液压传动简介
- 格式:pdf
- 大小:226.88 KB
- 文档页数:11
第七章液压传动本章重点掌握液压传动的原理及系统的组成与功用;掌握柱塞泵、齿轮泵、叶片泵的组成、工作原理、应用特点及泵的图形符号;掌握活塞式液压缸的结构、工作原理及有关计算和应用特点以及密封、缓冲和排气;掌握单向阀、换向阀、溢流阀的工作原理,会识别其图形符号;会识别减压阀、顺序阀、节流阀、调速阀的图形符号;掌握液压基本回路的工作原理。
本章内容提要(一) 1、液压传动特点与机械传动,电气传动等传动相比,液压传动具有结构紧凑、传动力大、定位精确、运动平稳、易于实现自动控制,机件润滑良好,寿命长等优点,因此,液压传动广泛应用于机械工业、冶金工业、石油工业、工程建筑,船舶、航空、军事、宇航等工业部门。
其不足之处在于传动效率较低,不宜作远距离传递,不宜于高温或低温条件下工作,以及液压元件精度要求高,成本高等缺点。
(二)液压传动的工作原理及液压系统的组成1、液压系统的组成任何一个简单而完整的液压系统,均由以下四个部分组成:(1)动力元件(油泵):其作用是向液压系统提供压力油,是系统的动力源。
(2)执行元件(油缸或马达):其作用是在压力油的作用下,完成对外作功。
(3)控制元件:如溢流阀、节流阀、换向阀等,分别控制系统的压力、流量和流向,以满足执行元件对力,速度和运动方向的要求。
(4)辅助元件:如油箱、油管、管接头、滤油器、蓄能器等。
2、液压传动的基本原理:液压传动是以油液为工作介质,通过密封容积的变化来传递运动,通过油液内部的压力来传递动力的一种传动方式3、液压传动的应用特点1) 易于获得很大的力和力矩2) 调速范围大,易实现无级调速3) 质量轻,体积小,动作灵敏4) 传动平稳,易于频繁换向5) 易于实现过载保护6) 便于采用电液联合控制以实现自动化7) 液压元件能够自动润滑,元件的使用寿命长8) 液压元件易于实现系列化、标准化、通用化9) 传动效率较低10) 液压系统产生故障时,不易找到原因,维修困难11) 为减少泄漏,液压元件的制造精度要求较高5、静压传递原理(帕斯卡原理):静止油液中任意一点所受到的各个方向的压力都相等,这个压力称为静压力,油液静压力的作用方向总是垂直指向承压表面。
第一节液压传动的基本原理一基本概念液压传动是一种以液体(通常是油液)作为工作介质,以静压力和流量作为特性参量进行能量的转换、传递、分配的技术手段。
它的特点是:“以液体为工作介质,传递能量和进行控制。
”二液压传动系统的组成液压传动装置主要由以下四部分组成:a、能源装置:把机械能转换成油液液压能的装置。
最常见的形式就是液压泵,它给液压系统提供压力油。
b、执行装置:把油液的液压能转换成机械能的装置。
它可以是作直线运动的液压缸,也可以是作回转运动的液压马达。
c、控制调节装置:对系统油液压力、流量或流动方向进行控制和调节的装置。
例如上述中的溢流阀、节流阀、换向阀、开停阀等。
这些元件的不同组成形成了不同功能的液压系统。
d、辅助装置:上述三部分以外的其它装置,例如上述的油箱、滤油器、油管等。
它们对保证系统正常工作也有重要作用。
三液压传动的工作原理液压泵由电机带动旋转后,从油箱中吸油。
油液经滤油器进入液压泵,当它从泵中输出进入压力管后,通过开停阀、节流阀、换向阀进入液压缸左腔,推动活塞和工作台向右移动。
这时,液压缸右腔的油经换向阀和回油管排回油箱。
如果换向阀换向,则压力管的油将经过开停阀、节流阀和换向阀进入液压缸右腔,推动活塞和工作台向左移动,并使液压缸左腔的油经换向阀和回油管排回油箱。
工作台移动速度是由节流阀来调节的。
当节流阀开大时,进入油缸的油液增多,工作台的移动速度增大;当节流阀关小时,工作台的移动速度减小。
为了克服移动工作台时所受到的各种阻力,液压缸必须产生一个足够大的推力,这个推力是由液压缸中的油液压力产生的。
要克服的阻力越大,缸中的油液压力越高;反之压力就越低。
输入液压缸的油液是通过节流阀调节的,液压泵输出的多余的油液经溢流阀和回油管排回油箱,这只有在压力支管中的油液压力对溢流阀钢球的作用力等于或略大于溢流阀中弹簧的预紧力时,油液才能顶开溢流阀中的钢球流回油箱。
所以,在系统中液压泵出口处的油液压力是由溢流阀决定的,它和缸中和油液压力不一样大。
简述液压传动的原理及特点
液压传动是一种利用液体在密闭管路内传递力和能量的传动方式。
液压传动的原理是根据帕斯卡定律,即在一个封闭的容器内任一点受到的外力传递给液体并均匀传递到容器的各个处所,从而使液体对容器壁产生均匀的压力。
液压传动通过液压泵将机械能转化为液压能,通过液压缸将液压能转化为机械能,实现机械设备的运行。
液压传动具有如下特点:
