ∝x 2) 理由略 13.如图7所示,一粗细均匀的U 形管内装有同种液体,并竖直放置,右管口用盖板A 密闭一部分气体,左管口开口,两液面高度差为h ,U 形管中液柱总长为4h.现拿去盖板,液柱开始流动,当两侧液面恰好相齐时,右侧液面下降的速度大小为____________________.图7解析:最后两侧液面相平,这一过程相当于右侧2h 的液体流动到左侧.设2h 高的液体的质量为m ,根据ΔE k 增=ΔE p 减得8×21mv 2=mgh 2h ,所以v=gh 241. 答案:gh 241 14.在月球表面,一位宇航员竖直向上抛出一个质量为m 的小球,经过时间t ,小球返回抛出点.已知月球表面的重力加速度是地球表面的1/6,已知地球表面的重力加速度为g .由此可知,宇航员抛出小球时对小球做的功为.解析:小球抛出时的初速度为v 0=gt t g 1212161=⨯,所以宇航员对小球做的功为W=222220288114412121t mg t g m mv =⨯=. 答案:W=222881t mg 三、计算题(本题共4小题,15、16每题8分,17、18每题10分,共计36分.要求写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案,而未写出主要演算过程的,不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.某人在距地面2 m 高处,将质量为2 kg 的小球以3 m /s 的速度水平抛出(取重力加速度的值g=10 m /s 2).求:(1)人抛球时对球做多少功?(2)若不计空气阻力,小球落地时速度的大小;(3)若小球落地时速度大小是5 m /s ,则小球在空中克服阻力做多少功?解析:(1)由动能定理得W=221mv 则人抛球时对球做的功是9 J . (2)小球机械能守恒,以地面为参考平面有mgh+22212121mv mv = 小球落地速度是v 2=7 m /s .(3)由动能定理得mgh-W f =21232121mv mv = 小球克服阻力做功是W f =24 J .答案:(1)9 J (2)7 m /s (3)24 J16.如图8所示,质量均为m 的两小球A 和B 用长为3L 的轻杆相连,轻杆可绕距A 小球2L 的轴O 在竖直平面内自由转动.现将轻杆拉至水平位置并由静止释放,试求:图8(1)在轻杆运动到竖直位置时,A 小球的速度v A ;(2)在轻杆运动到竖直位置的过程中,杆对A 球所做的功;(3)当轻杆转动到竖直位置时,杆对转轴O 的作用力的大小和方向.解析:(1)2mgL-mgL=222121B A mv mv + v A =2v B ,v A =gL 58. (2)对A,由动能定理:221A mv =2mgL+W 所以W=mgL 56-. (3)T-mg=Lv m A 22 mg-F N =Lv m B 2 所以T=1.8mg F N =0.6mgF′=T+F N =2.4mg ,方向向上.答案:(1)v A =gL 58 (2)W=mgL 56- (3)2.4mg,方向向上 17.某网站报道:最近南亚某国发射了一颗人造月球卫星,卫星的质量为1 000 kg ,环绕周期为1 h ,一位同学对该新闻的真实性感到怀疑.他认为:一是该国的航天技术比起我国尚有差距,近期没有发射环月卫星的能力;二是该网站公布的数据似乎也有科学问题.他准备对该数据进行验证.他记不清引力常量的数值且手边没有可查找的相关资料,但他记得月球半径约为地球半径(地球半径为6 400 km )的1/4,月球表面重力加速度约为地球表面(地球表面重力加速度约为10 m /s 2)的1/6.他依据上述这些数据,经过推导分析,进一步认定了该新闻的不真实性.请你也依据上述数据,运用所学物理学知识,写出推导判断过程. 解析:新闻数据:M 卫=1 000 kg ,T 卫=1 h=3.6×103 s .科学数据:R 月=R 地/4=1.6×106 m ;g 月=3561=地g m/s 2. 推导判断:设月球表面卫星的周期为T 卫0,由万有引力定律及向心力公式,得: F=2月卫月R M M G =M 卫g 月(不计月球自转效应)又F=月卫卫R T M 2024π 解得:T 卫0=月月R g π2=6.2×103 s.分析:根据卫星周期公式T 卫=GMr 324π可知,“月面”卫星的周期T 卫0为月球卫星的最小周期T 卫min .判断:因为月球卫星最小周期T 卫min (值为6.2×103s )比新闻中所说的月球卫星周期T卫(值为3.6×103 s 的卫星周期)大近两倍,这违背科学实际,所以上述新闻是不真实的. 答案:上述新闻是不真实的 推导过程略18.质量为50 kg 的男孩在距离河面40 m 高的桥上做“蹦极跳”,未拉伸前长度AB 为15 m 的弹性绳一端缚着他的双脚,另一端则固定在桥上的A 点,如图9(a )所示,男孩从桥面下坠,达到的最低点为水面上方的一点D ,假定绳在整个运动中遵守胡克定律.不计空气阻力、男孩的大小和绳的重力(g 取10 m /s 2).男孩的速率v 跟下坠的距离s 的变化如图9(b )所示,男孩在C 点时速度最大.问:图9(1)当男孩在D 点时,求绳所储存的弹性势能.(2)绳的劲度系数是多少?(3)就男孩在AB 、BC 、CD 期间的运动,试讨论作用于男孩的力.解析:(1)男孩到达D 点时,刚好没有动能,此时下落高度为h=40 m ,则损失的重力势能为ΔE p =mgh=2×104 J损失的重力势能完全转化为弹性绳的弹性势能,即储存的弹性势能为E p =2×104 J.(2)由题中(b )图可知男孩的最大速度为v m =20 m/s ,此时mg=F 弹=kΔx又Δx=(23-15) m=8 m ,代入上式得k=81050⨯=∆x mg N/m=62.5 N/m. (3)AB 间仅受重力作用,BD 间受重与弹力作用,其中BC 间重力大于弹力,CD 间重力小于弹力.答案:(1)2×104 J (2)k=62.5 N/m (3)AB 间仅受重力作用,BD 间受重与弹力作用,其中BC 间重力大于弹力,CD 间重力小于弹力.。
第七章机械能守恒定律(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,在水平的船板上有一人拉着固定在岸边树上的绳子,用力使船向前移动.关于力对船做功的下列说法中正确的是( )A.绳的拉力对船做了功B.人对绳的拉力对船做了功C.树对绳子的拉力对船做了功D.人对船的静摩擦力对船做了功解析:绳的拉力、人对绳子的拉力和树对绳子的拉力都没有作用于船,没有对船做功.只有人对船的静摩擦力作用于船,且船发生了位移,故对船做了功,且做正功,故选项A、B、C错误,D正确.答案:D2.质量为1 kg的铅球从离地高18 m处无初速度释放,经2 s到达地面.在这个过程中重力和空气阻力对铅球做的功分别是(g取10 m/s2)( )A.18 J、2 J B.180 J、-18 JC.180 J、0 D.200 J、0解析:重力做的功为:W=mgh=1×10×18 J=180 J,根据h=12at2得:a=2×184=9 m/s2,根据牛顿第二定律得:mg-f=ma解得:f=1 N.则空气阻力对铅球做的功W1=-fh=-18 J,故B正确,A、C、D错误.答案:B3.如图所示,在电梯中的斜面上放置了一滑块,在电梯加速上升的过程中,滑块相对斜面静止.则在该过程中( )A.斜面对滑块的弹力对滑块所做的功等于滑块增加的重力势能B.滑块所受合力对滑块所做的功等于滑块增加的机械能C.斜面对滑块的摩擦力对滑块做负功D .斜面对滑块的弹力对滑块所做的功小于滑块增加的机械能解析:滑块克服重力所做的功等于滑块增加的重力势能,故选项A 错误;合力对滑块所做的功等于滑块动能的增量,故选项B 错误;斜面对滑块的摩擦力沿斜面向上,故摩擦力做正功,选项C 错误;斜面对滑块的弹力、摩擦力对滑块做的总功等于滑块机械能的增量,故选项D 正确.答案:D4.质量为m 的汽车由静止开始以加速度a 做匀加速运动,经过时间t ,汽车达到额定功率,则下列说法正确的是 ( )A .at 即为汽车额定功率下的速度最大值B .at 不是汽车额定功率下的速度最大值C .汽车的额定功率是ma 2tD .题中所给条件可以求出汽车的额定功率解析:汽车额定功率下的最大速度是a =0时,v m =P 额F =P 额F f,故选项A 错误,B 正确.汽车的功率是牵引力的功率,不是合力的功率,故选项C 错误.由F -F f =ma ,得F =F f +ma ,因F f 不知,则F 不知,故求不出汽车的额定功率,故选项D 错误.答案:B5.一个物体的机械能增大,究其原因可能是( ) A .可能是重力对物体做了功 B .一定是合外力对物体做了功 C .一定是拉力对物体做了功 D .可能是摩擦力对物体做了功解析:除重力、弹力以外的力做功时,物体的机械能才会变化,一个系统的机械能增大,一定是除重力、弹力以外的力对系统做正功.重力做功时物体的动能和重力势能之间相互转化,不影响物体的机械能的总和,故A 错误.除重力、弹力以外的力做功时,物体的机械能才会变化.“合外力”没有说清楚是只有重力,故B 错误,C 错误.如果摩擦力对系统做正功,系统的机械能可以增大,故D 正确.答案:D6.如图所示,ab 是—个位于竖直平面内的光滑圆弧形轨道,高度为h ,轨道的末端与水平轨道相切于b 点.一个小木块质量为m ,在顶端a 处由静止释放后沿轨道滑下,最后停止在水平段的c 点.现使小木块从c 点出发,靠惯性沿原路恰好回到a 点,小木块具有初动能的值为E k ,则( )A .E k =mghB .mgh <E k <2mghC .E k =2mghD .E k >2mgh解析:对于下滑过程中由动能定理可得:mgh -W f =0,对于上滑过程:-mgh -W f =0-E k ,联立解得E k =2mgh ,故选项C 正确.答案:C7.如图,一颗小弹丸从离水面不高处落入水中,溅起的几个小水珠可以跳得很高(不计能量损失),下列说法正确的是( )A.小弹丸下落时具有的重力势能等于几个水珠在最高点的重力势能B.小弹丸下落时具有的重力势能大于几个水珠在最高点的重力势能C.小弹丸下落时具有的重力势能小于几个水珠在最高点的重力势能D.小水珠跳起的高度超过弹丸下落的高度,是违背能量守恒的解析:弹丸的重力势能转化弹丸的动能,再转化为水的弹性势能最后转化成小水珠的动能,小水珠升高的过程中,动能又转化为重力势能(即表现为小水珠的高度),在这一过程中,水的总动能要小于弹丸的动能,但是,各个水珠的质量都比较小,因此,小水珠跳起的高度存在多种可能性.当弹丸的质量又比较大的时候,完全有可能出现个别小水珠跳起的高度较高的情况,甚至可以超过弹丸下落的高度.故B正确,A、C、D都错误.答案:B8.一小球从如图所示的弧形轨道上的A点,由静止开始滑下.由于轨道不光滑,它仅能滑到B点.由B点返回后,仅能滑到C点,已知A、B高度差为h1,B、C高度差为h2,则下列关系正确的是( )A.h1=h2B.h1<h2C.h1>h2D.h1、h2大小关系不确定解析:由能的转化和守恒定律可知,小球由A到B的过程中重力势能减少mgh1,全部用于克服摩擦力做功,即W AB=mgh1.同理,W BC=mgh2,又随着小球最大高度的降低,每次滑过的路程越来越短,必有W AB>W BC,所以mgh1>mgh2,得h1>h2,故C正确.答案:C9.如图所示,小球以初速度v0从A点沿不光滑的轨道运动到高为h的B点后自动返回,其返回途中仍经过A点,则经过A点的速度大小为( )A.v20-4ghB.4gh-v20C.v20-2ghD.2gh-v20解析:设小球从A 到B 克服摩擦力做的功为W f ,小球从A 至B ,由动能定理,有-W f -mgh =0-12mv 20.小球从B 至A ,由动能定理,有 mgh -W f =12mv 2A -0.解以上两式得v A =4gh -v 20,B 对. 答案:B10.(2020·大纲全国卷)一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v 时,上升的最大高度为H ,如图所示.当物块的初速度为v2时,上升的最大高度记为h.