极谱分析法与循环伏安法
- 格式:ppt
- 大小:777.00 KB
- 文档页数:39
第17章伏安法和极谱法伏安分析法(voltammetry)是一种特殊形式的电解方法。
它以小面积的工作电极与参比电极组成电解池,电解被分析物质的稀溶液,根据所得到的电流-电压曲线(伏安图)来进行分析。
伏安分析法不同于近乎零电流下的电位分析法,也不同于溶液组成发生较大改变的电解分析法,由于其工作电极表面积小,虽有电流通过,但溶液组成基本不变。
它的实际应用相当广泛,凡能在电极上被还原或被氧化的无机和有机物质,一般都可用伏安法测定。
在基础理论研究方面,伏安法常用来研究化学反应机理及动力学过程,测定络合物的组成及化学平衡常数,研究吸附现象等。
在伏安分析法中,极化现象比较明显,所以得到的伏安图(voltammogram)又被称为极化曲线。
一、当用滴汞电极或其他液态电极作工作电极,其电极表面作周期性的更新时,伏安分析法又称为极谱法(polarography),它是最早发现和最先开始使用的伏安法。
但近年来,由于循环伏安法的广泛使用,以及对汞蒸汽有毒的担心和汞电极在较正电位下容易氧化等因素的影响,使得滴汞电极的使用越来越少。
一、§17—1物质的传递与扩散控制过程一、 物质的传递溶液中物质的传递(又称传质)有三种途径:对流、电迁移和扩散.由于液体或气体的流动所造成的物质传递的现象称为对流传质;电迁移是在溶液内部有电场存在的情况下引起的带有电荷粒子i 的移动;扩散则是由于物质的浓度分布不均匀而引起的该物质自高浓度向低浓度方向的传递.物质的传递速度可以用流量来表示,流量(Ⅱi)即单位时间内通过单位横截面积的物质的量。
若只考虑一维方向,即x 方向上,粒子i 的传质流量为:Ⅱi =c v i x ±i i x c u E 0-D .(dx dc i )(17—1)式中v x 是x 方向上对流的速度,c i 是粒子i 的浓度,E x 是电场强度,u i 0是离子淌度(“+”适用于带正电荷的离子,“—"适用于带负电荷的离子),D .为该粒子的扩散系数,负号表示扩散是从高浓度向低浓度方向进行的.§17-2扩散电流理论一、定量分析方法在由扩散控制的极化曲线上,i d或i p都与溶液中被测离子浓度呈正比,由它们的大小可计算出被测物质的含量。
第五章伏安法和极谱分析法基本要求:1.掌握直流极谱法的基本原理及其不足之处2.掌握尤考维奇方程和极谱波方程3.理解单扫描极谱法、脉冲极谱法和阳极溶出伏安法灵敏度高的原因4.掌握循环伏安法的原理及应用伏安法(V oltammetry)和极谱分析法(Polarography)都是通过由电解过程中所得的电流-电位(电压)或电位-时间曲线进行分析的方法。
它们的区别在于伏安法使用的极化电极是固体电极或表面不能更新的液体电极,而极谱分析法使用的是表面能够周期更新的滴汞电极。
自1922年J.Heyrovsky开创极谱学以来,极谱分析在理论和实际应用上发展迅速。
继直流极谱法后,相继出现了单扫描极谱法、脉冲极谱法、卷积伏安法等各种快速、灵敏的现代极谱分析方法,使极谱分析成为电化学分析的重要组成部分。
极谱分析法不仅可用于痕量物质的测定,而且还可用于化学反应机理,电极动力学及平衡常数测定等基础理论的研究。
与两种电解过程相对应,极谱分析法也可分为控制电位极谱法(如直流极谱法、单扫描极谱法、脉冲极谱法和溶出伏安法等)和控制电流极谱法(如交流示波极谱法和计时电位法等)。
5.1 直流极谱法5.1.1 原理1.装置直流极谱法也称恒电位极谱法,其装置如图5-1所示。
它包括测量电压、测量电流和极谱电解池三部分。
图5-1 直流极谱装置示意图图5-2 饱和甘汞电极(a)和滴汞电极(b)现以测定Pb2+和Zn2+为例。
在电解池中安装一支面积小的滴汞电极,另一支面积大的饱和甘汞电极,如图5-2所示。
电解池中盛有浓度均为1.00 ×10-3mol·L-1Pb2+ 和Zn2+ 溶液以及0.1mol·L-1KCl(称为支持电解质,浓度比被测离子大50-100倍),并加入1%的动物胶(称为极大抑制剂)几滴。