1.能量传递稳定:液压传动采用的是无级传动,通过调节阀门或改变活塞面积,可以实现无级调速,能够满足不同负载和速度的要求。
2.承载能力大:液压传动由于密闭的容器和液体的不可压缩性,能够承受非常大的压力,可用于承载大负荷的机械设备。
3.动力输出平稳:液压传动的液压缸在工作过程中输出的力矩平稳,不会产生冲击和振动,可以保证机械设备的运行平稳。
4.调速范围广:液压传动通过调节控制阀门的开度,可以实现连续的调速,调速范围广,能够适应不同工况的需要。
5.控制灵活:液压传动的控制灵活性强,可以通过调节阀门、调整液体流量和压
力来实现对液压传动系统的精确控制。
6.传递效率高:液压传动的传递效率高,尤其是在大功率和高速运动的场合,能够实现高效率的能量转换。
7.结构紧凑:由于液压传动系统采用液体传递力和能量,相对于机械传动和电动传动,液压传动结构更紧凑,体积更小。
8.维护方便:液压传动的维护相对较简单,只需注意液压油的清洁和更换,液压元件的密封性能和机件的磨损状态即可。
液压传动被广泛应用于各个工程领域,如船舶、航空、铁路、机床、冶金等。
液压传动具有传动力矩大、传动效率高、传动速度范围广、传动控制方便等优点,是一种高效、可靠的传动方式。
液压传动液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整液压传动装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。
一、系统的组成液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。
1.动力元件(油泵)它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。
2.执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。
其中,油缸做直线运动,马达做旋转运动。
3.控制元件包括压力阀、流量阀和方向阀等。
它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4.辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。
液压传动工作原理
液压传动是一种利用液体对动力进行传递的传动方式。
它是通过液体的流动来实现工作的,主要由泵、执行元件(液压缸或液压马达)和控制元件(阀门、密封件等)组成。
液压传动的工作原理如下:
1. 泵提供动力:液压传动的动力源是泵。
泵将液体从油箱中抽取出来,通过压力来驱动液体流动。
2. 液压流体传递:泵将液体压力升高后,通过管道传输到执行元件。
在传输过程中,通过阀门来控制液体的流速和流量。
3. 执行元件转化动力:执行元件接收到来自泵的液压力后,将液体的动能转化为机械能。
液压传动系统中常用的执行元件有液压缸和液压马达。
液压缸通过液压力来推动活塞,从而实现线性运动;液压马达则通过液压力驱动转子旋转。
4. 控制元件控制流量和压力:为了确保液压传动系统的正常工作,需要通过控制元件来控制液体的流量和压力。
控制元件包括各种阀门,它们可以调节液体的流量和压力,以满足不同的工作要求。
5. 油箱和油管回流:在液压传动系统中,液压流体在完成工作后需要回流到油箱中,以便再次被泵吸入。
油箱上设有油面标尺,可以随时检查油液的油位,保持系统正常工作。
综上所述,液压传动通过泵提供动力,通过管道将液压力传递到执行元件,通过控制元件调节液体的流量和压力,实现液体能量到机械能的转化。
液压传动具有传递功率大、传动效率高、工作平稳等优点,在许多领域得到广泛应用。
液压传动液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整液压传动装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。
其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。
在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。
一、系统的组成液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。
1.动力元件(油泵)它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。
2.执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。
其中,油缸做直线运动,马达做旋转运动。
3.控制元件包括压力阀、流量阀和方向阀等。
