12.3算法与程序框图应用举例
- 格式:ppt
- 大小:498.00 KB
- 文档页数:5
高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。
2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。
3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。
要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。
考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。
2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。
算法与程序框图一、基础知识1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤. (2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题. 2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形. 3.三种基本逻辑结构 (1)顺序结构(2)条件结构(3)循环结构三种基本逻辑结构的适用情境(1)顺序结构:要解决的问题不需要分类讨论. (2)条件结构:要解决的问题需要分类讨论.(3)循环结构:要解决的问题要进行许多重复的步骤,且这些步骤之间有相同的规律.考点一 顺序结构和条件结构[例1] (2019·沈阳质检)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的实数x 的值为( )A .-3B .-3或9C .3或-9D .-3或-9[解析] 当x ≤0时,y =⎝⎛⎭⎫12x -8=0,x =-3;当x >0时,y =2-log 3x =0,x =9.故x =-3或x =9,选B.[答案] B[例2] 某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( )A .f (x )=cos x x ⎝⎛⎭⎫-π2<x <π2,且x ≠0 B .f (x )=2x -12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)[解析] 由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.[答案] B[解题技法] 顺序结构和条件结构的运算方法(1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下的顺序进行的.解决此类问题,只需分清运算步骤,赋值量及其范围进行逐步运算即可.(2)条件结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断.(3)对于条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.[题组训练]1.半径为r 的圆的面积公式为S =πr 2,当r =5时,计算面积的流程图为( )解析:选D 因为输入和输出框是平行四边形,故计算面积的流程图为D. 2.运行如图所示的程序框图,可输出B =______,C =______.解析:若直线x+By+C=0与直线x+3y-2=0平行,则B=3,且C≠-2,若直线x+3y+C=0与圆x2+y2=1相切,则|C|12+(3)2=1,解得C=±2,又C≠-2,所以C=2.答案:3 2考点二循环结构考法(一)由程序框图求输出(输入)结果[例1](2018·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1B.2C.3 D.4[解析]输入N的值为20,第一次执行条件语句,N=20,i =2,Ni =10是整数,∴T =0+1=1,i =3<5;第二次执行条件语句,N =20,i =3,N i =203不是整数,∴i =4<5;第三次执行条件语句,N =20,i =4,Ni =5是整数,∴T =1+1=2,i =5,此时i ≥5成立,∴输出T =2. [答案] B[例2] (2019·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的 a 的值可以为( )A .4B .5C .6D .7[解析] 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1,Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.[答案] D[解题技法] 循环结构的一般思维分析过程 (1)分析进入或退出循环体的条件,确定循环次数.(2)结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.(3)辨析循环结构的功能. 考法(二) 完善程序框图[例1] (2018·武昌调研考试)执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在判断框中可以填入( )A .k <n?B .k >n?C .k ≥n?D .k ≤n?