第六节 高斯公式 通量与散度
- 格式:doc
- 大小:51.00 KB
- 文档页数:1
第六节 高斯公式 通量与散度㈠本课的基本要求了解高斯公式,会用高斯公式计算曲面积分,了解通量与散度的概念,并会计算㈡本课的重点、难点高斯公式重点、利用高斯公式计算曲面积分为难点㈢教学内容在本章的第三节中,我们介绍了格林公式。
它反映了平面区域D 上的二重积分与其边界曲线L 上的曲线积分之间的关系。
作为格林公式在空间的推广,下面介绍的高斯公式则反映了空间区域Ω上的三重积分与其边界曲面∑上的曲面积分之间的关系。
一.高斯公式定理1 设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数),,(),,,(z y x Q z y x P , ),,(z y x R 在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂)()(Rdxdy Qdzdx Pdydz dv z R y Q x P ⑴ 或ds R Q P dv z R y Q x P ⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂)cos cos cos ()(γβα ⑵ 这里∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑在点),,(z y x 处的法向量的方向余弦。
公式⑴或⑵叫做高斯公式。
证 由第五节中两类曲面积分的关系可知,公式⑴及⑵的右端是相等的,因此这里只要证明公式⑴就可以了。
首先假设穿过区域Ω内部且平行于z 轴的直线与Ω的边界曲面∑只有两个交点,并且Ω在xoy 平面上的投影区域为xy D ,这样∑可为三部分321,,∑∑∑,其中21,∑∑的方程分别为),(:11y x z z =∑,取下侧,),(:22y x z z =∑,取上侧,并且21z z ≤,而3∑是以xy D 边界线为准线且母线平行于z 轴的柱面的一部分,取外侧。
一方面,根据三重积分的计算法,有⎰⎰⎰⎰⎰⎰⎪⎭⎫ ⎝⎛∂∂=∂∂Ωxy D y x z y x z dxdy dz z R dv z R ),(),(21 ⎰⎰-=xy D dxdy y x z y x R y x z y x R )]},(,,[)],(,,[{12另一方面,根据第二类曲面积分的计算法,又有⎰⎰⎰⎰-=∑xyD dxdy y x z y x R dxdy z y x R )],(,,[),,(11 ⑶ ⎰⎰⎰⎰=∑xy D dxdy y x zy x R dxdy z y x R )],(,,[),,(22因为3∑在xoy 平面上的投影区域为一条曲线,其面积为零,因而由定义知0),,(3=⎰⎰∑dxdy z y x R将上述三式相加可得⎰⎰∑dxdy z y x R ),,(⎰⎰-=xyD dxdy y x z y x R y x zy x R )]},(,,[)],(,,[{12 ⑷ 比较⑶式与⑷式,得=∂∂⎰⎰⎰Ωdv z R ⎰⎰∑dxdy z y x R ),,( 若穿过区域Ω内部且平行于x 轴及平行于y 轴的直线与Ω的边界曲面∑也都只有两个交点,那么类似地可证=∂∂⎰⎰⎰Ωdv x P ⎰⎰∑dydz z y x P ),,( =∂∂⎰⎰⎰Ωdv y Q ⎰⎰∑dzdx z y x Q ),,( 将以上三式两端分别相加,即得高斯公式⑴。
10、6高斯公式通量与散度§10.6 高斯公式通量与散度一、高斯公式格林公式表达了平面闭区域上的二重积分与其边界曲线上的曲线积分之间的关系,而高斯公式表达了空间闭区域上的三重积分与其边界曲面上的曲面积分之间的关系,这个关系可陈述如下:【定理】设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有Ω∑++=??+??+??Rdxdy Qdzdx Pdydz dv Z R y Q x P )((1) 或Ω∑γ+β+α=??+??+??dS R Q P dv z R y Q x P )cos cos cos ()((1') 这里∑是Ω的整个边界曲面的外侧,}γ是∑上点),,(z y x 处的法向量的方向余弦,公式(1)或(1'证:由两类曲面积分的关系,公式(1)与(1')的右端是相等的,因此这里只要证明公式(1)就可以了。
设闭区域Ω在xoy 面上的投影区域为xy D ,假定穿过Ω内部且平行z 轴的直线与Ω的边界曲面∑的交点恰好是两个。
这样,可设∑由1∑,2∑和3∑三部分组成,其中1∑和2∑分别由方程),(1y x z z =和),(2y x z z =给定,这里),(),(21y x z y x z ≤,1∑取下侧,2∑取上侧;3∑是以xy D 的边界曲线为准线而母线平行于z 轴的柱面上的一部分,取外侧。
根据三重积分的计算法,有[]Ω-=??=??y x y x D D y x z y x z y x z y x R y x z y x R dxdy dz zRdv z R )],(,,[)],(,,[12),(),(21 (2) ∑-=1)],(,,[),,(1xyD dxdy y x z y x R dxdy z y x R∑=2)],(,,[),,(2xyD dxdy y x zy x R dxdy z y x R因为3∑上任意一块曲面在xoy 面上的投影为零,所以直接根据对坐标的曲面积分的定义可知∑=30),,(dxdy z y x R把以上三式相加,得∑-=xyD dxdy y x z y x R y x zy x R dxdy z y x R )]},(,,[)],(,,[{),,(12(3)比较(2)、(3)两式,得Ω∑=??dxdy z y x R dv z R),,( 如果穿过Ω内部且平行于x 轴的直线以及平行于y 轴的直线与Ω的边界曲面∑的交点恰好有两点,那么类似地可得Ω∑=??dydz z y x P dv x P),,( Ω∑=??dzdx z y x Q dv y Q),,( 把以上三式两端分别相加,即得高斯公式(1)。
第六节 高斯公式 通量与散度
一、填空题
1. 设∑是球面2222a z y x =++的外侧, 则⎰⎰∑
zdxdy = .
2. 设∑是球面z z y x 2222=++, cos α、cos β、cos γ 是∑上点的外法线向量的方向余弦, 则 ⎰⎰∑
++dS z y x )cos cos cos (γβα=______.
3. divgrad(222z y x ++)= .
二、解答题
1. 指出下列求解过程的错误之处, 并改正之:
设∑是球面2222a z y x =++的外侧, ∑ 所围成的球体Ω 的体积33
4a V π=, 由高斯公式有: ⎰⎰∑++dxdy z dzdx y dydz x 333=⎰⎰⎰Ω++dV z y x )(3222=⎰⎰⎰ΩdV a 23=54a π.
2. 计算曲面积分
⎰⎰∑++zdxdy ydzdx xdydz , 其中∑ 是介于z = 0和z = 3之间的圆柱体922≤+y x 的整个表面的外侧.
3. 计算曲面积分⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑ 为上半球体222a y x ≤+,
2220y x a z --≤≤的表面外侧.
4. 计算曲面积分⎰⎰∑+-+-zdxdy dzdx x y x dydz z xy
)()(22, 其中∑为锥面:)20(22≤≤+=z y x z 的下侧.
5. 计算曲面积分:⎰⎰∑
--++=yzdxdy dzdx y xdydz y I 4)1(2)18(2, 其中∑为是由曲线)30(,0,≤≤⎩⎨⎧==z x y z 绕z 轴旋转一周所成的曲面, 其法向量与z 轴的正向夹角恒大于2
π. 6. 求向量场A = i - j + xyz k 通过由平面y = x 截球2222R z y x ≤++所得的圆面S 朝x 轴正向一侧的通量.。