微积分 高斯公式与散度
- 格式:ppt
- 大小:606.50 KB
- 文档页数:13
散度定理与高斯公式在研究电磁学、流体力学以及热传导等领域时,散度定理和高斯公式是非常重要的数学工具。
它们可以用于描述和解释物质和能量在空间中的流动和分布规律。
本文将深入探讨散度定理和高斯公式的概念、原理和应用,并通过实例展示其在实际问题中的作用。
一、散度定理散度定理又称为高斯散度定理,它是微积分中的一个基本定理。
简单来说,散度定理描述了一个有向闭曲面上向量场的通量与该向量场在该闭曲面所围成的体积之间的关系。
下面我们来详细介绍一下散度定理。
散度定理的数学表述如下:对于向量场F,其连续可微函数,它的定义域为包围体V内的有界区域D,其边界为闭曲面S。
那么散度定理可以表示为:∬S F·dS = ∭V div(F) dV在这里,F·dS表示对于向量场F的通量积分,div(F)表示F的散度。
从散度定理中可以看出,一个向量场的通量积分等于该向量场在体积内的散度的体积分。
散度定理的应用非常广泛,包括但不限于以下几个方面:1. 流体力学中的应用:通过散度定理可以计算一个流体的流出流量或流入流量,从而在实际应用中可以用于计算管道中的流体流速、流量、压力等参数。
2. 电磁学中的应用:散度定理可以描述电场与磁场的分布规律,并用于计算电场或磁场的总通量。
3. 热传导中的应用:散度定理可以用于描述热流在空间中的传导规律,并用于计算热量的传递率等参数。
二、高斯公式高斯公式又称为高斯定理,它是微积分中的另一个基本定理。
高斯公式是对于散度定理在三维空间中的一种特殊情况,即当闭曲面是一个球面时,散度定理被称为高斯公式。
下面我们来详细介绍一下高斯公式。
高斯公式的数学表述如下:对于向量场F,其连续可微函数,它的定义域为包围体V内的有界区域D,其边界为球面S。
那么高斯公式可以表示为:∬S F·dS = ∭V div(F) dV由高斯公式的形式可知,在计算球面上的通量积分时,等于该向量场在球内的散度的体积分。
10、6高斯公式通量与散度§10.6 高斯公式通量与散度一、高斯公式格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分之间的关系,而高斯公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系,这个关系可陈述如下:【定理】设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有Ω∑++=??+??+??Rdxdy Qdzdx Pdydz dv Z R y Q x P )((1) 或Ω∑γ+β+α=??+??+??dS R Q P dv z R y Q x P )cos cos cos ()((1') 这里∑是Ω的整个边界曲面的外侧,}γ是∑上点),,(z y x 处的法向量的方向余弦,公式(1)或(1'证:由两类曲面积分的关系,公式(1)与(1')的右端是相等的,因此这里只要证明公式(1)就可以了。
设闭区域Ω在xoy 面上的投影区域为xy D ,假定穿过Ω内部且平行z 轴的直线与Ω的边界曲面∑的交点恰好是两个。
这样,可设∑由1∑,2∑和3∑三部分组成,其中1∑和2∑分别由方程),(1y x z z =和),(2y x z z =给定,这里),(),(21y x z y x z ≤,1∑取下侧,2∑取上侧;3∑是以xy D 的边界曲线为准线而母线平行于z 轴的柱面上的一部分,取外侧。
根据三重积分的计算法,有[]Ω-=??=??y x y x D D y x z y x z y x z y x R y x z y x R dxdy dz zRdv z R )],(,,[)],(,,[12),(),(21 (2) ∑-=1)],(,,[),,(1xyD dxdy y x z y x R dxdy z y x R∑=2)],(,,[),,(2xyD dxdy y x zy x R dxdy z y x R因为3∑上任意一块曲面在xoy 面上的投影为零,所以直接根据对坐标的曲面积分的定义可知∑=30),,(dxdy z y x R把以上三式相加,得∑-=xyD dxdy y x z y x R y x zy x R dxdy z y x R )]},(,,[)],(,,[{),,(12(3)比较(2)、(3)两式,得Ω∑=??dxdy z y x R dv z R),,( 如果穿过Ω内部且平行于x 轴的直线以及平行于y 轴的直线与Ω的边界曲面∑的交点恰好有两点,那么类似地可得Ω∑=??dydz z y x P dv x P),,( Ω∑=??dzdx z y x Q dv y Q),,( 把以上三式两端分别相加,即得高斯公式(1)。