浙大概率论课后习题答案第一章
- 格式:ppt
- 大小:292.00 KB
- 文档页数:44
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
概率论答案浙江大学第四版【篇一:概率论与数理统计浙江大学第四版-课后习题答案(完全版)】p> 浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)o1n?100?s???,???,n表小班人数 n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)s={10,11,12,???,n,???}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。
(1)a发生,b与c不发生。
表示为: a或a- (ab+ac)或a- (b∪c)(2)a,b都发生,而c不发生。
表示为: ab或ab-abc或ab-c表示为:a+b+c (3)a,b,c中至少有一个发生(4)a,b,c都发生,表示为:abc表示为:ac或s- (a+b+c)或a?b?c (5)a,b,c都不发生,(6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时不发生相当于,,中至少有一个发生。
故表示为:??。
(7)a,b,c中不多于二个发生。
相当于:,,中至少有一个发生。
故表示为:??abc(8)a,b,c中至少有二个发生。
相当于:ab,bc,ac中至少有一个发生。
故表示为:ab+bc+ac6.[三] 设a,b是两事件且p (a)=0.6,p (b)=0.7. 问(1)在什么条件下p (ab)取到最大值,最大值是多少?(2)在什么条件下p (ab)取到最小值,最小值是多少?从而由加法定理得p (ab)=p (a)+p (b)-p (a∪b) (*)(1)从0≤p(ab)≤p(a)知,当ab=a,即a∩b时p(ab)取到最大值,最大值为p(ab)=p(a)=0.6,(2)从(*)式知,当a∪b=s时,p(ab)取最小值,最小值为p(ab)=0.6+0.7-1=0.3 。
第一章 概率论的基本概念1. 写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(充以百分制记分).解: }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数. (2)同时掷三颗骰子, 记录三颗骰子点数之和;解: S ={3, 4, ⋅⋅⋅ , 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数;解: S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }.(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品, 停止检查, 记录检查的结果.解: S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111},其中0表示次品, 1表示正品.(5)在单位圆内任意取一点, 记录它的坐标;解: S ={(x , y )|x 2+y 2<1}.(6)将一尺之棰成三段, 观察各段的长度.解: S ={(x , y , z )|x >0, y >0, z >0, x +y +z =1}, 其中x , y , z 分别表示第一、二、三段的长度.2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生;解: 表示为: A ⎺B ⎺C 或A -(AB +AC )或A -(B ⋃C ).(2)A , B 都发生, 而C 不发生;解: 表示为: AB ⎺C 或AB -ABC 或AB -C .(3)A , B , C 中至少有一个发生;解: 表示为: A +B +C .(4)A , B , C 都发生;解: 表示为: ABC(5)A , B , C 都不发生;解: 表示为: ⎺A ⎺B ⎺C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生;解: 即A , B , C 中至少有两个同时不发生相当于⎺A ⎺B , ⎺B ⎺C ,⎺A ⎺C 中至少有一个发生.故表示为: ⎺A ⎺B +⎺B ⎺C +⎺A ⎺C .(7)A , B , C 中不多于二个发生;解: 相当于: ⎺A , ⎺B , ⎺C 中至少有一个发生.故表示为: ⎺A +⎺B +⎺C 或ABC .(8)A , B , C 中至少有二个发生.解: 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC .3. 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问: (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解: (1)因为P (AB )=P (A )+P (B )-P (A ⋃B ), 且P (A )<P (B )≤P (A ⋃B ), 所以当A ⊂B 时, P (A ⋃B )=P (B ), P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6.(2)当A ⋃B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4. 设A , B , C 是三事件, 且P (A )=P (B )=P (C )=1/4, P (AB )=P (BC )=0, P (AC )=1/8. 求A , B , C 至少有一个发生的概率. 解: P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =(3/4)-(1/8)+0=5/8.5. 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解: 记A 表“能排成上述单词”. 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个, 所以1301155)(226==A A P .6. 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;解: 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯. 所以1211)(31025=⨯=C C A P .(2)求最大的号码为5的概率.解: 记“三人中最大的号码为5”为事件B , 同上, 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于: 有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种, 所以2011)(31024=⨯=C C B P . 7. 