它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4.辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。
液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。
液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。
但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。
二者的传动原理完全不同。
二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。
其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。
由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。
图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。
手柄1带动柱塞2做往复运动。
当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。
反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。
当手柄不动时,排液阀关闭,重物稳定在上升位置。
工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。
三、液压传动系统的组成:液压传动系统简称液压系统。
它是由若干液压元件组合起来并能完成一定动作的整体。
液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。
不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。
(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。
图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。
第1单元知识要点1.液压传动的概念液压传动是用液体作为工作介质,依靠运动液体的压力能来传递动力。
液压传动和气压传动称为流体传动。
液压传动是依靠液体在密封容积变化中的压力能来实现运动和动力传递的。
液压传动装置本身是一种能量转换装置,它先将机械能转换为便于输送的液压能,然后又将液压能转换为机械能对外界负载做有用功。
2.液压传动的两个工作特性负载决定压力;流量决定速度。
3.液压系统的组成液压系统一般由液压动力元件、执行元件、控制元件、辅助元件以及工作介质组成。
(1)动力元件:动力元件最常见的形式是液压泵。
它的作用是将机械能转换成液体压力能,并且向液压系统提供压力油,是液压系统的能源装置。
(2)执行元件:它的作用是将液体压力能转换成机械能,以驱动工作机构的元件,包括液压缸和液压马达。
(3)控制元件:它的作用是对系统中油液压力、流量、方向进行控制和调节,包括压力、方向、流量控制阀。
(4)辅助元件:为保证液压系统正常工作的上述三个组成部分以外的其他元件,如管道、管接头、油箱、滤油器、压力表等。
(5)工作介质:工作介质是传递能量和运动的流体,即液压油等。
4.液压传动的优点①安装方便灵活。
由于液压系统通过管路连接,液压传动的各种元件不受位置的限制,可根据具体的实际需要任意布置。
②重量轻、体积小,功率大。
产生相同功率,液压系统所需的设备重量轻、体积小。
例如,功率为300kW的液压马达重量约为2kN,而功率为300kW的电动机重量约为16kN。
因此利用较轻的液压设备就能获得大的驱动力和转矩。
③工作平稳,由于液压传动重量轻、体积小,从而惯性小,可以迅速起动和制动,容易实现频繁起动和调速。
简述液压传动的主要特点
液压传动是一种利用液压活塞等机构,利用液体的重力压力作功运动的一种机械传动
系统。
它具有动力输出力大、结构紧凑、动态响应快、噪声低、润滑好,可靠性高等特点。
(1)动力大。
由于液力的紧凑结构,同样的体积和重量可以传递更大的动力,液力
可以把动力转换成比电力更大的动能,液压传动比电力传动节约50~70%的功率。
(2)控制灵活。
液压传动可以通过改变液压活塞的运动速度来调节传动速度和力度,同时用节流阀和截流阀可以调节液压的大小,从而控制机动机构的速度和位置。
这使得液
力传动控制灵活性比电力传动更加强大。
(3)传动响应快速。
