代入消元解二元一次方程组
- 格式:ppt
- 大小:1.46 MB
- 文档页数:11
二元一次方程组的解法在数学学科中,解方程是一个非常重要的内容。
而二元一次方程组是解方程的一种特殊形式,它由两个二元一次方程组成。
解决二元一次方程组的问题可以帮助我们更好地理解和应用代数知识。
下面,我将为大家详细介绍二元一次方程组的解法。
一、代入法代入法是解决二元一次方程组的最常用方法之一。
它的基本思想是将一个方程的其中一个未知数表示为另一个方程中的未知数,然后代入另一个方程进行求解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以先将方程1中的y表示为方程2中的未知数:y = 3x - 1然后将y的值代入方程1,得到:2x + (3x - 1) = 5化简后,我们可以得到一个一元一次方程:5x - 1 = 5解这个方程,我们可以得到x的值为2。
将x的值代入方程1,我们可以求得y 的值为1。
因此,这个二元一次方程组的解为x=2,y=1。
二、消元法消元法是解决二元一次方程组的另一种常用方法。
它的基本思想是通过对方程组进行加减运算,消去其中一个未知数,然后求解另一个未知数。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将方程1乘以3,方程2乘以2,得到:方程1:6x + 3y = 15方程2:6x - 2y = 2然后将方程2的两倍加到方程1上,得到:9y = 17解这个一元一次方程,我们可以得到y的值为17/9。
将y的值代入方程1,我们可以求得x的值为5/3。
因此,这个二元一次方程组的解为x=5/3,y=17/9。
三、图像法图像法是解决二元一次方程组的另一种可视化方法。
它的基本思想是将方程组转化为直线的图像,通过观察直线的交点来求解方程组的解。
例如,我们有以下二元一次方程组:方程1:2x + y = 5方程2:3x - y = 1我们可以将这两个方程转化为直线的形式:方程1对应的直线为:y = -2x + 5方程2对应的直线为:y = 3x - 1我们可以在坐标系中画出这两条直线,并观察它们的交点。
二元一次方程组的解法在代数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解决这种方程组的方法有很多种,下面将介绍其中三种常见的解法。
方法一:代入法代入法是一种比较简单直观的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先将其中一个方程(不妨设为方程1)的其中一个未知数表示为另一个未知数的函数,然后代入另一个方程(方程2)中消去这个未知数,从而得到一个只包含一个未知数的一次方程。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程2中y表示为x的函数(y = 5x - 1),将其代入方程1中,得到:2x + 3(5x - 1) = 7然后将这个一次方程化简,求解得到x的值。
将x的值代入方程2中,即可得到y的值。
最终得到方程组的解。
方法二:消元法消元法是解二元一次方程组的常用方法之一。
它通过逐步消去一个未知数,将方程组化为只含有一个未知数的一次方程,然后求解得到解。
例如,假设方程组为:{ 2x + 3y = 7 Equation1{ 5x - y = 1 Equation2我们可以通过将方程1乘以5,将方程2乘以2,然后将两个方程相减,消去y的系数,得到一个只含有x的一次方程:10x + 15y = 3510x - 2y = 2--------------17y = 33通过化简这个一次方程,求解得到y的值。
将y的值代入方程1或方程2中,即可得到x的值。
最终得到方程组的解。
方法三:Cramer法则Cramer法则是一种基于行列式的解二元一次方程组的方法。
假设有如下二元一次方程组:{ Equation1{ Equation2首先计算系数矩阵A的行列式值D,然后在D中用方程组右边的常数项替换掉A的某一列,得到矩阵Dx。
同理,用方程组右边的常数项替换掉A的另一列,得到矩阵Dy。
消元——解二元一次方程组(第1课时)——代入消元法一、教学目标:1、能较熟练地用代入消元法解二元一次方程组;2、理解解二元一次方程组时的“消元”思想,和“化未知为已知、化复杂为简单”的化归思想;3、引导学生自由讨论,养成检查的习惯,培养联想旧知识解决新知识的能力。
二、教学重、难点:1、用代入消元法解二元一次方程组的基本步骤;2、解二元一次方程组过程中“二元”转化为“一元”的消元思想。
三、教学方法:讨论法、归纳法四、教学工具:教案、多媒体五、教学过程:1、知识回顾:什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?2、新课讲解:问题一:有一个矩形草坪,周长是36米,已知长是宽的两倍,求长、宽各多少米?如果用之前一元一次方程的知识,我们可以设宽为x米,而长为2x米,由题目已知可得一元一次方程:2(2x+x)=36按解一元一次方程的步骤,解得x=6,所以草坪的长为12米,宽为6米。
但是,如果用二元一次方程组的知识,我们可以假设长为y米,宽为x米,由题目两个等量关系,我们可以得到一个二元一次方程组:y=2x (1)2(x+y)=36 (2)讨论一:应该怎么解这个二元一次方程组?它跟上面的一元一次方程有什么关系?对比上面的一元一次方程和二元一次方程组,我们发现,如果把二元一次方程组里的方程(1)代入到方程(2)中,我们就得到了一模一样的一元一次方程: 2(2x+x )=36按照一元一次方程的解法,我们解得x=6,再把x=6代入到方程(1)中,得到y=12。