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解: 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯, 故2431252)(6172334410=⨯⨯=C C C C A P .8. 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率;解: 用A 表示取出的产品恰有90个次品. 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种. 因此2001500110110090400)(C C C A P =. (2)至少有2个次品的概率.解: 用B 表示至少有2个次品. B 0表示不含有次品, B 1表示只含有一个次品. 同上, 200个产品不含次品, 取法有2001100C 种,200个产品含一个次品, 取法有19911001400C C 种. 因为⎺B =B 0+B 1且B 0, B 1互不相容, 所以P (B )=1-P (⎺B )=1-[P (B 0)+P (B 1)]20015002001100199110014001C C C C +-=.9. 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解: 样本空间所含的样本点数为410C , 用A 表示4只全中至少有2支配成一对, 则⎺A 表示4只全不配对. ⎺A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双, 再从每双中任取一只). 因此2182)(410445=⋅=C C A P , 21132181)(1)(=-=-=A P A P .10. 在11张卡片上分别写上Probabitity 这11个字母, 从中任意连抽7张, 求其排列结果为Abitity 的概率.解: 所有可能的排列构成样本空间, 其中包含的样本点数为711P . 用A 表示正确的排列, 则A 包含的样本点数为411111*********=C C C C C C C , 则0000024.04)(711==P A P .11. 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3.解: 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3). 三只球放入四只杯中, 放法有43种, 每种放法等可能. 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P . 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P . 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P . 12. 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解: 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能.对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C ,故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P .13. 已知3.0)(=A P , P (B )=0.4, 5.0)(=B A P , 求)|(B A B P ⋃.解: 7.0)(1)(=-=A P A P , 6.0)(1)(=-=B P B P ,B A AB B B A AS A ⋃=⋃==)(. 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B A P ,于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A B P .14. 已知41)(=A P , 31)|(=A B P , 21)|(=B A P , 求P (A ⋃B ). 解: 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==, 61213141)|()|()()(=⨯==B A P A B P A P B P . 根据乘法公式1214131)()|()(=⨯==A P A B P AB P . 根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P .15. 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一: (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)},每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}, 故 3162)(==A P . 解法二: 用公式)()()|(B P AB P B A P =. S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6}, 每种结果均可能.A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P , 262)(=AB P , 故 31626162)()()|(2====B P AB P B A P . 16. 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解: 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病}, 则 P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4,所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17. 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率:(1)两只都是正品;(2)二只都是次品(记为事件B );(3)一只是正品, 一只是次品(记为事件C );(4)第二次取出的是次品(记为事件D );解: 设A i ={第i 次取出的是正品)(i =1, 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P .18. 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率; (2)若已知最后一个数字是奇数, 那么此概率是多少?解: 设A i ={第i 次拨号拨对}(i =1, 2, 3), A ={拨号不超过3次而拨通}, 则321211A A A A A A A ++=, 且三种情况互斥, 所以 )|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++=. 