重力加速度大小为g.物块与斜坡间的动摩擦因数和h 分别为 ( )A .tan θ和H2B.⎝ ⎛⎭⎪⎫v 22gH -1tan θ和H 2 C .tan θ和H4D.⎝ ⎛⎭⎪⎫ v 22gH -1tan θ和H 4 解析:设物块与斜坡之间的动摩擦因数为μ, 由动能定理可得-mgH -μmg cos θH sin θ=0-12mv2和-mgh -μmg cos θ h sin θ=0-12m ⎝ ⎛⎭⎪⎫v 22,解得h =H 4,μ=⎝ ⎛⎭⎪⎫v 22gH -1tan θ,所以选项D 正确.答案:D二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,长木板A 放在光滑水平地面上,物体B 以水平速度v 0冲上A 后,由于摩擦力作用,最后停止在木板A 上.则从B 冲到木板A 上到相对板A 静止的过程中,下列说法正确的是( )A .摩擦力对物体B 做负功,对物体A 做正功 B .物体B 动能的减少量等于系统损失的机械能C .摩擦力对A 物体做的功等于系统机械能增加量D .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和解析:B 受的摩擦力方向向左,位移向右,故摩擦力对物体B 做负功,A 受B 给他的摩擦力向右,位移向右,故摩擦力对物体A 做正功,故A 正确;根据能量守恒定律,物体B 动能的减少量等于A 的机械能增量和系统损失的机械能之和,故B错误;根据动能定理,摩擦力对木板A做的功等于A动能的增加,故C错误;根据能量守恒定律,物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和,故D 正确,故选A、D.答案:AD12.如图所示,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m,bc=0.4 m,那么在整个过程中( )A.滑块动能的最大值是6 JB.弹簧弹性势能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块和弹簧组成的系统整个过程机械能减少解析:滑块从a到c的过程中,重力势能不能完全转化为动能,故选项A错误;以c点为参考点.则a点的机械能为6 J,在c点时滑块的速度为零,重力势能为零.所以弹簧的弹性势能为6 J,从c到b的过程中弹簧的弹力对滑块做的功等于弹性势能的减少量,故选项B、C正确;滑块能回到原出发点,所以机械能守恒,故选项D错误.答案:BC13.如图所示A、B两个单摆,摆球的质量相同,摆线长L A>L B,悬点O、O′等高,把两个摆球拉至水平后,选O、O′所在的平面为零势能面,都由静止释放,不计阻力,摆球摆到最低点时( )A.A球的动能大于B球的动能B.A球的重力势能大于B球的重力势能C.两球的机械能总量相等D.两球的机械能总量小于零解析:根据动能定理mgL=12mv2,所以摆球摆到最低点时A球的动能大于B球的动能,A正确.在最低点,A球的高度更低,由E p=mgh知A球的重力势能较小,B错误.A、B两球在运动的过程中,只有重力做功,机械能守恒,两球的机械能总量保持0不变,所以在最低点,两球的机械能总量仍为0,故C正确,D错误.答案:AC14.某兴趣小组遥控一辆玩具车,使其在水平路面上由静止启动,在前2 s内做匀加速直线运动,2 s 末达到额定功率,2 s 到14 s 保持额定功率运动,14 s 末停止遥控,让玩具车自由滑行,其v -t 图象如图所示.可认为整个过程玩具车所受阻力大小不变,已知玩具车的质量为m =1 kg ,取g =10 m/s 2,则( )A .玩具车所受阻力大小为2 NB .玩具车在4 s 末牵引力的瞬时功率为9 WC .玩具车在2 s 到10 s 内位移的大小为39 mD .玩具车整个过程的位移为90 m解析:由图象可知在14 s 后的加速度a 2=0-64m/s 2=-1.5 m/s 2,故阻力f =ma 2=-1.5 N ,A 错误;玩具车在前2 s 内的加速度a 1=3-02=1.5 m/s 2,由牛顿第二定律可得牵引力F =ma 1-f =3 N ,当t =2 s 时达到额定功率P 额=Fv =9 W .此后玩具车以额定功率运动,速度增大,牵引力减小,所以t =4 s 时功率为9 W ,B 正确;玩具车在2到10秒内做加速度减小的加速运动,由动能定理得P 额t +fs 2=12mv 22-12mv 21,解得s 2=39 m ,故C 正确;由图象可知总位移s =12×3×2 m +39 m +6×4 m +12×4×6 m =78 m ,故D 错误.答案:BC三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)某实验小组采用如图1所示的装置探究功与速度的关系,小车在橡皮筋作用下弹出后,沿木板滑行.打点计时器工作频率为50 Hz.图1图2图3(1)实验中木板略微倾斜,这样做________.A .是为了使释放小车后,小车能匀加速下滑B .是为了增大小车下滑的加速度C .可使得橡皮筋做的功等于合外力对小车做的功D .可使得橡皮筋松弛后小车做匀速运动(2)实验中先后用同样的橡皮筋1条、2条、3条……并起来挂在小车的前端进行多次实验,每次都要把小车拉到同—位置再释放小车.把第1次只挂1条橡皮筋对小车做的功记为W ,第2次挂2条橡皮筋时橡皮筋对小车做的功为2W……橡皮筋对小车做功后而获得的速度可由打点计时器打出的纸带测出.根据第4次实验的纸带(如图2所示)求得小车获得的速度为________m/s.(3)若根据多次测量数据画出的W —v 图象如图3所示,根据图线形状可知,对W 与v 的关系作出猜想肯定不正确的是________.A .W ∝vB .W ∝1vC .W ∝v 2D .W ∝v 3(4)如果W ∝v 2的猜想是正确的,则画出的W -v 2图象应是________.解析:(1)A 、B 实验中要使橡皮筋对小车所做功等于合外力对小车做的功,应当进行平衡摩擦力的操作,所以要将斜面倾斜,目的不是释放小车后,使小车能够匀加速下滑,也不是增大加速度,而是为了平衡摩擦力,故A 、B 错误;C 实验中木板略微倾斜,来平衡摩擦力,使橡皮筋对小车所做的功等于合外力对小车做的功,方便研究,故C 正确;D 中小车先在橡皮条的拉力作用下做加速运动,当橡皮条松弛以后,小车受到的合外力为0,由于惯性,会继续匀速前进,故D 正确.(2)由纸带后半部分两点间距离相同,可知小车开始做匀速运动,可求得:v =x T =0.040.02m/s =2 m/s.(3)根据图象结合数学知识可知,该图象应是y =x n(n =2,3,4)函数形式,故A 、B 错误,C 、D 正确. (4)如果W∝v 2的猜想是正确的,根据图象结合数学知识可知,画出的W -v 2图象应是过原点的一条直线.答案:(1)CD (2)2 (3)AB (4)过原点的一条直线16.(8分)一劲度系数k =800 N/m 的轻质弹簧两端分别连接着质量均为12 kg 的物体A 、B ,将它们竖直静止放在水平面上,如图所示.现将一竖直向上的变力F 作用在A 上,使A 开始向上做匀加速运动,经0.40 s 物体B 刚要离开地面.g =10 m/s 2.试求:(1)物体B 刚要离开地面时,A 物体的速度v A ; (2)物体A 重力势能的改变量. 解析:(1)开始时m A g =kx 1,当物体B 刚要离地面时kx 2=m B g ,可得: x 1=x 2=0.15 m.由x 1+x 2=12 at 2,v A =at ,得:v A =1.5 m/s.(2)物体A 重力势能增大,ΔE pA =m A g(x 1+x 2)=36 J. 答案:(1)1.5 m/s (2)36 J17.(12分)如图所示,在竖直平面内有一14圆弧形轨道AB ,其半径为R =1.0 m ,B 点的切线方向恰好为水平方向.一个质量为m =2.0 kg 的小滑块,从轨道顶端A 点由静止开始沿轨道下滑,到达轨道末端B 点时的速度为v =4.0 m/s ,然后做平抛运动,落到地面上的C 点.若轨道B 端距地面的高度h =5.0 m(不计空气阻力,取g =10 m/s 2),求:(1)小滑块在AB 轨道克服阻力做的功; (2)小滑块落地时的动能.解析:(1)设小滑块在AB 轨道上克服阻力做功为W ,对于从A 至B 过程,根据动能定理得mgR -W =12mv2-0,代入数据解得W =4 J ,即小滑块在AB 轨道克服阻力做的功为4 J.(2)设小滑块落地时的动能为E k ,取地面为零重力势能参照考面,由于平抛过程中只有重力做功, 故根据机械能守恒定律得12mv 2+mgh =E k +0.代入数据解得E k =116 J , 即小滑块落地时的动能为116 J. 答案:(1)4 J (2)116 J18.(18分)如图所示,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径为r 的14细圆管CD ,管口D 端正下方直立一根劲度系数为k 的轻弹簧,轻弹簧下端固定,上端恰好与管口D 端齐平,质量为m 的小球在曲面上距BC 的高度为2r 处从静止开始下滑,进入管口C 端时与管壁间恰好无作用力,通过CD 后压缩弹簧,在压缩弹簧过程中速度最大时弹簧的弹性势能为E p ,已知小球与BC 间的动摩擦因数μ=0.5.求:(1)小球达到B 点时的速度大小v B ;(2)水平面BC 的长度s ;(3)在压缩弹簧过程中小球的最大速度v m . 解析:(1)由机械能守恒定律得mg2r =12mv 2B ,解得v B =2gr. (2)由mg =m v 2Cr ,得v C =gr.由A 至C ,由动能定理得mg(2r)-μmgs=12mv 2C .解得s =3r.(3)设在压缩弹簧过程中小球速度最大时离D 端的距离为x ,则有kx =mg , 得x =mg k.由功能关系得mg(r +x)-E p =12mv 2m -12mv 2C ,得v m =3gr +2mg 2k -2E pm.答案:(1)2gr (2)3r (3)3gr +2mg 2k -2E pm2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示为剪式千斤顶的截面图。
机械能守恒定律章末检测时间:90分钟满分:100分第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,有的只有一个选项符合题目要求,有的有多个选项符合题目要求)1.用水平拉力F=1 000N拉质量为M=500kg的大车移动10m,用相同的水平拉力拉质量为m=50kg的小车也移动10m,则两次拉车所做的功相比较()A.拉大车做的功多B.拉小车做的功多C.两次做功一样多D.因水平面的粗糙程度不知,两车速度大小不知,无法判定解析某个力的功等于力的大小,位移的大小及力和位移之间夹角的余弦三者的乘积,与物体是否受其他力,及物体的运动性质等因素无关,故只有C选项正确.答案 C2.如图石块自由下落过程中,由A点到B点重力做的功是10J,下列说法正确的是()A.由A到B,石块的重力势能减少了10JB.由A到B,功减少了10JC.由A到B,10J的功转化为石块的动能D.由A到B,10J的重力势能转化为石块的动能解析物体自由下落,重力做的功等于物体重力势能的减少量,故A选项正确;功是能转化的量度,故B、C选项错误;由动能定理可知重力做功,从而动能增加,故D选项正确.答案AD3.下列说法正确的是()A.物体的机械能守恒,一定只受重力和弹簧弹力作用B.物体处于平衡状态时机械能一定守恒C.物体的动能和重力势能之和增大时,必定有重力以外的其他力对物体做了功D.物体的动能和重力势能在相互转化过程中,一定通过重力做功来实现解析物体的机械能守恒时,一定只有重力和弹簧的弹力做功,但不一定只受重力和弹簧弹力的作用.答案CD4.如图所示,为一汽车在平直的公路上,由静止开始运动的速度图象,汽车所受阻力恒定.图中OA为一段直线,AB为一曲线,BC为一平行于时间轴的直线,则()A.OA段汽车发动机的功率是恒定的B.OA段汽车发动机的牵引力恒定C.AB段汽车发动机的功率可能是恒定的D.BC段汽车发动机的功率是恒定的解析OA段汽车做匀加速运动,牵引力恒定,功率是逐渐增大的.