非负矩阵分解算法概述之Lee
- 格式:doc
- 大小:428.50 KB
- 文档页数:18
非负矩阵分解一、概述著名的科学杂志《Nature》于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果。
该文提出了一种新的矩阵分解思想——非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。
在科学文献中,讨论利用矩阵分解来解决实际问题的分析方法很多,如PCA(主成分分析)、ICA(独立成分分析)、SVD(奇异值分解)、VQ(矢量量化)等。
在所有这些方法中,原始的大矩阵V被近似分解为低秩的V=WH形式。
这些方法的共同特点是,因子W和H中的元素可为正或负,即使输入的初始矩阵元素是全正的,传统的秩削减算法也不能保证原始数据的非负性。
在数学上,从计算的观点看,分解结果中存在负值是正确的,但负值元素在实际问题中往往是没有意义的。
例如图像数据中不可能有负值的像素点;在文档统计中,负值也是无法解释的。
因此,探索矩阵的非负分解方法一直是很有意义的研究问题,正是如此,Lee和Seung两位科学家的NMF方法才得到人们的如此关注。
NMF的目标是要自动找到特征矩阵和权重矩阵。
也可将其看作是矩阵的乘法。
如矩阵A=[ 29 29; 43 33 ; 15 25; 40 28; 24 11; 29 29;37 23;21 6]; 可分解为如下形式:二、原理2.1 标准NMF对于非负矩阵分解,早期的研究方法采用传统的梯度下降方法和加性迭代规则,对于负值要强制为。
在文献[51]中考虑的是高斯噪声的模型,由此得到目标函数为欧几里德距离,其目标函数为:相应的迭代规则为:选择好;的值,配置矩阵牙和H的初始值进行迭代,文献[52]中提到了3种初始化W和H的方法。
在Lee给出的算法中,矩阵w和H的初始值可以是任意的,此迭代方法的收敛性的证明可参见文献「53]。
Donoh。
等人[54〕用几何学的方法来对NMF收敛性进行了解释。
数据降维-NMF⾮负矩阵分解1.什么是⾮负矩阵分解?NMF的基本思想可以简单描述为:对于任意给定的⼀个⾮负矩阵V,NMF算法能够寻找到⼀个⾮负矩阵W和⼀个⾮负矩阵H,使得满⾜,从⽽将⼀个⾮负的矩阵分解为左右两个⾮负矩阵的乘积。
如下图所⽰,其中要求分解后的矩阵H和W都必须是⾮负矩阵。
分解前后可理解为:原始矩阵的列向量是对左矩阵中所有列向量的加权和,⽽权重系数就是右矩阵对应列向量的元素,故称为基矩阵,为系数矩阵。
⼀般情况下的选择要⽐⼩,即满⾜,这时⽤系数矩阵代替原始矩阵,就可以实现对原始矩阵进⾏降维,得到数据特征的降维矩阵,从⽽减少存储空间,减少计算机资源。
2.⾮负矩阵分解⼀个⽰例解释通过图1中的⾯部特征提取例⼦可领略NMF处理数据的⽅式。
最左边的⼤矩阵由⼀系列的⼩图组成,这些⼩图是分析数据库中包含的2429个脸部图像的结果,每幅图像由19×19个像素组成。
传统⽅法中这样的⼩图是⼀幅完整的⼈脸图像,但是在NMF⽅法中,每个⼩图是通过⼀组基图像乘以⼀个权重矩阵⽽产⽣的⾯部特征图,经过这样处理的每幅⼩图像恰好表⽰了诸如“⿐⼦”、“嘴巴”、“眼睛”等⼈脸局部概念特征,这便⼤⼤压缩了存放的图像数据量。
左边的⼤矩阵由每幅⼩图像的19列⼀起组成矩阵的⼀列,那样它就是19×19=361⾏,2429列。
这个例⼦中,NMF⽅法⽤基图像来代表眼、眉⽑、⿐⼦、嘴、⽿朵、胡⼦等,它们⼀起组成了数据库中的脸。
这样给⼈最先的直觉就是它很好地压缩了数据。
事实上Lee和Seung在他们的论⽂中更深⼊地指出,与⼈类识别事物的过程相似,NMF也是⼀种优化的机制,近似于我们的脑分析和存储⼈脸数据的过程。
这个例⼦中,原图像表⽰这些局部特征的加权组合,这与⼈类思维中“局部构成整体”的概念是相吻合的。
因此,NMF算法似乎体现了⼀种智能⾏为。