于是(1)103819810991109101)(=⨯⨯+⨯+=A P . (2)53314354415451)(=⨯⨯+⨯+=A P .19. (1)设甲袋中装有n 只白球, m 只红球, 乙袋中装有N 只白球, M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少?解: 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋”. 再记B 表“再从乙袋中取得白球”. 因为 B =A 1B +A 2B 且A 1, A 2互斥,所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n )1)(()(+++++=N M n m n N m n .19. (2)第一只盒子装有5只红球, 4只白球; 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解: 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1⋃C 2⋃C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C C C .20. 某种产品的高标为“MAXAM”, 其中有2个字母已经脱落, 有人捡起随意放回, 求放回后仍为“MAXAM”的概率. 解: 设A 1, A 2, ⋅⋅⋅ , A 10分别表示字母MA , MX , MA , MM , AX , AA , AM , XA , XM , AM 脱落的事件, 则101)(=i A P (i =1, 2, ⋅⋅⋅ , 10), 用B 表示放回后仍为“MAXAM”的事件, 则21)|(=i A B P (i =1, 2, ⋅⋅⋅ , 10), 1)|()|(64==A B P A B P , 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P B P .21. 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解: A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1⋃A 2=S , A 1 A 2=∅. 由已知条件知21)()(21==A P A P ,%5)|(1=A B P ,%25.0)|(2=A B P . 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +== 2120100002521100521100521=⋅+⋅⋅=.22. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p ; 若第一次不及格则第二次及格的概率为2p . (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解: A i ={他第i 次及格}(i =1, 2).已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P =.(1)B ={至少有一次及格}, 则21}{A A B ==两次均不及格,所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---=. (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p 2.由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅=. 于是 1222)|(2221+=+=p p p p p A A P .23. 将两信息分别编码为A 和B 传递出去, 接收站收敛到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1, 若收站收到的信息是A , 问原发信息是A 的概率是多少?解: 设B 1, B 2分别表示发报台发出信号“A ”及“B ”, 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有32)(1=B P , 31)(2=B P , P (A 1|B 1)=0.98, P (A 2|B 1)=0.08, P (A 1|B 2)=0.01, P (A 2|B 2)=0.91,从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=.24. 有两箱同种类的零件, 第一箱装50只, 其中10只一等品; 第二箱装30只, 其中18只一等品, 今从两箱中任挑出一箱, 然后从该箱中取零件两次, 每次任取一只, 作不放回抽样. 试求(1)第一次取到的零件是一等品的概率; (2)第一次取到的零件是一等品的条件下, 第二次取到的也是一等品的概率. 解: (1)记A i ={在第i 次中取到一等品}(i =1, 2), B ={挑到第i 箱}. 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯=, 4856.04.019423.0)()()|(12112===A P A A P A A P .25. 某人下午5:00下班, 他所积累的资料表明: 到家时间 5:35~5:39 5:40~5:44 5:45~5:49 5:50~5:54 5:54之后的, 试求他是乘地铁回家的概率.解: 设A ={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意, AB =∅, A ⋃B =S .已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5, 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P A P A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=.26. (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解: 记A i 表示第i正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥, 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4) =p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立).26. (2)设有5独立工作的元件1, 2, 3, 4, 5, 它们的可靠性均为p , 将它们按图1-4的方式联接, 求系统的可靠性. 解: 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4, 5), B 表示系统正常, 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=.27. 如果一危险情况C 发生时, 一电路闭合并发出警报, 我们可以借用两个或多个开关并联以改善可靠性. 