答案BCD5.如图所示,在电梯中的斜面上放置了一滑块,在电梯加速上升的过程中,滑块相对斜面静止.则在该过程中()A.斜面对滑块的弹力对滑块所做的功等于滑块增加的重力势能B.滑块所受合力对滑块所做的功等于滑块增加的机械能C.斜面对滑块的摩擦力对滑块做负功D.斜面对滑块的弹力对滑块所做的功小于滑块增加的机械能解析物体克服重力所做的功等于物体增加的重力势能,故A选项错误;合力对物体所做的功等于物体动能的增量,故B选项错误;斜面对物体的摩擦力沿斜面向上,因此摩擦力做正功,C选项错误;斜面对滑块的弹力、摩擦力对滑块做的总功等于滑块机械能的增量,因此D选项正确.答案 D6.如图所示是健身用的“跑步机”示意图,质量为m的运动员踩在与水平面成α角静止的皮带上,运动员用力向后蹬皮带,皮带运动过程中受到的阻力恒为F f,使皮带以速度v匀速向右运动,则在运动过程中,下列说法正确的是()A.人脚对皮带的摩擦力是皮带运动的动力B.人对皮带不做功C.人对皮带做功的功率为mg vD.人对皮带做功的功率为F f v解析 皮带之所以能运动起来,是人对皮带的摩擦力充当了动力,故A 正确.摩擦力的大小与阻力相等,故人对皮带做功的功率为F f v .答案 AD7.如图所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短.若不计弹簧的质量和空气阻力,在小球由a →b →c 的运动过程中( )A .小球在b 点时的动能最大B .小球的重力势能随时间均匀减少C .小球从b 到c 运动过程中,动能先增大后减小,弹簧的弹性势能一直增大D .到达c 点时小球重力势能的减少量等于弹簧弹性势能的增加量解析 小球由a →b 做自由落体运动,重力势能减少,ΔE p =mg Δh =mg ·12gt 2=12mg 2t 2,故选项B 错误;由b →c 过程中,速度先增大,当弹力等于重力时加速度为零,此时速度最大,接着再做变减速运动.故小球动能先增大后减小,而弹性势能一直增大,选项C 正确;到达c 点时球速为零,由机械能守恒定律可知选项D 正确.答案 CD8.如图所示,重10N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已知ab =0.8m ,bc =0.4m ,那么在整个过程中( )A .滑块动能的最大值是6JB .弹簧弹性势能的最大值是6JC .从c 到b 弹簧的弹力对滑块做的功是6JD .滑块和弹簧组成的系统整个过程机械能减少解析 滑块能回到原出发点,所以机械能守恒,故D 选项错误;以c 点为参考点,则a 点的机械能为6J ,在c 点时滑块的速度为零,重力势能为零,所以弹簧的弹性势能为6J ,从c 到b 的过程中弹簧的弹力对滑块做的功等于弹性势能的减少量,故B 、C 选项正确;滑块从a 到c 的过程中,重力势能不能完全转化为动能,故A 选项错误.答案 BC9.(2012·天津一中)如图所示,两个34圆弧轨道固定在水平地面上,半径R 相同,A 轨道由金属凹槽制成,B 轨道由金属圆管制成,均可视为光滑轨道.在两轨道右侧的正上方分别将金属小球A 和B 由静止释放,小球距离地面的高度分别用h A 和h B 表示,则下列说法正确的是( )A .若h A =hB ≥2R ,则两小球都能沿轨道运动到最高点B .若h A =h B =3R 2,由于机械能守恒,两个小球沿轨道上升的最大高度均为3R 2C .适当调整h A 和h B ,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处D .若使小球沿轨道运动并且从最高点飞出,A 小球的最小高度为5R 2,B 小球在h A >2R 的任何高度均可解析 小球沿B 轨道运动到最高点时,由机械能守恒有mgh B =2mgR +12m v 2B,而小球能通过最高点的最小速度可以为零,所以h B ≥2R ,即可使小球到达轨道最高点,而小球沿A 轨道运动时,在最高点有最小速度,即由重力提供向心力mg =m v 2A R ,得v A =gR ,由机械能守恒,得mgh A =2mg R +12m v 2A ,解得h A =52R ,故选项A 错误;若h A =h B =3R 2时,小球沿B 轨道可上升到3R 2处;而小球沿A 轨道不能上升到3R 2处,因为小球上升到3R 2处的动能不能为零,故选项B 错误;小球若沿最高点飞出恰好落在轨道的右端口处,则有R =12gt 2,R =v t ,解得v = gR 2,而小球沿A 轨道运动在最高点的速度不能小于gR ,选项C 错误;由以上分析可知,小球能从最高点飞出对A 轨道来说,小球的最小高度为52R ,对B 轨道小球的高度h B >2R 即可达到最高点并飞出,选项D 正确.答案 D10.如图所示,平直木板AB 倾斜放置,板上的P 点距A 端较近,小物块与木板间的动摩擦因数由A 到B 逐渐减小.先让物块从A 由静止开始滑到B .然后,将A 着地,抬高B ,使木板的倾角与前一过程相同,再让物块从B 由静止开始滑到A .上述两过程相比较,下列说法中一定正确的有( )A .物块经过P 点的动能,前一过程较小B .物块从顶端滑到P 点的过程中因摩擦产生的热量,前一过程较少C .物块滑到底端的速度,前一过程较大D .物块从顶端滑到底端的时间,前一过程较长解析 设第一个过程A 到P 点的距离为l 1,板与水平面夹角为α,平均摩擦力为f 1,到达P 点速度为v 1.第二个过程从B 到P 的距离为l 2,摩擦力的平均值为f 2,到达P 点速度为v 2.由题意可知,l 1<l 2,f 1>f 2.由动能定理可知,mgl 1sin α-f 1l 1=12m v 21l 1(mg sin α-f 1)=12m v 21同理l 2(mg sin α-f 2)=12m v 22由于f 1>f 2,l 1<l 2,所以12m v 21<12m v 22,A 选项正确;根据功能关系两个过程中到达P 点产生热量分别为Q 1=f 1l 1,Q 2=f 2l 2,不能确定Q 1、Q 2的大小关系,故B 选项错误;对全程应用动能定理可知到达底端时两个过程的速度大小相等,故C 选项错误;定性画出两个过程的v -t 图象.图线1表示第一个过程的速度图线,加速度逐渐增大;图线2表示第二个过程的速度图线,加速度逐渐减小,两次的位移大小相同,所以t 1>t 2,D 选项正确.答案 AD第Ⅱ卷(非选择题,共60分)二、实验题(本题共2小题,共18分)11.(6分)如图甲所示,把纸带固定在质量为50g 的钩码上,让纸带穿过打点计时器,接通电源,松开纸带,让钩码自由下落,计时器在纸带上打下一系列的点,得到如图乙所示的纸带.用刻度尺测量起始点O 到各点的距离,并知交流电源的频率是50Hz ,根据上述数据,在此实验中可以做到以下的几点:________.A .测出当地重力加速度的精确值B .计算在纸带中打下D 点时钩码的动能C .计算钩码下落过程中受到的合外力D .较准确地验证机械能守恒定律解析 由于该实验存在摩擦力,因此无法精确地测出重力加速度,A 选项错误;但可以利用纸带求出物体的速度和加速度,从而求打下各点时钩码的动能,B 选项正确;由加速度可求出合外力,C 选项正确;由于阻力较小,因此用本实验可以较准确地验证机械能守恒定律,故D 选项正确.答案 BCD12.(12分)为了只用一根弹簧和一把刻度尺测定某滑块与水平桌面间的动摩擦因数μ(设μ为定值),某同学经查阅资料知:一劲度系数为k 的轻弹簧由伸长量为x 至恢复到原长的过程中,弹力所做的功为12kx 2.于是他设计了下述实验: 第一步,如图所示,将弹簧的一端固定在竖直墙上,弹簧处于原长时另一端落在位置B ,使滑块紧靠弹簧将其压缩至位置A ,松手后滑块在水平桌面上运动一段距离,到达位置C 时停止.第二步,将滑块挂在竖直放置的弹簧下,弹簧伸长后保持静止状态.请回答下列问题:(1)你认为,该同学需用刻度尺直接测量的物理量是(写出名称并用符号表示)_____________________________________________.(2)用测得的物理量表示滑块与水平桌面间的动摩擦因数μ的计算式:μ=________.解析(1)滑块从A到C过程中弹簧的弹力做功,克服摩擦力做功.若能求得摩擦力做功以及物体的位移则可求摩擦力.设法求得滑块受到水平桌面的支持力,则可求得摩擦因数.所以该同学用刻度尺直接测量的物理量是AB间的距离x1,AC间的距离l,弹簧竖直悬挂时弹簧伸长的长度x2.(2)滑块由A到C的过程由动能定理得1 2kx 21-μmgl=0滑块悬挂在弹簧上静止时有mg=kx2由以上两式得μ=x212lx2.答案(1)AB间的距离x1,AC间的距离l,弹簧竖直悬挂时弹簧伸长的长度x2(2)x212lx2三、解答题(本题共3小题,共42分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 13.(12分)如图所示,半径R=0.9m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为L=1m的水平面相切于B点,BC离地面高h=0.8m,质量m=1.0kg的小滑块从圆弧顶点D由静止释放,已知滑块与水平面间的动摩擦因数μ=0.1(不计空气阻力,取g=10m/s2),求:(1)小滑块刚到达圆弧轨道的B 点时对轨道的压力;(2)小滑块落地点距C 点的距离.解析 (1)设小滑块到达B 点时的速度为v B ,圆弧轨道对滑块的支持力为F N ,由机械能守恒定律得mgR =12m v 2B由牛顿第二定律得F N -mg =m v 2B R联立解得F N =30N.由牛顿第三定律可知,滑块在B 点时对轨道的压力为30N.(2)设滑块运动到C 点时的速度为v C ,由动能定理得mgR -μmgL =12m v 2C解得v C =4m/s小滑块从C 点运动到地面做平抛运动水平方向x =v C t竖直方向h =12gt 2 滑块落地点距C 点的距离s =x 2+h 2=455m. 答案 (1)30N(2)455m 14.(14分)电动机通过一绳子吊起质量为8kg 的物体,绳的拉力不能超过120N ,电动机的功率不能超过1 200 W ,要将此物体由静止起用最快的方式吊高90m(已知此物体在被吊高接近90m 时已开始以最大速度匀速上升),所需时间为多少?解析 此题可以用机车启动类问题为思路,即将物体吊高分为两个过程处理:第一个过程是以绳所能承受的最大拉力拉物体,使物体匀加速上升,第一个过程结束时,电动机到达最大功率.第二个过程中电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀速上升.在匀加速运动过程中加速度为 a =F m -mg m =120-8×108m/s 2=5m/s 2末速度v t =P m F m =1 200120m/s =10m/s上升时间t 1=v ta =2 s 上升高度h =v 2t2a=10m在功率恒定的过程中,最后匀速运动的速度为 v m =P m F =P m mg =1 2008×10m/s =15m/s外力对物体做的总功W =P m t 2-mgh 2,动能变化量ΔE k =12m v 2m -12m v 2t 由动能定理得P m ·t 2-mgh 2=12m v 2m -12m v 2t 代入数据后解得t 2=5.75 s ,t =t 1+t 2=7.75 s 所需时间至少要7.75 s. 答案 7.75 s15.(16分)如下图所示,位于竖直平面内的光滑轨道,由一段斜的轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R .一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度).求物块初始位置相对于圆形轨道底部的高度h 的取值范围.解析 设物块在圆形轨道最高点的速度为v ,由机械能守恒定律得 mgh =2mgR +12m v 2①物块在最高点受的力为重力mg 、轨道的压力F N .重力与压力的合力提供向心力,有 mg +F N =m v 2R②物块能通过最高点的条件是 F N ≥0③由②③式得 v ≥gR④由①④式得 h ≥2.5R⑤ 又F N ≤5mg ,由②式得v ≤6Rg⑥由①⑥式得h ≤5R h 的取值范围是:2.5R ≤h ≤5R . 答案 2.5R ≤h ≤5R。