3.⾮负矩阵分解NMF的应⽤(1)图像分析 NMF最成功的⼀类应⽤是在图像的分析和处理领域(2)⽂本聚类,数据挖掘(3)语⾳处理(4)机器⼈控制(5)⽣物医药⼯程和化学⼯程。
非负矩阵分解lee(最新版)目录1.非负矩阵分解的概念和意义2.非负矩阵分解的应用领域3.Lee 算法在非负矩阵分解中的优势和特点4.Lee 算法的具体步骤和实现正文1.非负矩阵分解的概念和意义非负矩阵分解(Non-negative Matrix Factorization,NMF)是一种将非负矩阵分解为非负矩阵乘积的数学方法。
它的主要目的是找到一个分解,使得原始矩阵的结构更加简单,易于理解。
非负矩阵分解在许多领域具有重要意义,如数据挖掘、图像处理、文本分析等。
2.非负矩阵分解的应用领域(1)数据挖掘:在数据挖掘领域,非负矩阵分解可以用于聚类分析、关联规则挖掘等任务。
通过将数据矩阵分解为低维表示,可以降低数据维度,提高数据处理效率。
(2)图像处理:在图像处理领域,非负矩阵分解可以用于图像的特征提取和压缩。
通过对图像矩阵进行分解,可以得到具有代表性的特征向量,从而实现图像的压缩和识别。
(3)文本分析:在文本分析领域,非负矩阵分解可以用于文本主题模型建立。
通过对文本矩阵进行分解,可以得到反映文本主题的关键词向量,从而实现文本的主题划分和分析。
3.Lee 算法在非负矩阵分解中的优势和特点Lee 算法是一种基于梯度下降的非负矩阵分解算法,具有以下优势和特点:(1)收敛速度较快:Lee 算法采用梯度下降方法,通过不断更新矩阵分解的结果,最终收敛到最优解。
相较于其他非负矩阵分解算法,Lee 算法的收敛速度较快。
(2)分解结果具有唯一性:Lee 算法可以得到唯一的分解结果,这是因为在算法执行过程中,每一步更新都是基于梯度下降的,保证了结果的唯一性。
(3)适用于大规模数据:Lee 算法具有良好的扩展性,可以处理大规模的数据矩阵,因此在大数据时代具有广泛的应用前景。
4.Lee 算法的具体步骤和实现Lee 算法的具体步骤如下:(1)初始化矩阵分解结果:随机设置初始的矩阵分解结果,作为算法的起点。
(2)计算梯度:计算损失函数关于矩阵分解结果的梯度,用于下一步的更新。
非负矩阵分解算法在推荐系统中的应用随着互联网飞速发展, 推荐系统已经成为了人们信息获取和购买习惯调整的重要方式之一。
而推荐算法也成为了推荐系统中的重要组成部分。
从最早的基于词频统计的分析算法到后来的协同过滤算法,推荐算法一直在不断改进,以期提高推荐系统的精度和效率。
近年来,非负矩阵分解算法(NMF)被引入到推荐系统中,成为了一种新的推荐算法,并且在一些领域中已经取得了很好的效果。
一、什么是非负矩阵分解算法?非负矩阵分解算法在2001年由Lee和Seung提出,也称为NMF算法。
它是一种在推荐系统中非常有用的算法,可以方便地推断出用户对物品的偏好。
简单来说,就是将一个原始的矩阵分解成两个非负的矩阵,一个是用户矩阵,另外一个是物品矩阵,并通过计算它们的积,可以预测用户之前没有评价过的物品。
NMF算法在推荐系统中的一个优势是它可以解决“数据稀疏”问题。
在推荐系统中,一个用户可能只对很少的几个物品进行了评价,这就导致了大部分的元素都是空值。
NMF算法通过矩阵分解,可以填充空间,并预测用户对新的物品的偏好,提高推荐的准确度。
因此,NMF算法被广泛应用在社交网络推荐、电影和音乐推荐、商品推荐等。
二、NMF算法在推荐系统中的优势除了可以解决数据稀疏的问题,NMF算法在推荐系统中有许多其他的优势。
1. 预测准确度高在很多情况下,NMF算法的预测准确度比传统的推荐算法更高。
这是因为它能够抽象出更多的特征,并用这些特征来更好地描述用户的偏好,从而提高预测的准确度。
2. 模型可解释性强NMF算法中的用户矩阵和物品矩阵都只包含非负值,这意味着它们都有一个自然的物理解释。
例如,在一个用户矩阵中,每一行都代表该用户对不同特征的偏好评分,如“音乐”、“体育”、“电影”等。