在C 发生时这些开关每一个都应闭合, 且至少一个开关闭合了, 警报就发出, 如果两个这样开关并联接, 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率). (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统, 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的.解: (1)设A i 表示第i 个开关闭合, A 表示电路闭合, 于是A =A 1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1, A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合, 则∏==≥-=--=⋃=ni i i n i A P A P A P 1419999.004.01)](1[1)()(, 即 0.04n ≤0.00001,所以 58.304.0lg 00001.0lg =≥n , 故至少需要4只开关联.28. 三个独立地去破译份密码, 已知各人能译出的概率分别为1/5, 1/3, 1/4, 问三个中至少有一个能将此密码译出的概率是多少?解: 设A , B , C 分别表示{第一、二、三人独立译出密码}, D 表示{密码被译出}, 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=.29. 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率;(2)求有一只蓝球一只白球的概率;(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解: 记A 1, A 2, A 3分别表示是从第一只盒子中取到一只蓝球, 一只绿球, 一只白球, B 1, B 2, B 3分别表示是从第二只盒子中取到一只蓝球, 一只绿球, 一只白球. 则A i 与B i 独立(i =1, 2, 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯=. (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30. A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5, 2/5, 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2, 1/4, 1/4, 设三人的行动相互独立, 求:(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间段打进3个电话, 求:(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)这3个电话都打给B , 而B 却都不在的概率. 解: 设A 1, B 1, C 1分别表示A , B , C 三个人外出的事件, A , B , C 分别表示打给三个人的电话的事件.(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯=. (2)用D 表示被呼叫人在办公室的事件, 则C C B B A AD 111++=,)()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=.(3)用E 表示3个电话打给同一个人的事件, E 1, E 2, E 3分别表示3个电话是打给A , B , C , 则E =E 1+E 2+E 3,)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=.(4)用F 表示3个电话打给不同的人的事件, 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯, 于是 1252412546)(=⨯=F P . (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立, 于是 P (3个电话都打给B , B 都不在的概率)641)41(3==.31. 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解: 用A 表示出现r 次国徽的事件, B 表示任取一只是正品的事件, 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=,)()|()()|(A P B A P B P A B P =r n m m2⋅+=.32. 设一枚深炸弹击沉一潜水艇的概率为1/3, 击伤的概率为1/2, 击不中的概率为1/6, 并设击伤两次也会导致潜水艇下沉, 求施放4枚深炸能击沉潜水艇的概率.解: 用A 表示施放4枚深炸击沉潜水艇的事件, 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P .33. 设根据以往记录的数据分析, 某船只运输某种物品损坏的情况共有三种: 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3), 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ), P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率). 解: 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B , 且三种情况互斥,由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3) =0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.8624,8731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P , 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P , 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P .34. 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1-α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解: 用A , B , C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA . 由于每个字母的输出是相互独立的, 于是有4)1(]2/)1[()|(2222αααα-=-=A H P , 8)1(]2/)1[()|(33αααα-=-=B H P , 8)1(]2/)1[()|(33αααα-=-=C H P . 又P (A )=p 1, P (B )=p 2, P (C )=p 3, 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα.。