章末复习课知识体系[答案填写]①W为正②W=0③W为负④12m v2⑤mgh⑥初、末位置⑦12m v22-12m v21主题一动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便.【例1】如图所示,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板.M相对于N的高度为h,NP长度为s.一物块从M端由静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(碰撞后物块速度大小不变,方向相反)后停止在水平轨道上某处.若在MN段的摩擦可忽略不计,物块与NP段轨道间的动摩擦因数为μ,求物块停止的地方距N点的距离的可能值.解析:设物块的质量为m ,在水平轨道上滑行的总路程为s ′,则物块从开始下滑到停止在水平轨道上的过程中,由动能定理得mgh -μmgs ′=0.解得s ′=hμ.第一种可能:物块与挡板碰撞后,在到达N 前停止,则物块停止的位置距N 点的距离d =2s -s ′=2s -hμ.第二种可能:物块与挡板碰撞后,可再一次滑上光滑圆弧轨道,然后滑下,在水平轨道上停止,则物块停止的位置距N 点的距离为d =s ′-2s =hμ-2s .所以物块停止的位置距N 点的距离可能为2s -h μ或hμ-2s .答案:2s -hμ或hμ-2s针对训练1.如图所示,质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h10停止,则:(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h8,则钢珠开始时的动能应为多少(设钢珠在沙坑中所受平均阻力大小不随深度改变)?解析:(1)取钢珠为研究对象,对它的整个运动过程,由动能定理得W=W F+W G=ΔE k=0.则重力的功W G=1110mgh,阻力的功W F=-110F f h ,代入得1110mgh -110F f h =0,故有F fmg =11,即所求倍数为11.(2)设钢珠开始时的动能为E k ,则对钢珠的整个运动过程,由动能定理得W =W F +W G =ΔE k ,进一步展开为9mgh 8-F f h8=-E k ,得E k =mgh4. 答案:(1)11 (2)mgh4主题二 功能关系的理解和应用1.几种常见功能关系的理解.(1)明确研究对象,研究对象是一个物体或是几个物体组成的系统.(2)隔离研究对象,分析哪些力对它做功,它的哪些能量发生变化.(3)根据能量的变化类型确定用哪一类功能关系去求解.(4)根据相应的功能关系列方程、求解.【例2】如图所示,在光滑水平地面上放置质量M=2 kg的长木板,木板上表面与固定的光滑弧面相切.一质量m=1 kg的小滑块自弧面上高h处由静止自由滑下,在木板上滑行t=1 s后,滑块和木板以共同速度v=1 m/s匀速运动,g取10 m/s2.求:(1)滑块与木板间的摩擦力大小F f;(2)滑块下滑的高度h;(3)滑块与木板相对滑动过程中产生的热量Q.解析:(1)对木板:F f=Ma1,由运动学公式,有v =a 1t , 解得F f =2 N.(2)对滑块:-F f =ma 2.设滑块滑上木板时的速度是v 0, 则v -v 0=a 2t ,v 0=3 m/s.由机械能守恒定律有mgh =12m v 20,h =v 202g =322×10m =0.45 m.(3)根据功能关系有:Q =12m v 20-12(M +m )v 2=12×1×32J -12×(1+2)×12 J =3 J.答案:(1)2 N (2)0.45 m (3)3 J针对训练2.(2014·广东卷)如图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中( )A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能解析:在车厢相互撞击使弹簧压缩的过程中,有摩擦力做功,消耗机械能,缓冲器的机械能不守恒,A项错误、B项正确;在弹簧压缩的过程中,有部分动能转化成了弹簧的弹性势能,并没有全部转化为内能,C项错误;在弹簧压缩的过程中,是部分动能转化成了弹簧的弹性势能,而不是弹簧的弹性势能全部转化为动能,D项错误.答案:B【统揽考情】本章的基本概念和基本规律较多,体现了利用功能观点分析问题的思路,该部分内容是高考的重点和热点.既有本章的单独考查,也有与电场、磁场的综合考查.高考命题的热点主要集中在动能定理的综合应用上,功能关系的综合应用每年必考,并且分值较多,大约在20分.高考题型有选择题,有综合计算题,也有实验题.【真题例析】(2015·课标全国Ⅱ卷)(多选)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g,则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg 解析:选b滑块为研究对象,b滑块的初速度为零,当a滑块落地时,a滑块没有在水平方向上的分速度,所以b滑块的末速度也为零,由此可得b滑块速度是先增大再减小,当b滑块速度减小时,轻杆对b一直做负功,A项错误;当a滑块落地时,b滑块的速度为零,由机械能守恒定律,可得a落地时速度大小为2gh,B项正确;当b 滑块速度减小时,轻杆对a、b都表现为拉力,拉力在竖直方向上有分力与a的重力合成,其加速度大小大于g,C项错误;a的机械能先减小再增大,当a的机械能最小时,轻杆对a、b的作用力均为零,故此时b对地面的压力大小为mg,D项正确.答案:BD针对训练(2014·课标全国Ⅱ卷)一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f 1、W f 2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f 2>2W f 1B .W F 2>4W F 1,W f 2=2W f 1C .W F 2<4W F 1,W f 2=2W f 1D .W F 2<4W F 1,W f 2<2W f 1解析:根据x =v 2t 和W f =μmgx 可判断,两次克服摩擦力所做的功W f 2=2W f 1.由动能定理得W F 1-W f 1=12m v 2和W F 2-W f 2=12m (2v )2,整理可判断W F 2<4W F 1,故选项C 正确.答案:C1.(2015·四川卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大解析:不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A正确.答案:A2.(2015·福建卷)如图,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()A.t1<t2B.t1=t2C.t1>t2D.无法比较t1、t2的大小解析:在AB段,根据牛顿第二定律mg-F N=m v2R,速度越大,滑块受支持力越小,摩擦力就越小,在BC段,根据牛顿第二定律F N-mg=m v2R,速度越大,滑块受支持力越大,摩擦力就越大,由题意知从A运动到C相比从C到A,在AB段速度较大,在BC段速度较小,所以从A到C运动过程受摩擦力较小,用时短,所以A正确.答案:A3.(多选)(2015·浙江卷)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A.弹射器的推力大小为1.1×106 NB .弹射器对舰载机所做的功为1.1×108 JC .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 2解析:由题可知,舰载机弹射过程的加速度为a =v 22x =8022×100 m/s 2=32 m/s 2,D 项正确;根据牛顿第二定律,0.8(F 发+F 弹)=ma ,求得弹射器的推力大小F 弹=1.1×106 N ,A 项正确;弹射器对舰载机做的功为W =1.1×106×100 J =1.1×108 J ,B 项正确;弹射过程的时间t =v a =8032 s =2.5 s ,弹射器做功的平均功率P =W t=4.4×107 W ,C 项错误.答案:ABD4.(2015·天津卷)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:圆环下滑过程中,圆环动能、重力势能与弹簧弹性势能之和保持不变,故选项A、D错误;圆环从最高点(动能为零)到最低点(动能为零),重力势能减少了mg(2L)2-L2=3mgL, 根据机械能守恒,弹簧弹性势能增加了3mgL,故选项B正确;圆环由静止开始下滑到圆环下滑到最大距离过程中,先加速后减速,下滑到最大距离时,所受合力不为零,故选项C错误.答案:B5.(2015·福建卷)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是长为L的粗糙水平轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力.(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M 2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m ;②滑块从B 到C 运动过程中,小车的位移大小s .解析:(1)由于圆弧轨道光滑,滑块下滑过程机械能守恒,有mgR =12m v 2B . 滑块在B 点处,对小车的压力最大,由牛顿第二定律有N -mg =m v 2B R. 解得N =3mg .据牛顿第三定律可知N ′=3mg .(2)①滑块滑到B 处时小车和滑块速度达到最大,由机械能守恒定律有mgR=12m(2v m)2+12M v2m,解得v m=gR3.②设滑块的位移为s1,由于任一时刻滑块水平分速度是小车速度的2倍,因此有2s=s1,且s+s1=L,解得小车的位移大小s=L3.答案:(1)3mg(2)①gR3②L3。
第七章测评(时间:75分钟 满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021河北衡水月考)下列说法正确的是( )A.由开普勒第一定律可知,所有行星都在同一椭圆轨道上绕太阳运动B.由F=Gm 1m2r 2可知,当r 趋于零时万有引力趋于无限大C.引力常量G=6.67×10-11N·m 2/kg 2,是由英国物理学家卡文迪什利用扭秤实验测出的D.由开普勒第三定律可知,所有行星轨道半长轴的三次方与公转周期的二次方的比值都相等,即a 3T 2=k ,其中k 与行星有关,所有行星各自绕太阳运行的轨道为椭圆,太阳在椭圆的一个焦点上,所以各行星不在同一椭圆轨道上,故A 错误;万有引力定律的研究对象是质点,当物体间距离趋于零时物体不能被视为质点,万有引力定律不再适用,故B 错误;引力常量G=6.67×10-11N·m 2/kg 2,是由卡文迪什利用扭秤实验测出的,故C 正确;由开普勒第三定律可知,所有绕同一中心天体运行的行星轨道半长轴的三次方与公转周期的二次方的比值都相等,即a 3T 2=k ,其中k 与中心天体有关,与行星无关,故D 错误。
2.(2021山东日照模拟)2020年7月23日,中国首次火星探测任务天问一号探测器发射成功,已知火星的质量约为地球质量的19,火星的半径约为地球半径的12。
下列关于火星探测器的说法正确的是(选项中的宇宙速度均指地球的)( ) A.发射速度只要大于第一宇宙速度即可 B.发射速度只有达到第三宇宙速度才可以C.发射速度应大于第二宇宙速度,小于第三宇宙速度D.火星探测器环绕火星运行的最大速度约为第一宇宙速度的13,可知选项A 、B 错误,选项C 正确;已知m 火=m地9,R 火=R地2,则v 火∶v 地=√Gm火R 火∶√Gm地R 地=√2∶3,选项D 错误。