[解析] 执行程序框图,输入的a =2,s =0×2+2=2,k =1;输入的a =2,s =2×2+2=6,k =2;输入的a =5,s =2×6+5=17,k =3,此时结束循环,又n =2,所以判断框中可以填“k >n ?”,故选B.[答案] B[例2] (2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] 由题意可将S 变形为S =⎝⎛⎭⎫1+13+…+199-⎝⎛⎭⎫12+14+…+1100,则由S =N -T ,得N =1+13+…+199,T =12+14+…+1100.据此,结合N =N +1i ,T =T +1i +1易知在空白框中应填入i =i +2.故选B.[答案] B[解题技法] 程序框图完善问题的求解方法(1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止; (3)根据此时各个变量的值,补全程序框图.[题组训练]1.(2018·凉山质检)执行如图所示的程序框图,设输出的数据构成的集合为A ,从集合A 中任取一个元素a ,则函数y =x a ,x ∈[0,+∞)是增函数的概率为( )A.47B.45C.35D.34解析:选C 执行程序框图,x =-3,y =3;x =-2,y =0;x =-1,y =-1;x =0,y =0;x =1,y =3;x =2,y =8;x =3,y =15;x =4,退出循环.则集合A 中的元素有-1,0,3,8,15,共5个,若函数y =x a ,x ∈[0,+∞)为增函数,则a >0,所以所求的概率为35.2.(2019·珠海三校联考)执行如图所示的程序框图,若输出的n 的值为4,则p 的取值范围是( )A.⎝⎛⎦⎤34,78B.⎝⎛⎭⎫516,+∞C.⎣⎡⎭⎫516,78D.⎝⎛⎦⎤516,78解析:选A S =0,n =1;S =12,n =2;S =12+122=34,n =3;满足条件,所以p >34,继续执行循环体;S =34+123=78,n =4;不满足条件,所以p ≤78.输出的n 的值为4,所以34<p ≤78,故选A.3.(2019·贵阳适应性考试)某程序框图如图所示,若该程序运行后输出的值是137,则整数a 的值为( )A .6B .7C .8D .9解析:选A 先不管a 的取值,直接运行程序.首先给变量S ,k 赋值,S =1,k =1,执行S =S +1k (k +1),得S =1+11×2,k =2;执行S =1+11×2+12×3,k =3;……继续执行,得S =1+11×2+12×3+…+1k (k +1)=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1k -1k +1=2-1k +1,由2-1k +1=137得k =6,所以整数a =6,故选A.考点三 基本算法语句[典例] 执行如图程序语句,输入a =2cos 2 019π3,b =2tan 2 019π4,则输出y 的值是( )A .3B .4C .6D .-1[解析] 根据条件语句可知程序运行后是计算y =⎩⎪⎨⎪⎧a (a +b ),a <b ,a 2-b ,a ≥b ,且a =2cos 2 019π3=2cos π=-2,b =2tan 2 019π4=2tan 3π4=-2.因为a ≥b ,所以y =a 2-b =(-2)2-(-2)=6, 即输出y 的值是6. [答案] C[变透练清]1. 执行如图所示的程序,输出的结果是________.i =11S =1DOS =S*ii =i -1LOOP UNTIL i<9PRINT S END解析:程序反映出的算法过程为 i =11⇒S =11×1,i =10; i =10⇒S =11×10,i =9; i =9⇒S =11×10×9,i =8;i =8<9退出循环,执行“PRINT S ”. 故S =990. 答案:9902.阅读如图所示的程序.a 的值是________. 解析:由题意可得程序的功能是计算并输出a =⎩⎪⎨⎪⎧2+a ,a >2,a ×a ,a ≤2的值, 当a >2时,由2+a =9得a =7; 当a ≤2时,由a 2=9得a =-3, 综上知,a =7或a =-3. 答案:-3或7[课时跟踪检测]1.(2019·湖北八校联考)对任意非零实数a ,b ,定义a *b 的运算原理如图所示,则(log222)*⎝⎛⎭⎫18-23=( )A .1B .2C .3D .4解析:选A 因为log222=3,⎝⎛⎭⎫18-23=4,3<4,所以输出4-13=1,故选A. 2.执行如图所示的程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74解析:选C 第一次执行循环体,y =90,s =867+15,不满足退出循环的条件,故x =90;第二次执行循环体,y =86,s =907+433,不满足退出循环的条件,故x =94;第三次执行循环体,y =82,s =947+413,不满足退出循环的条件,故x =98;第四次执行循环体,y =78,s =27,满足退出循环的条件,故x =98,y =78.3.(2018·云南民族大学附属中学二模)执行如图所示的程序框图,若输出的k 的值为6,则判断框内可填入的条件是( )A .s >12?B .s >710?C .s >35?D .s >45?解析:选B s =1,k =9,满足条件;s =910,k =8,满足条件;s =45,k =7,满足条件;s =710,k =6,不满足条件.输出的k =6,所以判断框内可填入的条件是“s >710?”.故选B.4.