概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。
表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。
浙江⼤学概率论与数理统计课后习题以及详解答案浙⼤第四版(⾼等教育出版社)第⼀章概率论的基本概念1.[⼀] 写出下列随机试验的样本空间(1)记录⼀个⼩班⼀次数学考试的平均分数(充以百分制记分)([⼀] 1)=n n nn o S 1001, ,n 表⼩班⼈数(3)⽣产产品直到得到10件正品,记录⽣产产品的总件数。
([⼀] 2)S={10,11,12,………,n ,………}(4)对某⼯⼚出⼚的产品进⾏检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出⼆个次品就停⽌检查,或检查4个产品就停⽌检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停⽌检查,或查满4次才停⽌检查。
([⼀] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[⼆] 设A ,B ,C 为三事件,⽤A ,B ,C 的运算关系表⽰下列事件。
(1)A 发⽣,B 与C 不发⽣。
表⽰为:CB A 或A - (AB+AC )或A - (B ∪C )(2)A,B都发⽣,⽽C不发⽣。
表⽰为:CAB或AB-ABC或AB-C(3)A,B,C中⾄少有⼀个发⽣表⽰为:A+B+C(4)A,B,C都发⽣,表⽰为:ABC(5)A,B,C都不发⽣,表⽰为:CA或S-B(A+B+C)或CA?B(6)A,B,C中不多于⼀个发⽣,即A,B,C中⾄少有两个同时不发⽣相当于CA,,中⾄少有⼀个发⽣。
故表⽰为:BBACA++。
BBCAC(7)A,B,C中不多于⼆个发⽣。
相当于:CB,中⾄少有⼀个发⽣。
故表⽰为:ABCA,+A或+BC (8)A,B,C中⾄少有⼆个发⽣。
相当于:AB,BC,AC中⾄少有⼀个发⽣。
故表⽰为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最⼤值,最⼤值是多少?(2)在什么条件下P (AB)取到最⼩值,最⼩值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1⽭盾).从⽽由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最⼤值,最⼤值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最⼩值,最⼩值为 P (AB )=0.6+0.7-1=0.3 。
1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。
所以,(1)试验的样本空间共有9个样本点。
(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。
即A 所包含的样本点为(0,a ),(1,a ),(2,a )。
(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。
即B 所包含的样本点为(0,a ),(0,b ),(0,c )。
2、解 (4)(1)AB BC AC 或ABC ABC ABC ABC ;(5)(2)ABBCAC(6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。
依题得,但,故A 、B 可能相容。
(2)错。
举反例 (3)错。
举反例(4)对。
证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。
4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P AB P B ==;5解:由题知,.因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。
第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
x1 2O P(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
1、写出下列随机试验的样本空间S:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。
(2)生产产品直到有10件正品为之,记录生产产品的总件数。
(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查结果。
(4)在单位圆内任取一点,记录它的坐标。
(1)解:设该班学生数为n,总成绩的可取值为0,1,2,3,…,100n,(2)解:S={10、11、12…}所以试验的样本空间为S={i/n| i=1、2、3…100n}(3)解:设1为正品0为次品S={00,100,1100,010,1111,1110,1011,1101,0111,0110,0101,1010}(4)解:取直角坐标系,则S={(x,y)|x2+y2<1}取极坐标系,则S={(ρ,θ)|ρ<1,0θ 2 }2.设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生(2)A与B都发生,而C不发生(3)A,B,C中至少有一个要发生(4)A,B,C都发生(5)A,B,C都不发生(6)A,B,C中不多于一个发生(7)A,B,C中不多于两个发生(8)A,B,C中至少有两个发生解:以下分别用D i(i=1,2,3,4,5,6,7,8)来表示(1),(2),(3),(4),(5),(6),(7),(8)(1)A发生,B与C不发生表示,A B,C同时发生,故D=AB C1(2)A与B都发生,而C不发生表示A,B,C同时发生,故D2= AB C(3)法一:A,B,C中至少有一个要发生由和事件定义可知,D3=A∪B∪C法二:A,B,C中至少有一个要发生是事件A,B,C都不发生的对立面,即D3=ABC法三:A,B,C中至少有一个要发生可以表示为三个事件中恰有一个发生,恰有两个发生或恰有三个发生,即D3=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC(4) A,B,C都发生表示A,B,C都发生,故D4=A∪B∪C=ABC(5) A,B,C都不发生表示ABC都不发生,故D5=ABC(6)法一:A,B,C中不多于一个发生可以表示为三个事件中恰有一个发生或一个都不发生,即D6=ABC∪ABC∪ABC∪ABC法二:A,B,C中不多于一个发生可以表示为至少有两个不发生,即D6=AB∪AC∪BC⋃⋃法三:A,B,C中不多于一个发生是至少有两个发生的对立面,即D6=AB AC BC(7)法一:A,B,C中不多于两个发生即为三个事件发生两个,发生一个或者一个都不发生,即D7=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC法二:A,B,C中不多于两个发生可以表示为至少有一个不发生,即D7=A∪B∪C法三:A,B,C中不多于两个发生可以表示为三个都发生的对立面,即D7=ABC(8)法一:A,B,C中至少有两个发生即为三个事件中发生两个或者三个都发生,即D8= ABC∪ABC∪ABC∪ABC法二:A,B,C中至少有两个发生,即D8=AB∪AC∪BC法三:A,B,C中至少有两个发生可以表示为三个事件只发生一个或一个都不发生的对立面,D8=AB U ACU BC3(1)设A,B,C三个事件,P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。