章末复习课知识体系[答案填写]①W为正②W=0③W为负④12m v2⑤mgh⑥初、末位置⑦12m v22-12m v21主题一动能定理在多过程中的应用1.分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.2.全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力的做功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单、更方便.【例1】如图所示,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板.M相对于N的高度为h,NP长度为s.一物块从M端由静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(碰撞后物块速度大小不变,方向相反)后停止在水平轨道上某处.若在MN段的摩擦可忽略不计,物块与NP段轨道间的动摩擦因数为μ,求物块停止的地方距N点的距离的可能值.解析:设物块的质量为m,在水平轨道上滑行的总路程为s′,则物块从开始下滑到停止在水平轨道上的过程中,由动能定理得mgh -μmgs′=0.解得s′=h μ.第一种可能:物块与挡板碰撞后,在到达N前停止,则物块停止的位置距N点的距离d=2s-s′=2s-h μ.第二种可能:物块与挡板碰撞后,可再一次滑上光滑圆弧轨道,然后滑下,在水平轨道上停止,则物块停止的位置距N点的距离为d=s′-2s=hμ-2s.所以物块停止的位置距N点的距离可能为2s-hμ或hμ-2s.答案:2s-hμ或hμ-2s针对训练1.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,BC面水平,B、C距离d=0.50 m,盆边缘的高度h=0.30 m.在A处放一个质量为m的小物块并让其从静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B点的距离为()A.0.50 m B.0.25 mC.0.10 m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,s=hμ=0.300.10m=3 m,d=0.50 m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点,故选D.答案:D主题二功能关系的理解和应用1.几种常见功能关系的理解.(1)明确研究对象,研究对象是一个物体或是几个物体组成的系统.(2)隔离研究对象,分析哪些力对它做功,它的哪些能量发生变化.(3)根据能量的变化类型确定用哪一类功能关系去求解.(4)根据相应的功能关系列方程、求解.【例2】如图所示,在光滑水平地面上放置质量M=2 kg的长木板,木板上表面与固定的光滑弧面相切.一质量m =1 kg 的小滑块自弧面上高h 处由静止自由滑下,在木板上滑行t =1 s 后,滑块和木板以共同速度v =1 m/s 匀速运动,g 取10 m/s 2.求:(1)滑块与木板间的摩擦力大小F f ; (2)滑块下滑的高度h ;(3)滑块与木板相对滑动过程中产生的热量Q . 解析:(1)对木板:F f =Ma 1, 由运动学公式,有v =a 1t , 解得F f =2 N.(2)对滑块:-F f =ma 2.设滑块滑上木板时的速度是v 0, 则v -v 0=a 2t ,v 0=3 m/s.由机械能守恒定律有mgh =12m v 20,h =v 202g =322×10m =0.45 m.(3)根据功能关系有:Q =12m v 20-12(M +m )v 2=12×1×32J -12×(1+2)×12 J =3 J.答案:(1)2 N (2)0.45 m (3)3 J 针对训练2.(多选)如图所示,小球以60 J 的初动能从A 点出发,沿粗糙斜面向上运动,从A 经B 到C ,然后再下滑回到A 点.已知从A 到B 点的过程中,小球动能减少了50 J ,机械能损失了10 J ,则( )A .上升过程中,合外力对小球做功-60 JB .整个过程中,摩擦力对小球做功-20 JC .下行过程中,重力对小球做功48 JD .回到A 点小球的动能为40 J解析:上升过程,由动能定理可知W 合=0-E k0=0-60 J =-60 J ,故A 正确;运用动能定理分析得出,小球损失的动能等于小球克服合外力做的功(包括克服重力做功和克服摩擦阻力做功),损失的动能ΔE k =mgh +f hsin θ=⎝⎛⎭⎪⎫mg +f sin θh , 损失的机械能等于克服摩擦阻力做的功,即ΔE =fhsin θ,解得ΔE k ΔE=mg sin θ+f f =5,与h 无关,则小球上升到最高点时,动能为0,即动能减少了60 J ,损失的机械能为12 J ,当小球返回到底端,小球又要损失的机械能为12 J ,故小球从开始到返回原处机械能损失24 J ,由功能关系知摩擦力做功W f =-24 J ,因而小球返回A 点的动能为36 J ,故B 、D 错误;由上述分析可知,小球上升到最高点时,动能为0,损失的机械能为12 J ,则重力势能增加48 J ,即重力做功为W G =-48 J ,所以下行过程中重力对小球做功48 J ,故C 正确.答案:AC【统揽考情】本章的基本概念和基本规律较多,体现了利用功能观点分析问题的思路,该部分内容是高考的重点和热点.既有本章的单独考查,也有与电场、磁场的综合考查.【真题例析】(·课标全国Ⅱ卷)(多选)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g,则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg 解析:选b滑块为研究对象,b滑块的初速度为零,当a滑块落地时,a滑块没有在水平方向上的分速度,所以b滑块的末速度也为零,由此可得b滑块速度是先增大再减小,当b滑块速度减小时,轻杆对b一直做负功,A项错误;当a滑块落地时,b滑块的速度为零,由机械能守恒定律,可得a落地时速度大小为2gh,B项正确;当b 滑块速度减小时,轻杆对a、b都表现为拉力,拉力在竖直方向上有分力与a的重力合成,其加速度大小大于g,C项错误;a的机械能先减小再增大,当a的机械能最小时,轻杆对a、b的作用力均为零,故此时b对地面的压力大小为mg,D项正确.答案:BD针对训练小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点,有( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度解析:根据动能定理有mgl =12m v 2,得v =2gl ,绳越长速度越大,则Q 球速度大,故A 错误;结合A 项分析,动能等于mgl ,因为P 球质量大而绳长短,则无法确定P 、Q 球动能的大小关系,故B 错误;在最低点,根据牛顿第二定律有T -mg =m v 2l ,得T =3mg ,则质量大的球所受绳的拉力大,故C 正确;在最低点,球的向心加速度a =v 2l =2g ,P 、Q 球的向心加速度相等,与球的质量和绳长无关,故D 错误.答案:C1.(2015·四川卷)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大解析:不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A 正确.答案:A2.如图所示,一半径为R 、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平.一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道.质点滑到轨道最低点N 时,对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功.则( )A .W =12mgR ,质点恰好可以到达Q 点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离解析:设质点运动到半圆形轨道最低点时的速度为v N ,根据牛顿第二定律,得4mg -mg =m v 2NR ,解得12m v 2N =32mgR .从质点由静止释放到运动到最低点N ,根据动能定理,得mg ·2R -W =12m v 2N ,解得W=12mgR .从P 到N 和从N 到Q ,由于摩擦力的存在,相同高度处的速率是减小的,相同高度处的支持力变小,即对应的滑动摩擦力减小,从N 到Q 过程克服摩擦力做的功W ′也减小,即W >W ′.从N 到Q 利用动能定理,得-mgR -W ′=E k Q -12m v 2N ,解得E k Q =12m v 2N -mgR-W ′=12mgR -W ′>0,所以质点到达Q 点后,还能继续上升一段距离,选项C 正确,A 、B 、D 错误.答案:C3.(多选)(2015·浙江卷)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104 kg,设起飞过程中发动机的推力恒为1.0×105 N;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A.弹射器的推力大小为1.1×106 NB.弹射器对舰载机所做的功为1.1×108 JC.弹射器对舰载机做功的平均功率为8.8×107 WD.舰载机在弹射过程中的加速度大小为32 m/s2解析:由题可知,舰载机弹射过程的加速度为a=v22x=8022×100m/s2=32 m/s2,D项正确;根据牛顿第二定律,0.8(F发+F弹)=ma,求得弹射器的推力大小F弹=1.1×106N,A项正确;弹射器对舰载机做的功为W=1.1×106×100 J=1.1×108 J,B项正确;弹射过程的时间t=va=8032s=2.5 s,弹射器做功的平均功率P=Wt=4.4×107W,C项错误.答案:ABD4.(多选)如图所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<π2.在小球从M点运动到N点的过程中()A .有一个时刻小球的加速度等于重力加速度B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 时的动能等于其在M 、N 两点的重力势能差解析:小球运动过程中受重力、弹簧的弹力、杆的弹力,其中杆的弹力始终垂直于杆,弹簧的弹力沿弹簧方向,当弹簧与光滑杆垂直时,小球竖直方向只受重力的作用,故加速度为重力加速度;当弹簧为原长时,小球只受重力作用,小球的加速度也为重力加速度,故A 错误,B 正确.当弹簧与光滑杆垂直时,弹簧长度最短,弹簧弹力与速度垂直,则弹力对小球做功的功率为零,C 正确.M 、N 两点弹簧弹性势能相等,从M 到N 小球的重力势能转化为动能,则小球在N 点的动能等于其在M 、N 两点的重力势能差,D 正确.答案:BCD5.如图所示,一轻弹簧原长为2R ,其一端固定在倾角在37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g ⎝⎛⎭⎪⎫取sin37°=35,cos37°=45.(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距72R、竖直相距R.求P运动到D点时速度的大小和改变后P的质量.解析:(1)根据题意知,B、C之间的距离为l=7R-2R=5R,①设P到达B点时的速度为v B,由动能定理,得mgl sin θ-μmgl cos θ=12m v2B,②式中θ=37°,联立①②式并由题给条件,得v B=2gR.③(2)设BE=x,P到达E点时速度为零,设此时弹簧的弹性势能为E p.P由B点运动到E点的过程中,由动能定理,有mgx sin θ-μmgx cos θ-E p=0-12m v2B,④E、F之间的距离为l1=4R-2R+x,⑤P到达E点后反弹,从E点运动到F点的过程中,由动能定理,有E p-mgl1sin θ-μmgl1cos θ=0,⑥联立③④⑤⑥式并由题给条件,得x=R,⑦E p=125mgR.⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为:x 1=72R -56R sin θ,⑨ y 1=R +56R +56R cos θ,⑩ 式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动G 点的时间为t .由平抛运动公式,有y 1=12gt 2,⑪ x 1=v D t ,⑫联立⑨⑩⑪⑫式,得v D =355gR ,⑬ 设P 在C 点速度的大小为v C ,在P 由C 运动到D 的过程中机械能守恒,有12m 1v 2C =12m 1v 2D +m 1g ⎝ ⎛⎭⎪⎫56R +56R cos θ,⑭ P 由E 点运动到C 点的过程中,由动能定理,有E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C ,⑮ 联立⑦⑧⑬⑭⑮式,得m 1=13m . 答案:(1)2gR (2)125mgR (3)355gR 13m。