经过检验, 就是原二元一次方程组的解。
这样,我们运用了代入、 消元的方法,就把一个二元一次方程组解出来了。
讨论二:在解上面的二元一次方程组的过程中,非常关键的一步是把方程(1)代入到方程(2)中,把二元一次方程组化归为一元一次方程,从而把复杂的问题化为简单化。
那么这种代入、消元的方法能否适合其它二元一次方程组呢?问题二:一个班级总人数有52人,需要佩戴眼镜的有20人,其中男生x 人,女生y 人,又有3x+2y=52,求x ,y 各为多少?讲解:根据题目的两个等量关系,我们可以得到一个二元一次方程组:首先,我们可以把方程(1)进行移项变换,得到:y=20-x (3)接着,把方程(3)代入到方程(2),得到:3x+2(20-x )=52这样,就把二元一次方程组化归为一元一次方程,解这个一元一次方程,得到x=12。
消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。
二元一次方程组的解法二元一次方程组是指由两个未知数和两个方程组成的方程组。
解决这样的方程组可以使用多种方法,包括消元法、代入法和图解法等。
本文将介绍这些解法的步骤和应用示例。
1. 消元法消元法是一种常用的解二元一次方程组的方法。
它通过将其中一个方程的未知数系数倍乘以另一个方程的系数,使得两个方程中的一个未知数的系数相等或相差一个倍数,进而将自变量消去,从而求得另一个未知数的值。
具体步骤如下:步骤1:观察两个方程,确定哪个未知数系数的倍数可以使得两个未知数的系数相等或相差一个倍数。
步骤2:将两个方程相加或相减,消去其中一个未知数。
步骤3:解得一个未知数的值。
步骤4:将求得的未知数代入任意一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:2x + 3y = 7方程2:3x - 4y = 8解答过程:步骤1:由观察可知,方程1的横坐标系数的倍数可以使得两个方程中y的系数相等,因此我们将方程1的系数倍乘以方程2的系数,得到6x + 9y = 21和3x - 4y = 8。
步骤2:将两个方程相减,得到(6x + 9y) - (3x - 4y) = (21 - 8)。
化简得到3x + 13y = 13。
步骤3:解得x = 1。
步骤4:将x = 1代入方程1中,得到2(1) + 3y = 7。
化简得到3y = 5,解得y = 5/3。
因此,方程组的解为x = 1,y = 5/3。
2. 代入法代入法是另一种解二元一次方程组的常用方法。
它通过将其中一个方程的解代入到另一个方程中,从而求得另一个未知数的值。
具体步骤如下:步骤1:解其中一个方程,得到一个未知数的值。
步骤2:将求得的未知数的值代入到另一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:3x - 4y = 2方程2:2x + y = 7解答过程:步骤1:解方程1,得到x = (2 + 4y)/3。
步骤2:将x = (2 + 4y)/3代入方程2,得到2(2 + 4y)/3 + y = 7。
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想 所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为则21x y =⎧⎨=-⎩,,这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
求解二元一次方程组代入消元法《求解二元一次方程组代入消元法》嗨,同学们!今天咱们来一起探索一下二元一次方程组的代入消元法,这可超有趣呢!我先给大家讲个小故事。
有一天,小明和小红去买文具。
小明买了2支铅笔和3本本子花了10元钱,小红买了3支铅笔和1本本子花了8元钱。
咱们设一支铅笔的价格是x元,一本本子的价格是y元。
那就能得到两个方程啦,2x + 3y = 10和3x + y = 8。
这就像两个小谜团,我们要把x和y找出来呢。
那代入消元法是啥呢?就像是我们在玩一个找宝藏的游戏。
我们要先从一个方程里,把一个未知数用含有另一个未知数的式子表示出来。
就拿3x + y = 8这个方程来说吧。
我们可以把y表示出来,y = 8 - 3x。
这一步就像是我们找到了一把小钥匙,能打开通往宝藏的一道门呢。
然后呢,我们把这个表示y的式子代入到另一个方程2x + 3y = 10里面。
这就变成了2x + 3(8 - 3x)=10。
这一步可关键啦,就好像我们用找到的小钥匙打开了另一扇有宝藏的门。
这时候呢,我们要好好计算这个式子。
2x + 3×8 - 3×3x = 10,2x + 24 - 9x = 10。
这就像在整理一堆小积木,得把它们摆放整齐才能找到我们要的东西。
那就是- 7x = 10 - 24,- 7x = - 14,x = 2。
哇,我们找到了x的值,就像挖到了宝藏的一部分,是不是很兴奋呢?那找到x = 2之后呢?我们再把x = 2代入到之前表示y的式子y = 8 - 3x里面。
y = 8 - 3×2,y = 8 - 6,y = 2。
哈哈,x和y都被我们找到了。
这就像我们把宝藏完全挖出来了,多有成就感呀。
我再给大家举个例子吧。
比如说方程组x + 2y = 5和2x - y = 1。
我们从2x - y = 1这个方程里把y表示出来,y = 2x - 1。
然后把y = 2x - 1代入到x + 2y = 5里面,就得到x + 2(2x - 1)=5。