液力传动活塞的反应速度远远快于电力传动机构,可以在极短
的时间内将液体传递给需要操作的部位。
因此,复杂的加减速机构可以实现精确的加减速
控制。
(4)密封完善。
液压传动的运动部件很少而且结构紧凑。
特别是双液压系统的润滑
系统,它可以实现活塞杆的密封。
另外,液压活塞的活塞环也可以提供很好的密封,并且
可以防止液体泄漏。
(5)安全可靠。
液压传动是一种关键部件对外部隔离,简单和可靠的传动系统,它
可以保证设备的正常运行而不受外界的干扰。
由于易控性、可靠性强,故在重要的系统控
制中得到了广泛的应用。
液压传动——液压传动概述-CAL-FENGHAI.-(YICAI)-Company One1第1章液压传动概述1.1 液压传动发展概况1.1.1 液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。
原动机包括电动机、内燃机等。
工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。
由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。
传动机构通常分为机械传动、电气传动和流体传动机构。
流体传动是以流体为工作介质进行能量转换、传递和控制的传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。
液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。
1.1.2 液压传动的发展概况液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二、三百年的历史。
但直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
因此,液压传动真正的发展也只是近三四十年的事。
当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。
同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。
液压传动的基本原理液压传动是一种通过液体压力驱动机械运动的传动方式。
液压传动的基本原理是靠液体的压力和流量来传递力和功,从而驱动机械运动。
液压传动有以下几个方面的基本原理:1. 原理概述液压传动的主要原理是利用高压油液压力来驱动液压缸或液压电机,使能量转化成机械功。
液压传动是靠工作液体的压力和流量来传递力和功的一种传动方式。
液压传动传输的媒介是液体(一般是液压油),液体的特点是易于传递,因此使用液体进行传动比较灵活方便。
液压传动被广泛应用于工程机械、船舶、航空航天、冶金、矿山、公路、铁路、建筑等各个领域。
2. 压力传递原理液压传动的主要原理是利用高压油液压力来驱动液压缸或液压电机,从而转化能量为机械功。
当液压泵向油路内输送液体时,产生的压力可以传播到所有的油路中。
液体的压力受到容器和管道等元件的限制而产生压力损失,但压力可以重复使用,使液压功能性稳定。
3. 流量传递原理在液压传动中,液体的流量可以控制流体的速度和方向。
流量传递实现的方法有两种:阀门控制和泵控制。
在液压传动的过程中,通过调节阀门和泵的流量,可以控制液体的速度、压力和方向。
而且,液压传动的流量是可逆的,液体可以顺着管道流动,也可以逆着管道流动,这样就可以实现液压传动的前后进退、左右转动等动作。
4. 工作液体的选择液压传动中使用的工作液体一般是液压油,液压油的特点是易于流动、高压下不泄漏、不易沉淀、能耐高温、抗磨损、抗腐蚀等。
液压油的粘度、密度、压缩性等参数要符合液压系统要求,使液压系统稳定可靠。
液压油的选择要考虑到系统的工作压力、温度、流量和系统所需的工作性能。
5. 液压元件的选择液压传动元件的选择要根据系统的压力、流量和功率等参数进行选型。
通常,液压元件包括液压泵、油缸、电动液压阀、油箱、滤器、油管等,每种元件的功能和工作原理各不相同,但是它们都是为了实现系统的控制、调节和保护。
因此,在液压传动系统设计时,应根据实际工作要求选择合适的液压元件,保证系统工作稳定、可靠。
液压传动系统的概述液压传动系统是一种重要的机械传动方式,是通过液体将机械能转化为压力能,从而通过控制液压元件的开合以及回路的开关来进行机械传动的方式。
液压传动系统具有完整的功能,可以完成力、速、方向、动态调节和自动控制等多种功能。
因此,在机械传动中应用广泛,曾经引起了巨大的变革和进展。
液压传动系统由主控部分、执行部分、动力部分和辅助部分等组成。
主控部分是液压传动的控制中心,其中包括液压泵或者压力油源、油箱、压力表、压力开关、节流阀等部件。