电解前,通入N2除去电解液中溶解的O2。
按图5-1,以滴汞电极为阴极,饱和甘汞电极为阳极,在不搅拌溶液的静止条件下电解。
化学实验设计物质的组成测定的应用在化学实验中,准确测定物质的组成对于分析和研究物质的特性和性质至关重要。
物质的组成测定方法多种多样,根据具体实验目的和物质特性的不同,选择合适的方法进行分析。
本文将介绍几种常见的物质组成测定方法及其应用。
一、质量分析法质量分析法是一种定量测定物质组成的方法,通过称量和比较样品和标准物质的质量差异,来确定样品中特定成分的质量百分比。
这种方法通常用于测定固体和液体物质的组成。
1. 燃烧分析法燃烧分析法是一种常用的质量分析法,适用于测定有机物和含碳化合物中碳、氢、氧等元素的质量百分比。
实验中,样品经过完全燃烧后,收集生成的水和二氧化碳,并通过质量差异计算出样品中碳、氢的含量。
该方法广泛应用于有机化学和生化分析。
2. 沉淀法沉淀法是通过产生沉淀物,然后定量测定沉淀物的质量来分析物质组成的一种方法。
这种方法可用于测定溶液中的阴离子和阳离子的质量百分比。
例如,测定硫酸铜中的铜离子,可以通过加入过量的次氯酸钠溶液沉淀出过量的氯离子,然后测定沉淀物的质量从而计算出样品中的铜离子含量。
二、光谱分析法光谱分析法是利用物质与光的相互作用,通过测量光的吸收、散射、发射等特性来研究物质的组成和性质的方法。
光谱分析法广泛应用于无机和有机物质的研究。
1. 紫外可见分光光度法紫外可见分光光度法是一种测定物质在紫外和可见光区域吸收光的强度的方法,适用于测定溶液中有机化合物或无机离子的浓度。
该方法通过测定样品吸收光谱的峰值和峰高,利用比尔定律计算出溶液中物质的浓度。
2. 傅里叶变换红外光谱法傅里叶变换红外光谱法是一种通过测量物质对红外光的吸收来分析物质组成和结构的方法。
该方法可用于分析有机物和无机物的化学键和功能团。
通过比对样品和标准光谱的差异,可以推测出样品中物质的种类和含量。
三、电化学分析法电化学分析法是利用电化学方法进行物质组成测定的一种方法。
电化学分析法包括电解和电流、电势等参数的测定,广泛应用于电化学和电池研究。
极谱分析法的原理和应用1. 介绍极谱分析法是一种基于电化学原理的分析方法,用于测定溶液中元素的浓度和其它化学性质。
它主要通过观察和分析电流-电位曲线(极谱曲线)来获取所需信息。
本文将介绍极谱分析法的原理和常见应用。
2. 原理极谱分析法基于电化学纯净反应(如)发生在作为铅极(工作电极)材料上。
该纯净反应具有明确的电极动力学行为,并且可以用于测定特定元素的浓度。
主要的极谱方法有:线性扫描伏安法(Linear Sweep Voltammetry,LSV)、循环伏安法(Cyclic Voltammetry,CV)、方波伏安法(Square Wave Voltammetry,SWV)等。
这些方法在测定元素浓度时,可以绘制出电流-电位曲线,通过分析曲线形状、峰的位置和峰的大小等参数,来推断溶液中元素的浓度。
3. 应用极谱分析法在许多领域得到广泛应用。
以下是几个常见应用案例:3.1 环境监测极谱分析法可用于环境监测,例如检测水中的重金属污染物浓度。
通过测定水样中特定金属离子在溶液中的电位峰值,可以准确测定其浓度,实现对水质的快速检测和监测。
3.2 食品安全食品中的重金属污染物如铅、汞等对人体健康有害。
极谱分析法可以用于快速检测食品中的重金属元素含量。
通过确定食品样品中重金属元素的电位峰值,可以对食品安全性进行评估,并采取相应的措施,确保公众的食品安全。
3.3 药物分析极谱分析法在药物分析中也有广泛的应用。
通过测定药物样品中特定药物成分的电位峰值,可以确定药物的含量和纯度。
这对于药品生产和质量控制非常重要。
3.4 生物化学研究极谱分析法在生物化学研究中可以用于测定生物体内的重金属离子含量。
通过测量生物体内特定重金属离子的电位峰值,可以评估生物体受到重金属污染的程度,了解其对生物体的影响。
4. 结论极谱分析法是一种基于电化学原理的分析方法,可以用于测定溶液中元素的浓度和化学性质。
它通过分析电流-电位曲线来获取所需信息。