第九章_神经网络控制
- 格式:ppt
- 大小:1.06 MB
- 文档页数:71
控制系统中的神经网络控制方法控制系统是指通过对被控对象进行监测和调节,以达到预定要求的系统。
而神经网络控制方法是指利用神经网络模型和算法对控制系统进行优化和改进的方法。
本文将介绍神经网络控制方法在控制系统中的应用以及其原理和优势。
一、神经网络控制方法的原理神经网络控制方法主要基于人工神经网络模型,它模拟了生物神经系统的结构和功能。
该模型由多个神经元组成,这些神经元相互连接并通过权重参数传递和处理信息。
其原理主要包括以下几个方面:1. 网络拓扑结构:神经网络控制方法中使用的神经网络有多种拓扑结构,如前馈神经网络、循环神经网络和自适应神经网络等。
这些网络结构可以灵活地应用于不同的控制问题。
2. 学习算法:神经网络通过学习算法来调整网络中神经元之间的连接权重,以逐步优化网络的性能。
常见的学习算法包括反向传播算法、遗传算法和模糊神经网络算法等。
3. 控制策略:神经网络控制方法可以基于不同的控制策略,如比例积分微分(PID)控制、模糊控制和自适应控制等。
通过在神经网络中引入相应的控制策略,可以实现对被控对象的精确控制和调节。
二、神经网络控制方法在控制系统中的应用1. 机器人控制:神经网络控制方法在机器人控制中有广泛应用。
通过将神经网络嵌入到机器人的控制系统中,可以实现对机器人运动、感知和决策等方面的智能控制。
这种方法能够提高机器人的自主性和适应性,使其能够更好地适应不同环境和任务的需求。
2. 工业过程控制:神经网络控制方法在工业过程控制中也得到了广泛应用。
通过利用神经网络对工业过程进行建模和优化,可以提高生产效率、降低能耗和减少故障率。
此外,神经网络控制方法还可以应用于故障诊断和预测维护等方面,提高工业系统的可靠性和稳定性。
3. 航天飞行器控制:神经网络控制方法在航天飞行器控制方面也有重要应用。
通过神经网络对航天飞行器的姿态、轨迹和轨道控制进行优化,可以提高飞行器的稳定性和导航精度,降低燃料消耗和飞行风险。
人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。
神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。
通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。
RBF 网络通常由三层组成:输入层、隐藏层和输出层。
输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。
最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。
RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。
在训练过程中,通过输入训练数据来调整网络参数和权重。
训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。
第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。
RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。
另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。
此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。
然而,RBF 网络控制也存在一些局限性。
首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。
此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。
同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。
总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。
其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。
神经网络控制随着先进的计算技术的发展和大量的计算资源的获得,神经网络控制已经成为一种重要的控制方法。
神经网络控制通过建立神经网络模型对系统进行建模和控制,可以适用于不确定性较大、非线性程度较高的系统。
本文将从以下几个方面进行讨论。
1. 神经网络的基本原理神经网络是一个由大量神经元相互连接的关系网络。
神经元是生物神经系统中的基本单位,它接收神经元的输入,对输入进行处理,并将处理结果输出到其他神经元。
神经网络通过对神经元之间的连接强度进行学习,从而实现对输入和输出之间的映射。
神经网络的结构包含输入层、隐层和输出层。
输入层接收外部输入,隐层进行处理,最终的输出由输出层输出。
各层之间的连接权重是从样本学习中学得的。
在训练过程中,神经网络通过误差反向传播算法进行训练,从而得到最小误差的权值。
2. 神经网络控制的研究现状神经网络控制已经成为控制领域的一个热门研究方向。
在国内外均有大量的研究成果和应用案例。
神经网络控制在机器人控制、无人驾驶汽车控制、空间飞行器控制等领域中被广泛应用。
3. 神经网络控制在机器人控制中的应用机器人控制是神经网络控制的一个重要应用领域。
神经网络控制可以解决机器人控制中的多方面问题,如动力学建模、逆运动学、轨迹规划、控制等。
神经网络控制在机器人控制中的应用有:(1)运动控制神经网络控制可以对机器人的运动进行控制。
在机器人运动控制中,神经网络控制可以通过监督学习,对机器人的动力学进行建模,解决运动控制中的逆运动学问题。
同时,神经网络控制可以实现机器人的运动轨迹控制,保证机器人运动的平稳性和精度性。
(2)感知控制神经网络控制可以对机器人的感知进行控制。
机器人的传感器可以观测到周围环境的信息,神经网络控制可以对这些信息进行处理,并通过控制机器人的动作,使机器人具有基本的感知能力,如避障、跟踪等。
(3)智能控制在机器人控制中,神经网络控制可以实现机器人的智能控制。
神经网络控制可以对机器人进行学习和适应性,根据环境的变化,实现机器人的自适应控制,从而使机器人具有较强的智能性和自主性。
神经网络控制沈阳电力高等专科学校杨庆柏刊载于《辽宁电机工程科普》1999年第4期神经网络控制是一种基本上不依赖模型的控制方法。
它比较适用于那些具有不确定性或高度非线性的控制对象,并且有较强的适应和学习功能,因而神经网络控制是智能控制的一个重要分支领域。
神经网络控制的机理人脑是由大量的神经细胞组合而成的,它们之间互相连接。
人工神经网络是对生物神经网络的一种模拟和近似,该网络是一个并行和分布式的信息处理网络结构,它一般由许多个神经元(即神经细胞)组成.虽然单个神经元的结构和功能极其简单和有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富的.每个神经元有一个单一的输出,它可以到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。
由给定的输入,神经网络产生一组输出,这些输出与已知的输出或期望的输出比较,如有偏差,则修正连接权系数以改进网络性能这种培育过程直到神经网络达到令人满意的水平为止。
目前,取代人工控制的途径大致有二种,一是将手工操作中的经验总结成普通的规则或模糊规则,然后构造相应的专家控制器或模糊控制器。
二是在知识难于表达的情况下,应用神经网络学习人的控制行为,即对人工控制器建模。
然后用此神经网络控制器取代。
这种通过对人工或传统控制器进行学习,然后用神经网络控制器取代或逐渐取代原控制器的方法,称为神经网络监督控制。
2.神经网络控制特点(1)具有很强的自学习和自组织能力,能进行在线或离线学习。
(2)具有并行处理及其带来的高速处理能力,而且处理的时间与问题的复杂程度只是成比例关系,而不是串行处理中的几何数量级关系。
(3)具有很强的处理非线性问题的能力,能逼近任意的非线性函数,因而适于处理那些难于用模型或规则描述的过程或系统。
(4)具有很强的信息综合能力,能同时处理大量的、不同类型的定量和定性信息,便于进行多种信息的融合。
(5)具有分布式存储信息和容错能力,每个神经元存储多种信息的部分内容,部分神经元的损坏和信息破坏只会导致网络部分功能减弱。