执行部分是液压系统的执行器,其作用是将压力传递到液压缸、液压马达或其他液压设备上,通过压力的作用来完成相应的工作。
动力部分是液压系统的主要部分,由液压泵、执行机构和空气压力等作为驱动力,从而形成一种液压传动方式。
辅助部分包括各种类型的附件,如压力表、滤清器、检验口、防爆阀、冷却器等,它们的主要功能是保证液压传动的安全和高效性。
液压传动系统的工作原理主要是通过液体的压力和流量来进行传动的。
在液压传动系统中,压力是液体传递的关键,通常以油的压力来表达。
液压传动系统通过加压泵将油液压进压力管路中形成压力,流量的变化则通过节流阀来控制。
节流阀能够控制液压油液的流速,从而控制液压元件的作动速度。
当液压油进入液压元件中时,就可以控制液压元件的开合或者是其他动作,从而完成相应的机械传动工作。
液压传动系统的优点有很多,其中最显著的是具有大扭矩输出,通用性广、传动效率高、灵活性大、动作平稳等优点。
液压传动系统在应用时可以更加适应固定或移动式设备,通过变换各种液压传动比例来进行控制,以及通过管路的连接方式实现机器的移动和设计。
此外,液压传动系统还可以联合搭配使用,例如传动系统与电控系统相结合,可以实现更高级别的自动化、智能化控制,使得机械系统的智能化性能实现效果更加显著。
总的来说,液压传动系统是一种高效、安全的机械传动方案,可以应用于各种场合的机械传动系统中。
液压传动系统可以灵活地进行配置,从而实现各种应用场合的需要,并具有非常突出的优点和性能优势。
液压传动基础知识1.液压传动的工作原理液压传动是以油液作为工作介质,依靠密封容积的变化来传递运动,依靠油液内部的压力来传递动力。
2.液压系统的主要组成(1)驱动元件指液压泵,它可以将机械能转换为液压能。
(2)执行元件指液压缸或液压马达,它是将液压能转换为机械能并分别输出直线运动和旋转运动。
(3)辅助元件辅助元件有管路与管接头、油箱、过滤器和密封件等,分别起输送、贮存液体,对液体进行过滤、密封等作用。
(4)控制和调节元件指各种阀,如压力控制阀、流量控制阀、方向控制阀等,用以控制液压传动系统所需的力、速度、方向等。
(5)工作介质如液压油等。
3.液压传动的特点及应用(1)优点1)易获得很大的力或力矩,并易于控制。
2)在输出同等功率下,采用液压传动具有体积小、重量轻、惯性小、动作灵敏、便于实现频繁换向等优点。
3)便于布局,操纵力较小。
(2)缺点1)由于液压传动本身的特性,易产生局部渗漏而造成能量损失较大,致使系统效率降低。
2)液压传动故障点不易查找。
(3)应用液压传动被广泛采用于冶金设备、矿山机械、钻探机械、起重运输机械、建筑机械、航空等领域中。
4.液压油的物理性质(1)密度单位体积的油液所具有的质量称为密度。
(2)重度单位体积的油液所具有的重量称为重度。
(3)粘度流体、半流体或半固体状物质抵抗流动的体积特性,它表示上述物质在受外力作用而流动时,分子间所呈现的内摩擦或流动内阻力。
(4)压缩性一般情况下油液的可压缩性可忽略不计。
5.液压油的选用选用液压油时,首先要考虑液压系统的工作条件,同时参照液压元件的技术性能选择液压油。
选择液压油时主要是确定合适的粘度,并考虑以下几点:1)液压系统的工作条件,如工作压力。
2)液压系统的环境条件,如系统油温与环境温度。
3)系统中工作机构的速度,如油液流速对传动效率及液压元件功能的影响。
6.静止液体的性质式中 Q 一一进入液压缸的流量Ci?/s);(1)液体的静压力液体在静止状态下单位面积上所受到的作用力,即p=F∕A(1-6)式中p ——液体的静压力(N∕ι112);F ——作用力(N);A ——有效作用面积(in?)。
哈尔滨铁道职业技术学院毕业论文毕业题目:液压传动论文学生:傅立金指导教师:卜昭海专业:工程机械班级:08机械一班年月目录摘要 (3)一.绪论 (3)二.液压传动技术的应用简单介绍(行走驱动) (5)三.液压传动的特点和基本原理 (6)四.液压传动的常见故障及排除方法 (8)五.液压传动的广阔前景 (10)六.总结 (11)液压传动论文摘要液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。
如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。
一.绪论----社会需求永远是推动技术发展的动力,降低能耗,提高效率,适应环保需求,机电一体化,高可靠性等是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。
----由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。
尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。
综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面:1.减少能耗,充分利用能量----液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。
如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。
为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。
主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。
②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。
③采用静压技术,新型密封材料,减少磨擦损失。
④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。
⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。
⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。
2.主动维护----液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。
----要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。
要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。
----另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。
3.机电一体化----电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。
实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:(1)电液伺服比例技术的应用将不断扩大。
液压系统将由过去的电气液压on-oE 系统和开环比例控制系统转向闭环比例伺服系统,为适应上述发展,压力、流量、位置、温度、速度、加速度等传感器应实现标准化。
计算机接口也应实现统一和兼容。
(2)发展和计算机直接接口的功耗为5mA以下电磁阀,以及用于脉宽调制系统的高频电磁阀(小于3mS)等。
(3)液压系统的流量、压力、温度、油的污染等数值将实现自动测量和诊断,由于计算机的价格降低,监控系统,包括集中监控和自动调节系统将得到发展。
(4)计算机仿真标准化,特别对高精度、“高级”系统更有此要求。
(5)由电子直接控制元件将得到广泛采用,如电子直接控制液压泵,采用通用化控制机构也是今后需要探讨的问题,液压产品机电一体化现状及发展。
液压行业:----液压元件将向高性能、高质量、高可靠性、系统成套方向发展;向低能耗、低噪声、振动、无泄漏以及污染控制、应用水基介质等适应环保要求方向发展;开发高集成化高功率密度、智能化、机电一体化以及轻小型微型液压元件;积极采用新工艺、新材料和电子、传感等高新技术。
----液力偶合器向高速大功率和集成化的液力传动装置发展,开发水介质调速型液力偶合器和向汽车应用领域发展,开发液力减速器,提高产品可靠性和平均无故障工作时间;液力变矩器要开发大功率的产品,提高零部件的制造工艺技术,提高可靠性,推广计算机辅助技术,开发液力变矩器与动力换档变速箱配套使用技术;液粘调速离合器应提高产品质量,形成批量,向大功率和高转速方向发展。
气动行业:----产品向体积小、重量轻、功耗低、组合集成化方向发展,执行元件向种类多、结构紧凑、定位精度高方向发展;气动元件与电子技术相结合,向智能化方向发展;元件性能向高速、高频、高响应、高寿命、耐高温、耐高压方向发展,普遍采用无油润滑,应用新工艺、新技术、新材料。
(1)采用的液压元件高压化,连续工作压力达到40Mpa,瞬间最高压力达到48Mpa;(2)调节和控制方式多样化;(3)进一步改善调节性能,提高动力传动系统的效率;(4)发展与机械、液力、电力传动组合的复合式调节传动装置;(5)发展具有节能、储能功能的高效系统;(6)进一步降低噪声;(7)应用液压螺纹插装阀技术,紧凑结构、减少漏油。
二.液压传动技术的应用简单介绍(行走驱动)行走驱动系统是工程机械的重要组成部分。