概率论与数理统计答案-第四版-第1章(浙大)LT1、写出下列随机试验的样本空间S:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。
(2)生产产品直到有10件正品为之,记录生产产品的总件数。
(3)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查结果。
(4)在单位圆内任取一点,记录它的坐标。
(1)解:设该班学生数为n,总成绩的可取值为0,1,2,3,…,100n,(2)解:S={10、11、12…}所以试验的样本空间为S={i/n| i=1、2、3…100n}(3)解:设1为正品0为次品S={00,100,1100,010,1111,1110,1011,1101,0111,0110,0101,1010}(4)解:取直角坐标系,则S={(x,y)|x2+y2<1}取极坐标系,则S={(ρ,θ)|ρ<1,0≤θ<2π}2.设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B与C不发生(2)A与B都发生,而C不发生(3)A,B,C中至少有一个要发生(4)A,B,C都发生(5)A,B,C都不发生(6)A,B,C中不多于一个发生(7)A,B,C中不多于两个发生(8)A,B,C中至少有两个发生(i=1,2,3,4,5,6,7,8)解:以下分别用Di来表示(1),(2),(3),(4),(5),(6),(7),(8) (1)A发生,B与C不发生表示,A B,C同时=AB C发生,故D1(2)A与B都发生,而C不发生表示A,B,C同时发生,故D2= AB C(3)法一:A,B,C中至少有一个要发生由和事件定义可知,D3=A∪B∪C法二:A,B,C中至少有一个要发生是事件A,B,C都不发生的对立面,即D3=ABC—P(BC)=3/4-1/8=5/8(2)P(A∪B)=P(A)+P(B)-P(AB)=5/6-1/10=11/15P(⎺A⎺B)̅̅̅̅̅̅̅)=P(A∪B=1-P(A∪B)=1-11/15=4/15P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)—P(AC)—P(BC)+P(ABC)=17/20P(⎺A⎺B⎺C)̅̅̅̅̅̅̅̅̅̅̅̅̅)=P(A∪B∪C=1-P(A∪B∪C)=1-17/20=3/20P(⎺A⎺B C)=P(C)-P(AC)-P(BC)+P(ABC)=7/60P(⎺A⎺B∪C)̅̅̅̅̅̅̅∪C)=P(A∪B=1-P(A)-P(B)+P(AC)+P(BC)+P(ABC)=7/20(3)A.P(A⎺B)=P(A)=1/2因为AB不相容所以AB一个发生另一个一定不发生B.P(A⎺B)=P(A)-P(AB)=3/84.设A,B是两个事件.(1)已知AB̅=A B验证A=B.(2)验证事件A和事件B恰有一个发生的概率为P(A)+P(B)-2P(AB).解:法一(1)∵AB̅=A B,∴(AB̅)∪(AB)=(A B)∪(AB),∴A(B̅∪B)=B(A̅∪A),∴AS=BS,∴A=B.(2)事件A与事件B恰有一个发生即事件A B̅ ∪ A̅BP(A B̅ ∪ A̅B)=P(A B̅)+P(A̅B)=P[A(S-B)]+P[(S-A)B]=P(A-AB)+P(B-AB)=P(A)-P(AB)+P(B)-P(AB)=P(A)+P(B)-2P(AB)法二(1)∵AB̅=A−B ,BA=B−A;又AB̅= BA,∴A−B=B−A∴A=B即证。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P , 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为4,在仅由数字0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为(2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
第一章概率论的基本概念内容提要考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法.一、古典概型与几何概型1.随机试验,样本空间与事件.2.古典概型:设样本空间为一个有限集,且每个样本点的出现具有等可能性,则3.几何概型:设为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则二事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有:(1)A与B互斥(互不相容)(2)A与B互逆(对立事件),(3)A与B相互独立P(AB)=P(A)P(B).P(B|A)=P(B)(P(A)>0).(0<P(A)<1).P(B|A)=P(B|)(0 < P(A)< 1 )注: 若(0<P(B)<1),则独立P(A|B)=P(A)(P(B)>0)(0<P(B)<1).P(A|B)=P(A|)(0<P(B)<1)P(|B)=P(|)(0<P(B)<1)(4)A, B, C两两独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C).(5)A, B, C相互独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C);P(ABC)=P(A)P(B)P(C).2. 重要公式(1)(2)(3)(4)若A1, A2,…,A n两两互斥, 则.(5)若A, …, A相互独立, 则..(6) 条件概率公式: (P (A )>0)三、乘法公式,全概率公式,Bayes 公式与二项概率公式1. 乘法公式:2. 全概率公式:3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i i ii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:,课后习题解答随机试验与随机事件1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n 表小班人数(2)生产产品直到得到10件正品,记录生产产品的总件数。