(2019·合肥质检)执行如图所示的程序框图,如果输出的k 的值为3,则输入的a 的值可以是( )A .20B .21C .22D .23解析:选A 根据程序框图可知,若输出的k =3,则此时程序框图中的循环结构执行了3次,执行第1次时,S =2×0+3=3,执行第2次时,S =2×3+3=9,执行第3次时,S =2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.5.(2019·重庆质检)执行如图所示的程序框图,如果输入的x =0,y =-1,n =1,则输出x ,y 的值满足( )A .y =-2xB .y =-3xC .y =-4xD .y =-8x解析:选C 初始值x =0,y =-1,n =1,x =0,y =-1,x 2+y 2<36,n =2,x =12,y=-2,x 2+y 2<36,n =3,x =32,y =-6,x 2+y 2>36,退出循环,输出x =32,y =-6,此时x ,y 满足y =-4x ,故选C.6.(2018·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A.i≥10? B.i≥11?C.i≤11? D.i≥12?解析:选B执行程序框图,i=12,s=1;s=12×1=12,i=11;s=12×11=132,i =10.此时输出的s=132,则判断框中可以填“i≥11?”.7.(2019·漳州八校联考)执行如图所示的程序,若输出的y的值为1,则输入的x的值为() INPUT xIF x>=1THENy=x2ELSEy=-x2+1END IFPRINT yENDA.0 B.1C.0或1 D.-1,0或1解析:选C当x≥1时,由x2=1得x=1或x=-1(舍去);当x<1时,由-x2+1=1得x=0.∴输入的x的值为0或1.)8.执行如图所示的程序框图,若输入的n=4,则输出的s=(C.20 D.35解析:选C执行程序框图,第一次循环,得s=4,i=2;第二次循环,得s =10,i =3; 第三次循环,得s =16,i =4; 第四次循环,得s =20,i =5.不满足i ≤n ,退出循环,输出的s =20.9.(2018·洛阳第一次统考)已知某算法的程序框图如图所示,则该算法的功能是( )A .求首项为1,公差为2的等差数列的前2 018项和B .求首项为1,公差为2的等差数列的前2 019项和C .求首项为1,公差为4的等差数列的前1 009项和D .求首项为1,公差为4的等差数列的前1 010项和解析:选D 由程序框图得,输出的S =(2×1-1)+(2×3-1)+(2×5-1)+…+(2×2 019-1),可看作数列{2n -1}的前2 019项中所有奇数项的和,即首项为1,公差为4的等差数列的前1 010项和.故选D.10.(2018·郑州第一次质量测试)执行如图所示的程序框图,若输出的结果是7,则判断框内m 的取值范围是( )A .(30,42]B .(30,42)C .(42,56]D .(42,56)解析:选A k =1,S =2,k =2;S =2+4=6,k =3;S =6+6=12,k =4;S =12+8=20,k =5;S =20+10=30,k =6;S =30+12=42,k =7,此时不满足S =42<m ,退出循环,所以30<m ≤42,故选A.11.(2019·石家庄调研)20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换,如果n 是奇数,则下一步变成3n +1;如果n 是偶数,则下一步变成n2.这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i 值为6,则输入的n 值为( )A .5或16B .16C .5或32D .4或5或32解析:选C 若n =5,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.若n =32,执行程序框图,n =16,i =2;n =8,i =3;n =4,i =4;n =2,i =5;n =1,i =6,结束循环,输出的i =6.当n =4或16时,检验可知不正确,故输入的n =5或32,故选C.12.(2018·贵阳第一学期检测)我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”如图所示的程序框图反映了对此题的一个求解算法,则输出的n 的值为( )A .20B .25C .30D .35解析:选B 法一:执行程序框图,n =20,m =80,S =60+803=8623≠100;n =21,m =79,S =63+793=8913≠100;n =22,m =78,S =66+783=92≠100;n =23,m =77,S =69+773=9423≠100;n =24,m =76,S =72+763=9713≠100;n =25,m =75,S =75+753=100,退出循环.所以输出的n =25.法二:设大和尚有x 个,小和尚有y 个, 则⎩⎪⎨⎪⎧x +y =100,3x +13y =100,解得⎩⎪⎨⎪⎧x =25,y =75, 根据程序框图可知,n 的值即大和尚的人数,所以n =25.13.已知函数y =lg|x -3|,如图所示程序框图表示的是给定x 值,求其相应函数值y 的算法.请将该程序框图补充完整.其中①处应填________,②处应填________.