与工作系统相比,行走驱动系统不仅需要传输更大的功率,要求器件具有更高的效率和更长的寿命,还希望在变速调速、差速、改变输出轴旋转方向及反向传输动力等方面具有良好的能力。
于是,采用何种传动方式,如何更好地满足各种工程机械行走驱动的需要,一直是工程机械行业所要面对的课题。
尤其是近年来,随着我国交通、能源等基础设施建设进程的快速发展,建筑施工和资源开发规模不断扩大,工程机械在市场需求大大增强的同时,更面临着作业环境更为苛刻、工况条件更为复杂等所带来的挑战,也进一步推动着对其行走驱动系统的深入研究。
这里试图从技术构成及性能特征等角度对液压传动技术在工程机械行走驱动系统的发展及其规律进行探讨。
1、基于单一技术的传动方式工程机械行走系统最初主要采用机械传动和液力机械传动(全液压挖掘机除外)方式。
现在,液压和电力传动的传动方式也出现在工程机械行走驱动装置中,充分表明了科学技术发展对这一领域的巨大推动作用。
1.1机械传动纯机械传动的发动机平均负荷系数低,因此一般只能进行有级变速,并且布局方式受到限制。
但由于其具有在稳态传动效率高和制造成本低方面的优势,在调速范围比较小的通用客货汽车和对经济性要求苛刻、作业速度恒定的农用拖拉机领域迄今仍然占据着霸主地位。
1.2液力传动液力传动用变矩器取代了机械传动中的离合器,具有分段无级调速能力。
它的突出优点是具有接近于双曲线的输出扭矩-转速特性,配合后置的动力换挡式机械变速器能够自动匹配负荷并防止动力传动装置过载。
变矩器的功率密度很大而负荷应力却较低,大批生产成本也不高等特点使它得以广泛应用于大中型铲土运土机械、起重运输机械领域和汽车、坦克等高速车辆中。
但其特性匹配及布局方式受限制,变矩范围较小,动力制动能力差,不适合用于要求速度稳定的场合。
1.3液压传动与机械传动相比。
液压传动更容易实现其运动参数(流量)和动力参数(压力)的控制,而液压传动较之液力传动具有良好的低速负荷特性。
由于具有传递效率高,可进行恒功率输出控制,功率利用充分,系统结构简单,输出转速无级调速,可正、反向运转,速度刚性大,动作实现容易等突出优点,液压传动在工程机械中得到了广泛的应用。
几乎所有工程机械装备都能见到液压技术的踪迹,其中不少已成为主要的传动和控制方式。
极限负荷调节闭式回路,发动机转速控制的恒压,恒功率组合调节的变量系统开发,给液压传动应用于工程机械行走系提供了广阔的发展前景。
与纯机械和液力传动相比,液压传动的主要优点是其调节的便捷性和布局的灵活性,可根据工程机械的形态和工况的需要,把发动机、驱动轮、工作机构等各部件分别布置在合理的部位,发动机在任一调度转速下工作,传动系统都能发挥出较大的牵引力,而且传动系统在很宽的输出转速范围内仍能保持较高的效率,并能方便地获得各种优化的动力传动特性,以适应各种作业的负荷状态。
在车速较高的行走机械中所采用的带闭式油路的行走液压驱动装置能无级调速,使车辆柔和起步、迅速变速和无冲击地变换行驶方向。
对在作业中需要频繁起动和变速、经常穿梭行驶的车辆来说这一性能十分宝贵。
但与开式回路相比,闭式回路的设计、安装调试以及维护都有较高的难度和技术要求。
液压借助电子技术与液压技术的结合,可以很方便地实现对液压系统的各种调节和控制。
而计算机控制的引入和各类传感元件的应用,更极大地扩展了液压元件的工作范围。
通过传感器监测工程车辆各种状态参数,经过计算机运算输出控制目标指令,使车辆在整个工作范围内实现自动化控制,机器的燃料经济性、动力性、作业生产率均达到最佳值。
因此,采用液压传动可使工程机械易于实现智能化、节能化和环保化,而这已成为当前和未来工程机械的发展趋势。
三.液压传动的特点和基本原理1.液压传动的介绍液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
液压传动和气压传动并称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中应用广泛的技术。
1795年英国Joseph Braman以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。
1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战后液压传动广泛应用,特别是1920年以后,发展更为迅速。
液压元件大约在19世纪末20世纪初的20年间,才开始进入正规的工业生产阶段。
1925年F.Vikers发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。
20世纪初G·Constantimsco对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。