同样地,在一个物品矩阵中,每一列代表该物品各个特征的分值。
这种解释性强的模型可以让我们更好地观察用户和物品之间的关系,并更好地解释预测结果。
3. 算法参数少NMF算法的参数相对较少,只有两个矩阵需要分解,因此实现过程会更加简单,运算速度更快,这对于大规模的推荐系统来说尤其重要。
多通道非负矩阵分解概述及解释说明1. 引言1.1 概述:本文旨在介绍多通道非负矩阵分解(Multiple Channel Nonnegative Matrix Factorization)的基本原理、应用领域以及算法优势。
非负矩阵分解作为一种重要的数据降维和特征提取方法,已经被广泛应用于图像处理、语音识别、推荐系统等领域。
多通道非负矩阵分解则是对传统单通道非负矩阵分解进行拓展,能够更好地处理多模态或多源数据。
1.2 文章结构:本文共分为五个部分:引言、多通道非负矩阵分解、解释说明一、解释说明二以及结论与展望。
引言部分主要介绍本文的背景和目的,同时概述了接下来各个章节的内容安排。
多通道非负矩阵分解部分将详细探讨该方法的基本原理、应用领域和算法优势。
解释说明一和解释说明二部分将介绍两种具体的方法,并对其进行实验结果的分析以及相关案例的讨论。
最后,在结论与展望中对全文进行总结,并提出未来可能的研究方向。
1.3 目的:本文旨在向读者介绍多通道非负矩阵分解方法及其在数据处理中的应用。
通过对多通道非负矩阵分解的详细讲解和实例说明,读者将能够全面了解该方法的基本原理、适用范围以及实际效果。
同时,通过对比多种方法在实验中的表现和相关案例的讨论,读者还可以深入了解不同情况下选择不同方法可能带来的影响和优势。
最终,我们希望本文能够为相关领域的研究者提供有价值的参考,同时激发更多关于多通道非负矩阵分解方法的深入探索。
2. 多通道非负矩阵分解2.1 基本原理多通道非负矩阵分解是一种常用的数据降维和特征提取方法。
其基本原理是将一个高维度的数据矩阵分解为两个低维度的非负矩阵的乘积,其中一个矩阵具有原始数据的结构信息,而另一个矩阵包含了数据的隐含特征。
在多通道非负矩阵分解中,我们假设原始数据包含多个通道或属性。
每个通道可以代表不同的数据来源或者不同方面的特征。
通过对这些通道进行分离和抽取其中重要的特征,并且将这些特征进行融合,可以提高对原始数据的理解和表示能力。
Scikit-learn是一个用于机器学习的Python库,其中包含了许多常用的机器学习算法和工具。
其中之一就是非负矩阵分解(Non-negative Matrix Factorization,NMF)。
非负矩阵分解是一种矩阵分解技术,它将一个非负矩阵分解为两个非负矩阵的乘积。
这种分解可以用于特征提取、数据降维和模式识别等任务。
NMF的原理是基于以下假设:1. 原始矩阵中的元素都是非负的。
2. 原始矩阵可以由两个非负矩阵的乘积表示。
给定一个非负矩阵V,NMF的目标是找到两个非负矩阵W和H,使得它们的乘积WH近似等于原始矩阵V。
其中,W是一个m×r的矩阵,H是一个r×n的矩阵,r是一个用户指定的参数,表示分解后的矩阵的秩。
NMF的求解过程可以通过迭代算法来实现,其中最常用的算法是乘法更新规则(Multiplicative Update Rule)。
该算法通过迭代更新W和H的值,直到达到收敛条件。
具体而言,乘法更新规则的迭代步骤如下:1. 初始化W和H为随机非负矩阵。
2. 重复以下步骤直到达到收敛条件:-更新W:W = W * (VH^T) / (WHH^T)-更新H:H = H * (W^TV) / (W^TWH)在每次迭代中,乘法更新规则通过最小化原始矩阵V和近似矩阵WH之间的差异来更新W和H的值。
这个差异可以使用不同的损失函数来衡量,常见的有欧几里得距离和KL散度。
总结起来,非负矩阵分解是一种将非负矩阵分解为两个非负矩阵的乘积的技术。
它可以用于特征提取、数据降维和模式识别等任务。
Scikit-learn中的NMF模块提供了实现NMF的工具和算法。