2016-2017学年高中物理第7章机械能守恒定律章末自测新人教版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中物理第7章机械能守恒定律章末自测新人教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中物理第7章机械能守恒定律章末自测新人教版必修2的全部内容。
第7章机械能守恒定律一、选择题(1~6题,只有一个选项符合题目要求,7~9有多项符合题目要求)1.(2016·桂林高一检测)关于重力做功与重力势能变化的关系,下列说法中正确的是( )A.如果物体高度降低,则重力对物体做正功,物体的重力势能增加B.如果物体高度降低,则重力对物体做负功,物体的重力势能减少C.如果物体高度升高,则重力对物体做正功,物体的重力势能减少D.如果物体高度升高,则重力对物体做负功,物体的重力势能增加解析:物体高度降低,重力做正功,重力势能减少,A、B错;物体高度升高,重力做负功,重力势能增加,C错,D对。
答案:D2.如图所示,木板可绕固定的水平轴O转动。
木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止。
在这一过程中,物块的重力势能增加了2 J。
用F N表示物块受到的支持力,用F f表示物块受到的摩擦力。
在这一过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功2 JD.F N和F f对物块所做功的代数和为0解析:木板从水平位置OA缓慢转到位置OB,F N与物块运动方向相同,做正功,F f与物块运动方向始终垂直,故对物块不做功。
第七章检测(A)(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求,7~10题有多个选项符合题目要求。
全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.下列说法正确的是()A.物体受力的同时又有位移发生,则该力对物体做的功等于力乘以位移B.力很大,位移很大,这个力所做的功肯定许多C.机械做功越多,其功率越大D.汽车以恒定功率上坡的时候,司机换挡,其目的是减小速度,得到较大的牵引力答案:D2.如图所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.斜向上,对人做正功答案:C3.一固定在地面上的光滑斜面的顶端固定有一轻弹簧,地面上质量为m的物块(可视为质点)向右滑行并冲上斜面。
设物块在斜面最低点A的速率为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,则物块运动到C点时弹簧的弹性势能为()A.mghB.mgh+12mm2C.mgh−12mm2D.12mm2−mmm解析:由机械能守恒定律可得物块的动能转化为重力势能和弹簧的弹性势能,有12mm 2=mmm +m p ,故E p =12mm 2−mmm 。
答案:D4.如图所示,大力士用牙齿拉动50 t 的A320客机。
他把一条绳索的一端系在飞机下方的前轮处,另一端用牙齿紧紧咬住,在52 s 的时间内将客机拉动了约40 m 。
假设大力士对绳索的拉力约为5×103N 恒定不变,绳子与水平方向夹角θ约为30°,则飞机在被拉动的过程中( )A.重力做功约2.0×107J B.拉力做功约1.7×105 J C.克服阻力做功约为1.5×105J D.合外力做功约为2.0×105J解析:由于飞机在水平面上运动,所以重力不做功,故A 错误;由功的公式W=Fx cos θ=5×103×40×√32J≈1.73×105J,故B 正确;飞机获得的动能E k =12mm 2=12×50×103×(2×4052)2J=5.9×104J,依据动能定理可知,合外力做功为5.9×104J,又拉力做功1.7×105J,所以克服阻力做功1.11×105J,故C 、D 错误。
第七章机械能守恒定律练习及答案、选择题1质量为m的小物块在倾角为a的斜面上处于静止状态,如图所示。
若斜面体和小物块一起以速度v沿水平方向向右做匀速直线运动,通过一段位移S。
斜面体对物块的摩擦力和支持力的做功情况是()A •摩擦力做正功,支持力做正功B .摩擦力做正功,支持力做负功C.摩擦力做负功,支持力做正功D .摩擦力做负功,支持力做负功2•在粗糙水平面上运动着的物体,从A点开始在大小不变的水平拉力F作用下做直线运动到B 点,物体经过A、B点时的速度大小相等。
则在此过程中()A .拉力的方向一定始终与滑动摩擦力方向相反B .物体的运动一定不是匀速直线运动C.拉力与滑动摩擦力做的总功一定为零D .拉力与滑动摩擦力的合力一定始终为零3. 材料相同的A、B两块滑块质量mA>mB ,在同一个粗糙的水平面上以相同的初速度运动,则它们的滑行距离sA和sB的关系为()A . sA >sB B. sA = sB C. sA v sB D .无法确定4. 某人在高h处抛出一个质量为m的物体,不计空气阻力,物体落地时速度为v,该人对物体所做的功为()2 mvB. 2A. mgh2 2mv mvC. mgh + 2D. 2—mgh5. 如图所示的四个选项中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是()FAB CD6. 在下面列举的各个实例中,哪些情况机械能是守恒的?()A.汽车在水平面上匀速运动B •抛出的手榴弹或标枪在空中的运动(不计空气阻力)C.拉着物体沿光滑斜面匀速上升D .如图所示,在光滑水平面上运动的小球碰到一个弹簧,压缩后,又被弹回来7•沿倾角不同、动摩擦因数□相同的斜面向上拉同一物体,若上升的高度相同,则(A •沿各斜面克服重力做的功相同B .沿倾角小的斜面克服摩擦做的功大些C.沿倾角大的斜面拉力做的功小些D •条件不足,拉力做的功无法比较&竖直上抛一球,球又落回原处,已知空气阻力的大小恒定,则()A •上升过程中克服重力做的功大于下降过程中重力做的功B •上升过程中克服重力做的功等于下降过程中重力做的功C. 上升过程中克服重力做功的平均功率大于下降过程中重力的平均功率D •上升过程中克服重力做功的平均功率等于下降过程中重力的平均功率9•重物m系在上端固定的轻弹簧下端,用手托起重物,使弹簧处于竖直方向,弹簧的长度等于原长时,突然松手,重物下落的过程中,对于重物、弹簧和地球组成的系统来说,下列说法正确的是()A •重物的动能最大时,重力势能和弹性势能的总和最小B •重物的重力势能最小时,动能最大C.弹簧的弹性势能最大时,重物的动能最小D •重物的重力势能最小时,弹簧的弹性势能最大10. 一个物体由静止开始,从A点出发分别经三个不同的光滑斜面下滑到同一水平面上的C2、C3处,如图所示,下面说法中那些是正确的A .在C1、C2、C3处的动能相等B .在C1、C2、C3处的速度相同C.物体在三个斜面上的运动都是匀加速运动, 速度最小二、填空题11•如图所示,物体沿斜面匀速下滑,在这个过程中物体所具动能 __________ ,重力势能 __________ ,机械能 __________ (填 “增加”、 变”或“减少”)12.用200 N 的拉力将地面上一个质量为 10 kg 的物体提升10 m (重力加速度 g = 10 m/s2,空气阻力忽略不计)。
(时间:60分钟,满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~6小题只有一个选项正确,7~8小题有多个选项正确.全部选对的得6分,选对但不全的得3分,有错选或不答的得0分)1.如图所示,一辆玩具小车静止在光滑的水平导轨上,一个小球用细绳挂在车上,由图中位置无初速度释放,则小球在下摆的过程中,下列说法正确的是() A.绳的拉力对小球不做功B.绳的拉力对小球做正功C.小球的合力不做功D.绳的拉力对小球做负功解析:选D.从能量转化的角度判断.在小球向下摆动的过程中,小车的动能增加;小球和小车组成的系统机械能守恒,小车的机械能增加,小球的机械能一定减少,所以绳的拉力对小球做负功.2.运动员跳伞将经历加速下降和减速下降两个过程.将人和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力对系统始终做负功B.系统受到的合外力始终向下C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等解析:选A.无论什么情况下,阻力一定做负功,A正确;加速下降时,合力向下,减速下降时,合力向上,B错误;系统下降,重力做正功,所以重力势能减少,C错误;由于系统做变速运动,系统在相等的时间内下落的高度不同,所以在任意相等时间内重力做的功不同,D错误.3.如图所示,两个完全相同的小球A、B,在同一高度处以相同大小的初速度v0分别水平抛出和竖直向上抛出,下列说法正确的是()A.两小球落地时的速度相同B.两小球落地时,重力的瞬时功率相同C.从开始运动至落地,重力对两小球做功相同D.从开始运动至落地,重力对两小球做功的平均功率相同解析:选C.根据机械能守恒定律或动能定理,可以判断出它们落地时的速度大小相等,但是A球落地时的速度在水平方向和竖直方向上存在分速度,即速度方向与竖直方向存在夹角,而B球落地时的速度方向竖直向下,可见,它们落地时的速度方向不同,A错误;它们质量相等,而B 球落地时沿竖直方向的速度大小大于A 球落地时沿竖直方向上的分速度的大小,所以两小球落地时,重力的瞬时功率不同,B 错误;重力做功与路径无关,只与初末位置的高度有关,所以,从开始运动至落地,重力对两小球做功相同,C 正确;从开始运动至落地,重力对两小球做功相同,但做功的时间不同,所以重力做功的平均功率不同,D 错误.4.如图所示,均匀长直木板长l =40 cm ,放在水平桌面上,它的右端与桌边相齐,木板质量m =2 kg ,与桌面间动摩擦因数μ=0.2,今用水平推力F 将其推下桌子,则水平推力至少做功为(g 取10 m/s 2)( )A .0.8 JB .1.6 JC .8 JD .4 J解析:选A.将木板推下桌子时木块的重心要通过桌子边缘,水平推力至少等于滑动摩擦力,所以W =Fs =μmg l 2=0.2×20×0.42J =0.8 J.5.(2012·高考江苏卷)如图所示,细线的一端固定于O 点,另一端系一小球.在水平拉力作用下,小球以恒定速率在竖直平面内由A 点运动到B 点.在此过程中拉力的瞬时功率变化情况是( )A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大解析:选A.因小球速率不变,所以小球以O 点为圆心做匀速圆周运动.受力如图所示,因此在切线方向上应有:mg sin θ=F cos θ,F =mg tan θ.则拉力F 的瞬时功率P =F ·v cos θ=mg v ·sin θ.