解析:由y =lg|x -3|=⎩⎪⎨⎪⎧lg (x -3),x >3,lg (3-x ),x <3及程序框图知,①处应填x <3?,②处应填y=lg(x -3).答案:x <3? y =lg(x -3)14.执行如图所示的程序框图,若输入的N =20,则输出的S =________.解析:依题意,结合题中的程序框图知,当输入的N =20时,输出S 的值是数列{2k -1}的前19项和,即19(1+37)2=361.答案:36115.执行如图所示的程序框图,则输出的λ是________.解析:依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图可知,输出的λ是-2.答案:-216.执行如图所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为________.解析:当条件x ≥0,y ≥0,x +y ≤1不成立时,输出S 的值为1,当条件x ≥0,y ≥0,x +y ≤1成立时,输出S =2x +y ,下面用线性规划的方法求此时S 的最大值.作出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域如图中阴影部分所示,由图可知当直线S =2x +y 经过点M (1,0)时S 最大,其最大值为2×1+0=2,故输出S 的最大值为2.答案:2。
算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。
邗江职业技术教育中心教案一、引言:说起算法,大家有可能觉得有点陌生,但事实上,我们几乎每天都会和它打交道,例如,青菜的价格是4.8元/kg,买了1.2kg,如果我们用计算器计算该付多少钱,我们做法是:第一步按计算机的开启键;第二步按数字键输入4.8;第三步按乘号键;第四步按数字键输入1.2;第五步按等号键得出结果。
这就是解决这个问题的算法;二、新课讲授:(一)探究小李想用银行卡从自动取款机上取500元钱,由于他第一次用银行卡取钱,所以向你求助,你能写出用银行卡取钱的具体步骤,帮助他顺利取出钱吗?第一步插入银行卡;第二步输入取款密码;第三步输入取款金额;第四步从出钞口取走钱;第五步取回银行口;(二)算法1、定义:算法是指用来解决问题的一系列明确而有效的步骤,是解决问题清晰的指令。
即能够对一定规范的输入,在有限的时间内获得所要求的答案。
2、设计算法的要求:写出的算法必须能够解决某一类问题;要使算法尽量的简单,步骤尽量少;要保证算法正确,且计算能够执行。
(三)例题讲解例1:设计一个算法,求出1+2+3+4+5……+10的值。
解:算法为:第一步计算1+2,得出结果3;第二步计算3+3,得出结果6;第三步计算6+4,得出结果10;第四步计算10+5,得出结果15;……第九步 计算45+10,得出结果55。
所以:1+2+3+……+10=55例2:现有一杯开水和一杯茶,你能设计一个算法,将两个杯子中的开水和茶对调吗? 试一试。
解:设原来装开水的是A 杯,装茶的是B 杯,空杯子为C 杯 将开水和茶对调的算法为: 第一步 将A 杯中的开水倒入C 杯; 第二步 将B 杯中的茶倒入A 杯; 第三步 将C 杯中的开水倒入B 杯;完成练习(1) 设计一个算法,求出10321⨯⨯⨯⨯ 的值。
(2) 写出从12,3,-1,2,6,9,18,5,-3,17中搜索出数据5的一个算法。
(四) 变量和赋值(1)变量:在解决问题的过程中,可以取不同数值的量叫做变量。
课题:§12.1算法的概念【授课类型】新课【授课时间】3课时【授课班级】13机械【教学内容及其分析】本节内容主要包括算法的概念、特征及算法的设计。
体会算法的基本思想,会用“算法”的思想编制数学问题的算法【教学目标】【知识和技能】1、了解算法的含义,体会算法的基本思想。
2、通过实例分析理解算法的有穷性、可行性、确切性、有0个、1个或多个输入和有一个或多个输出等特征。
3、会用“算法”的思想编制数学问题的算法。
【过程和方法】从日常生活中感知生活中的算法,了解算法的概念;【情感态度价值观】1、培养学生的观察、推理和归纳的能力,养成细心观察、主动探究、善于总结的良好思维习惯。
2.通过师生、生生的合作学习,增强学生团队协作能力,增强主动和他人合作交流的意识。
【重点难点】【教学重点】算法的概念,变量赋值的格式及算法的设计【教学难点】算法的设计【教学方法】阅读教学内容,理解算法的含义。
学生间相互合作学习,相互出题测试对方,在测试中掌握算法的概念及其思想,提高自己的学习能力。
【教学资源准备】活动单结构教学内容教师活动学生活动设计意图和时间分配导入怎样计算:6+5×(4-2)?(先去括号,再乘除,后加减)你知道把大象装冰箱,分几步吗?答:分三步:第一步:打开冰箱门.第二步:把大象装冰箱.第三步:关上冰箱门.设计问题让学生讨论自学讨论,交流,发言5营造气氛,并引出课题新授新授新授小结新授活动一:任务1:通过实例,了解算法的概念小李想用银行卡从自动取款机上取500元钱,由于他第一次用银行卡取钱,所以向你求助,你能写下用银行卡取钱的具体步骤,帮助他顺利取出钱吗?已知青菜的价格是4.8元/kg,买了1.2kg,如果我们用计算器计算该付多少钱,我们解决这个问题的步骤是什么?在数学中,现代意义上的算法是指用来解决某一类问题的明确有效的程序或步骤,是解决问题的清晰的指令。
任务2:算法的设计例1. 写出求1+2+3+4+5的一个算法.注意:同一问题的解决算法一般是不唯一的一个好的算法的特点:高效性:运算的次数少,执行的速度快,占用的资源少。