从A 运动到B 的过程中,拉力的瞬时功率随θ的增大而增大.A 项正确.6.质量为2 t 的汽车,发动机的牵引功率为30 kW ,在水平公路上,能达到的最大速度为15 m/s ,当汽车的速度为10 m/s 时的加速度为( )A .0.5 m/s 2B .1 m/s 2C .1.5 m/s 2D .2 m/s 2解析:选A.当汽车达到最大速度时,即为汽车牵引力等于阻力时,则有P =F v =F f v m ,F f =P v m =30×10315N =2×103 N ,当v =10 m/s ,F =P v =30×10310 N =3×103 N ,所以a =F -F f m =3×103-2×1032×103m/s 2=0.5 m/s 2.7.(2013·上饶高一检测)质量为m 1、m 2的两物体,静止在光滑的水平面上,质量为m 的人站在m 1上用恒力F 拉绳子,经过一段时间后,两物体的速度大小分别为v 1和v 2,位移分别为s 1和s 2,如图所示.则这段时间内此人所做的功的大小等于( )A .Fs 2B .F (s 1+s 2) C.12m 2v 22+12(m +m 1)v 21 D.12m 2v 22 解析:选BC.人做的功等于绳子对人和m 2做的功之和,即W =Fs 1+Fs 2=F (s 1+s 2),A错误,B 正确.根据动能定理知,人做的功等于人、m 1和m 2动能的增加量,所以W =12(m 1+m )v 21+12m 2v 22,C 正确,D 错误.8.如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E k A 、E k B 、E k C ,则它们间的关系一定是( )A .E kB -E k A =E kC -E k B B .E k B -E k A <E k C -E k B C .E k B -E k A >E k C -E k BD .E k C <2E k B 解析:选CD.绳对物体做的功W =F ·cos α·l ,由于AB =BC ,F cos α逐渐减小,故W AB >W BC ,由动能定理得:E k B -E k A >E k C -E k B ,故A 、B 错误,C 正确,由上式得E k C <2E k B -E k A <2E k B ,故D 正确.二、实验题(本题共2小题,共14分.按题目要求作答)9.(4分)如图所示,在“探究动能定理”的实验中,关于橡皮筋做的功,下列说法中正确的是________.A .橡皮筋做的功可以直接测量B .通过增加橡皮筋的条数可以使橡皮筋对小车做的功成整数倍增加C .橡皮筋在小车运动的全过程中始终做功D .把橡皮筋拉伸为原来的两倍,橡皮筋做功也增加为原来的两倍解析:橡皮筋的功等于橡皮筋所释放的弹性势能,但无法直接测量,橡皮筋的条数成倍增加,弹性势能也会成倍增加,即做功成整数倍增加,但橡皮筋只是在释放弹性势能的一段时间内才做功,故A 、C 错误,B 正确;橡皮筋的弹性势能与形变量的平方成正比,当拉伸为原来的两倍时,功变为原来的4倍,故D 错误.答案:B10.(10分)在用打点计时器验证机械能守恒定律的实验中,使质量为m =1 kg 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图所示.O 为第一个点,A 、B 、C 为从合适位置开始选取的三个连续点(其他点未画出).已知打点计时器每隔0.02 s 打一个点,当地的重力加速度为g =9.80 m/s 2.那么:(1)纸带的________(填“左”或“右”)端与重物相连;(2)根据图中所得的数据,应取图中O 点到________点来验证机械能守恒定律; (3)从O 点到(2)问中所取的点,重物重力势能的减少量ΔE p =________ J ,动能增加量ΔE k=________ J .(结果保留三位有效数字)解析:因O 点为打出的第一个点,所以O 端(即左端)与重物相连,用OB 段验证机械能守恒定律,则重力势能的减少量为ΔE p =mgh OB =1.88 J动能的增加量为ΔE k =12m v 2B-0v B =h AC 2T =h OC -h OA 2T由以上两式得ΔE k =1.87 J.答案:(1)左 (2)B (3)1.88 1.87三、计算题(本题共2小题,共38分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)11.(9分)如图所示为半径R =0.50 m 的四分之一圆弧轨道,底端距水平地面的高度h =0.45 m .一质量m =1.0 kg 的小滑块从圆弧轨道顶端A 由静止释放,到达轨道底端B 点的速度v =2.0 m/s.忽略空气阻力.取g =10 m/s 2.求:(1)小滑块在圆弧轨道底端B 点受到的支持力大小F N ; (2)小滑块由A 到B 的过程中,克服摩擦力所做的功W ; (3)小滑块落地点与B 点的水平距离x .解析:(1)滑块在B 点时,根据牛顿第二定律得:F N -mg =m v 2R(2分)解得:F N =18 N .(1分)(2)根据动能定理,mgR -W =12m v 2(2分)解得:W =3.0 J .(1分)(3)小滑块从B 点开始做平抛运动 水平方向:x =v t (1分)竖直方向:h =12gt 2(1分)解得:x =v ·2hg=0.60 m .(1分)答案:(1)18 N (2)3.0 J (3)0.6 m12.(13分)如图甲所示,在水平路段AB 上有一质量为2×103 kg 的汽车,正以10 m/s 的速度向右匀速行驶,汽车前方的水平路段BC 较粗糙,汽车通过整个ABC 路段的v -t 图象如图乙所示,在t =20 s 时汽车到达C 点,运动过程中汽车发动机的输出功率保持不变.假设汽车在AB 路段上运动时所受的恒定阻力(含地面摩擦力和空气阻力等)F f1=2 000 N .求:(1)汽车运动过程中发动机的输出功率P ;(2)汽车速度减至8 m/s 时加速度a 的大小; (3)BC 路段的长度.(解题时将汽车看成质点) 解析:(1)汽车在AB 路段时,牵引力和阻力相等 F 1=F f1,P =F 1v 1联立解得:P =20 kW.(3分)(2)t =15 s 后汽车处于匀速运动状态,有 F 2=F f2,P =F 2v 2,F f2=P /v 2 联立解得:F f2=4 000 N(3分)v =8 m/s 时汽车在做减速运动,有 F f2-F =ma ,F =P /v 解得a =0.75 m/s 2.(2分)(3)Pt -F f2s =12m v 22-12m v 21(3分) 解得s =93.75 m .(2分)答案:(1)20 kW (2)0.75 m/s 2 (3)93.75 m 13.(16分)(2013·高考浙江卷)山谷中有三块石头和一根不可伸长的轻质青藤,其示意图如下.图中A 、B 、C 、D 均为石头的边缘点,O 为青藤的固定点,h 1=1.8 m ,h 2=4.0 m ,x 1=4.8 m ,x 2=8.0 m .开始时,质量分别为M =10 kg 和m =2 kg 的大、小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A 点水平跳至中间石头.大猴抱起小猴跑到C 点,抓住青藤下端,荡到右边石头上的D 点,此时速度恰好为零.运动过程中猴子均可看成质点,空气阻力不计,重力加速度g =10 m/s 2.求:(1)大猴从A 点水平跳离时速度的最小值; (2)猴子抓住青藤荡起时的速度大小; (3)猴子荡起时,青藤对猴子的拉力大小.解析:猴子先做平抛运动,后做圆周运动,两运动过程机械能均守恒.寻求力的关系时要考虑牛顿第二定律.(1)设猴子从A 点水平跳离时速度的最小值为v min ,根据平抛运动规律,有h 1=12gt 2①(2分)x 1=v min t ②(2分) 联立①、②式,得 v min =8 m/s.③(1分)(2)猴子抓住青藤后的运动过程中机械能守恒,设荡起时速度为v C ,有(M +m )gh 2=12(M +m )v 2C ④(3分)v C =2gh 2=80 m/s ≈9 m/s.⑤(2分)(3)设拉力为F ,青藤的长度为L .在最低点,由牛顿第二定律得F -(M +m )g =(M +m )v 2CL ⑥(2分)由几何关系(L -h 2)2+x 22=L 2⑦(1分) 得:L =10 m ⑧(1分)综合⑤、⑥、⑧式并代入数据解得:F =(M +m )g +(M +m )v 2CL =216 N .(2分)答案:(1)8 m/s (2)约9 m/s (3)216 N。
高中物理学习材料(鼎尚**整理制作)(时间:90分钟,满分:100分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.关于能源的利用,下列说法不.正确的是()A.自然界的能量守恒,所以不需要节约能源B.一座城市的能量耗散使其环境温度略高于周围农村的环境温度C.煤炭和石油产品燃烧会造成空气污染和温室效应D.能量耗散表明能源的利用是有条件的,也是有代价的解析:选A.自然界的能量守恒,但能量在利用过程中,可利用的品质在逐渐降低,因此,必须节约能源,A项错,C、D对.城市工业、交通急剧发展使得城市过多接收了耗散的能量,使城市温度升高,B对.2.下列关于能量守恒定律的认识正确的是()A.某种形式的能减少,一定存在其他形式的能增加B.某个物体的能量减少,必然有其他物体的能量增加C.不需要任何外界的动力而持续对外做功的机械——永动机不可能制成D.石子从空中落下,最后停止在地面上,,说明机械能消失了解析:选ABC.根据能量守恒定律可知,能量既不会消灭,也不会创生.能量只能从一种形式转化为其他形式,或者从一个物体转移到其他物体,A、B对,D错,永动机违背了能量守恒定律,故它不可能制造出来,C对.3.如图7-4所示,人站在电动扶梯的水平台阶上,假定人与扶梯一起沿斜面加速上升,在这个过程中,人脚所受的静摩擦力()图7-4A.等于零,对人不做功B.水平向左,对人做负功C.水平向右,对人做正功D.斜向上,对人做正功解析:选C.人随扶梯沿斜面加速上升,人的受力有重力、支持力和水平向右的静摩擦力,且静摩擦力方向与运动方向的夹角小于90°,故静摩擦力对人做正功.4.(2011江苏南京高一检测)人们设计出磁悬浮列车,列车能以很大速度行驶.列车的速度很大,是采取了下列哪些可能的措施( )A .减小列车的质量B .增大列车的牵引力C .减小列车受的阻力D .增大列车的功率解析:选CD.当列车以最大速度行驶时,牵引力与阻力大小相等,有P =F f v ,故v =PF f,要增大速度的话,一方面增加列车的功率,另一方面减小列车受的阻力.5.如图7-5所示,一物体以一定的初速度沿水平面由A 点滑到B 点,摩擦力做功为W 1,若该物体从A ′点沿两斜面滑到B ′点,摩擦力做功为W 2,已知物体与各接触面的动摩擦因数均相同 .则( )图7-5A .W 1=W 2B .W 1>W 2C .W 1<W 2D .不能确定W 1和W 2的大小关系解析:选A.若物体沿水平面从A 滑到B ,摩擦力所做的功为W 1,有W 1=F f ·l =μmg ·l ,若沿两斜面由A ′滑到B ′,摩擦力做功为W 2,有W 2=μmg cos α·l 1+μmg cos β·l 2,l 1·cos α+l 2·cos β=l ,所以W 2=μmg ·l =W 1.6.图7-6(2010年高考安徽理综卷)伽利略曾设计如图7-6所示的一个实验,将摆球拉至M 点放开,摆球会达到同一水平高度上的N 点.如果在E 或F 处钉上钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M 点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小( )A .只与斜面的倾角有关B .只与斜面的长度有关C .只与下滑的高度有关D .只与物体的质量有关解析:选C. 物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑的过程中,机械能守恒,由mgh =12m v 2可得,末速度的大小v =2gh 与斜面的倾角和长度、物体的质量无关.7.如图7-7所示在足球赛中,红队球员在白队禁区附近主罚定位球,并将球从球门右上角贴着球门射入,球门高度为h ,足球飞入球门的速度为v ,足球质量为m ,则红队球员将足球踢出时对足球做的功W 为(不计空气阻力、足球可视为质点)( )图7-7A.12m v 2 B .mgh C.12m v 2+mgh D.12m v 2-mgh 解析:选C.根据动能定理可得:W -mgh =12m v 2-0,所以W =12m v 2+mgh ,C 正确.8.质量为m 的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P ,且行驶过程中受到的摩擦阻力大小一定,汽车速度能够达到的最大值为v ,那么当汽车的车速为v4时,汽车的瞬时加速度的大小为( )A.P m vB.2P m vC.3P m vD.4P m v解析:选C.阻力F f =P v ,当速度为v 4时牵引力F =P v 4=4P v ,合力为3P v ,故加速度a =3Pm v.9.(2011年高考海南卷)一物体自t =0时开始做直线运动,其速度图线如图7-8所示.下列选项正确的是( )图7-8A .在0~6 s 内,物体离出发点最远为30 mB .在0~6 s 内,物体经过的路程为40 mC .在0~4 s 内,物体的平均速率为7.5 m/sD .在5~6 s 内,物体所受的合外力做负功 解析:选BC.根据v -t 图象的“面积”表示位移和v -t 图象的意义知,物体在第5 s 时离出发点最远,最远距离为x m =12×(5+2)×10 m =35 m ;0~6 s 内的路程为s =x m +12×1×10 m=40 m ;0~4 s 内的位移x =12×(4+2)×10 m =30 m ,故平均速率为v =x t =304m/s =7.5 m/s ;在5~6 s 内,物体的速度增加,根据动能定理,合外力做正功.综上所述B 、C 正确,A 、D 错误.10.质量为m 的汽车发动机的功率恒为P ,摩擦阻力恒为F f ,牵引力为F ,汽车由静止开始,经过时间t 行驶了位移l 时,速度达到最大值v m ,则发动机所做的功为( )A .PtB .F f v m t C.12m v m 2+F f l D .Fl 解析:选ABC.因为功率P 恒定,所以功W =Pt ,A 正确.汽车达到最大速度时F =F f ,则P =F v =F f v m ,所以W =Pt =F f v m t ,B 正确;从汽车静止到速度达到最大值的过程中,由动能定理得:W -F f l =12m v 2m ,W =12m v 2m +F f l 所以C 正确;由于牵引力F 是变力,所以不能用F ·l 表示做功,D 错.11.物体放在水平面上,受到的水平拉力F 随时间t 变化的图象如图7-9甲所示,物体受力后的运动速度v 随时间t 变化的图象如图乙所示.在整个过程中,下列说法正确的是( )图7-9A .拉力做功为40 JB .物体克服摩擦力做功为16 JC .合力做功为24 JD .以上结果都不对解析:选D.本题结合速度—时间图象考查功的概念.由v -t 图知物体在0~2 s 内静止,x 1=0,2~6 s 内做匀加速运动,位移x 2=12×4×3 m =6 m ,在6~8 s 内做匀速运动,位移x 3=3×2 m =6 m ,且水平面对物体的滑动摩擦力大小为F f =F 3=2 N,8~10 s 内做匀减速运动,位移x 4=12×2×3 m =3 m ,所以拉力做功为W F =F 2x 2+F 2x 3=3×6 J +2×6=30 J ;物体克服摩擦力做功WF f =F f (x 2+x 3+x 4)=2×15 J =30 J ;合力做功等于物体动能的变化,为零.故本题应选D.12.(2011年高考海南卷)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1秒内受到2 N 的水平外力作用.第2秒内受到同方向的1 N 的外力作用.下列判断正确的是( )A .0~2 s 内外力的平均功率是94 WB .第2秒内外力所做的功是54JC .第2秒末外力的瞬时功率最大D .第1秒内与第2秒内质点动能增加量的比值是45解析:选AD.根据牛顿第二定律得:物体在第1 s 内的加速度a 1=F 1m=2 m/s 2,在第2 s 内的加速度a 2=F 2m =11m/s 2=1 m/s 2;第1 s 末的速度v 1=a 1t =2 m/s ,第2 s 末的速度v 2=v 1+a 2t=3 m/s ;0~2 s 内外力做的功W =12m v 22=92 J ,功率P =W t =94W ,故A 正确.第2 s 内外力所做的功W 2=12m v 22-12m v 21=(12×1×32-12×1×22)J =52J ,故B 错误.第1 s 末的瞬时功率P 1=F 1v 1=4 W .第2 s 末的瞬时功率P 2=F 2v 2=3 W ,故C 错误.第1 s 内动能的增加量ΔE k1=12m v 21=2 J ,第2 s 内动能的增加量ΔE k2=W 2=52 J ,所以ΔE k1ΔE k2=45,故D 正确. 二、填空题(本题共2小题,每小题6分,共12分.把答案填在题中横线上)图7-1013.为了测定一根轻弹簧压缩最短时能储存的弹性势能大小,可以将弹簧固定在一带有凹槽轨道的一端,并将轨道固定在水平桌面边缘上,如图7-10所示,用钢球将弹簧压缩至最短,而后突然释放,钢球将沿轨道飞出桌面,实验时:(1)需要测定的物理量是______________(2)计算弹簧压缩最短时弹性势能的关系式是E p =____________ 答案:(1)小球质量m ,桌面高度H ,水平射程x (2)mgx 24H14.在用打点计时器验证机械能守恒定律的实验中,使质量为m =1 kg 的重物自由下落,打点计时器在纸带上打出一系列的点,选取一条符合实验要求的纸带如图7-11所示.O 为第一个点,A 、B 、C 为从合适位置开始选取的三个连续点(其他点未画出).已知打点计时器每隔0.02 s 打一点,当地的重力加速度为g =9.80 m/s 2.那么:图7-11(1)纸带的________端(填“左”或“右”)与重物相连;(2)根据图中所得的数据,应取图中O 点到________点来验证机械能守恒定律;(3)从O 点到(2)问中所取的点,重物重力势能的减少量ΔE p =________J ,动能增加量ΔE k=________J .(结果保留3位有效数字)解析:因O 点为打出的第一个点,所以O 端(即左端)与重物相连,用OB 段验证机械能守恒定律,则重力势能的减少量为ΔE p =mgh OB =1.88 J动能的增加量为ΔE k =12m v 2B-0v B =h AC 2T =h OC -h OA 2T由以上两式得ΔE k =1.87 J.答案:(1)左 (2)B (3)1.88 1.87三、计算题(本题共4小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)15.(8分)汽车在水平直线公路上行驶,额定功率为P 额=80 kW ,汽车行驶过程中所受阻力恒为F f =2.5×103 N ,汽车的质量M =2.0×103 kg.若汽车从静止开始做匀加速直线运动,加速度的大小为a =1.0 m/s 2,汽车达到额定功率后,保持额定功率不变继续行驶.求:(1)汽车在整个运动过程中所能达到的最大速度. (2)当汽车的速度为20 m/s 时的加速度.解析:(1)汽车在整个运动过程中速度达到最大时,牵引力与阻力大小相等, 即F =F f ,又P 额=F v m ,(2分)所以最大速度v m =P 额F f =800002500m/s =32 m/s.(2分)(2)当汽车的速度为20 m/s 时,汽车的牵引力为F =P 额v =8000020N =4000 N(2分)对汽车由牛顿第二定律可得 a =F -F f M =4000-25002000m/s 2=0.75 m/s 2(2分)所以汽车的加速度为0.75 m/s 2. 答案:(1)32 m/s (2)0.75 m/s 216.(10分)如图7-12所示,已知轻弹簧发生弹性形变时所具有的弹性势能E p =12kx 2.其中k 为弹簧的劲度系数, x 为其形变量.图7-12现有质量为m 1的物块与劲度系数为k 的轻弹簧相连并静止地放在光滑的水平桌面上,弹簧的另一端固定,按住物块m 1,弹簧处于自然长度,在m 1的右端连一细线并绕过光滑的定滑轮接一个挂钩.现在将质量为m 2的小物体轻轻地挂在挂钩上.设细线不可伸长,细线、挂钩、滑轮的质量及一切摩擦均不计,释放m 1,求:(1)m 1速度达最大值时弹簧伸长的长度. (2)m 1的最大速度值.解析:(1)对m 1、m 2进行受力分析,由线不可伸长知: F T -kx =m 1a (2分) m 2g -F T =m 2a (2分)两式相加得m 2g -kx =(m 1+m 2)a (1分) 当a =0时,m 1、m 2速度达最大值,故弹簧伸长量为x =m 2gk.①(2分)(2)系统机械能守恒,以弹簧原长处为弹性势能零点,m 2刚挂上时的位置为重力势能零点,则系统初态机械能为零,故有12(m 1+m 2)v 2+12kx 2-m 2gx =0②(2分) 将①式代入②式解得v =±m 2g(m 1+m 2)k故速度大小为m 2g(m 1+m 2)k .(1分)答案:(1)m 2g k (2)m 2g(m 1+m 2)k17.(10分)如图7-13所示,一可视为质点的物体质量为m =1 kg ,在左侧平台上水平抛出,恰能无碰撞地沿圆弧切线从A 点进入光滑竖直圆弧轨道,并沿轨道下滑,A 、B 为圆弧两端点,其连线水平,O 为轨道的最低点,已知圆弧半径为R =1.0 m ,对应圆心角为θ=106°,平台与AB 连线的高度差为h =0.8 m .(重力加速度g =10 m/s 2,sin53°=0.8,cos53°=0.6)求:图7-13(1)物体做平抛运动的初速度;(2)物体运动到圆弧轨道最低点O 时对轨道的压力.解析:(1)由于物体无碰撞进入圆弧轨道,即物体落到A 点时速度方向沿A 点切线方向,设此时速度方向与水平方向夹角为α,则tan α=v y v x =v yv 0=tan53°①(1分)又h =12gt 2②(1分)而v y =gt ③(1分)联立①②③式得v 0=3 m/s.④(1分)(2)设物体运动到最低点的速度为v ,由机械能守恒得 12m v 2-12m v 20=mg [h +R (1-cos53°)]⑤(3分) 在最低点,根据牛顿第二定律,有F N -mg =m v 2R⑥(2分)联立④⑤⑥式得F N =43 N由牛顿第三定律知,物体对轨道的压力为43 N .(1分) 答案:(1)3 m/s (2)43 N18.(12分)(2011年福建三明模拟)工厂流水线上采用弹射装置把物品转运,现简化其模型分析:如图7-14所示,质量为m 的滑块,放在光滑的水平平台上,平台右端B 与水平传送带相接,传送带的运行速度为v 0,长为L ;现将滑块向左压缩固定在平台上的轻弹簧,到达某处时由静止释放,若滑块离开弹簧时的速度小于传送带的速度,当滑块滑到传送带右端C 时,恰好与传送带速度相同,滑块与传送带间的动摩擦因数为μ.求:图7-14(1)释放滑块时,弹簧具有的弹性势能;(2)滑块在传送带上滑行的整个过程中产生的热量.解析:(1)设滑块冲上传送带时的速度为v ,在弹簧弹开过程中,由机械能守恒E p =12m v 2(2分)滑块在传送带上做匀加速运动由动能定理μmgL =12m v 02-12m v 2(2分)解得:E p =12m v 02-μmgL .(1分)(2)设滑块在传送带上做匀加速运动的时间为t ,则t 时间内传送带的位移s =v 0t (1分) 又v 0=v +at μmg =ma (1分)滑块相对传送带滑动的位移Δs =s -L (2分) 相对滑动生成的热量Q =μmg ·Δs (2分) 解得:Q =m v 0·(v 0-v 02-2μgL )-μmgL .(1分)答案:(1)12m v 02-μmgL(2)m v 0(v 0-v 02-2μgL )-μmgL。