专题:算法与程序框图[学生版]
- 格式:doc
- 大小:342.50 KB
- 文档页数:3
人教版高二数学上册算法框图的基本结构及设计知识点算法与程序框图算法框图是一种图形化的表示方法,用于描述算法的步骤和流程。
它由特定的符号和连接线构成,可以清晰地展示算法的逻辑结构和执行流程。
在人教版高二数学上册中,学生将学习算法框图的基本结构和设计知识点。
以下是相关的基本知识点和注意事项:1.算法框图的基本结构(1) 开始(Start)和结束(End):算法的执行通常从一个开始符号开始,以一个结束符号结束。
(2)输入和输出:算法通常需要获取输入数据并输出结果,在框图中用特殊符号表示。
(3) 过程(Process):算法中的操作步骤可以通过过程符号表示,包括一系列的计算或逻辑操作。
(4) 判断(Decision):算法可能需要进行条件判断,根据不同的条件执行不同的步骤。
判断符号通常有两个或多个出口,分别表示不同的条件结果。
(5) 循环(Loop):算法可能需要进行循环操作,重复执行一些步骤。
循环符号通常有一个判断条件和两个出口。
(6)连接线:算法框图之间通过连接线连接,表示程序的执行流程。
2.算法框图的设计知识点(1)模块化:将算法分解为若干个模块,每个模块完成一个特定的功能。
通过模块化可以提高算法的可读性和可维护性。
(2)层次结构:将算法按照层次结构进行组织,从而使得算法的逻辑结构清晰可见。
(3)合并与分支:合并表示将多个路径上的运行流程合并到一起,分支表示根据不同的条件选择不同的运行路径。
(4)定义变量和赋值操作:算法框图中需要定义和使用变量,通过赋值操作可以对变量进行初始化和修改。
(5)循环操作:循环操作用于重复执行一段程序代码,框图中循环部分需要设置循环条件和循环体。
(6)逻辑判断:算法框图中经常需要进行逻辑判断,根据不同的条件执行不同的代码。
(7)输入和输出:算法框图中需要用特定符号表示输入和输出的部分,以表示算法的输入和输出过程。
3.算法与程序框图的关系算法框图是对算法的图形化描述,用于表示算法的执行流程和逻辑结构。
题型一:算法的含义【例1】 下面对算法描述正确的一项是( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同【例2】 关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止【例3】 下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭要需要刷锅.添水.加热这些步骤C .在野外做饭叫野炊D .做饭必需要有米【例4】 下面的结论正确的是( )A .一个程序算法步骤是可逆的B .一个算法可以无止境的运算下去C .完成一件事的算法有且只有一种D .设计算法要本着简单方便的原则【例5】 算法的有穷性是指( )A .算法最后包含输出B .算法的每个操作步骤都是可执行的C .算法的步骤必须有限D .以上都不正确【例6】 指出下列哪一个不是算法 ( )A .解方程260x -=的过程是移项和系数化为1B .从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C .解方程2210x x +-=D .利用公式2πS r =,计算半径为3的圆的面积为2π3⨯【例7】 看下面的四段话,其中不是解决问题的算法的是( )A .从济南到北京旅游,先坐火车,再坐飞机抵达B .解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C .方程210x -=有两个实根典例分析板块一.算法的含义与描述D.求12345+=,10515+=,最终结+=,6410+=,再由于336++++的值,先计算123果为15【例8】不能描述算法的是()A.流程图B.伪代码C.数据库D.自然语言【例9】早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶【例10】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c=;②输入直角三角形两直角边长a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③题型二:算法分析(自然语言与数学语言)【例11】算法:S1 输入nS2 判断n是否是2,若2n=,则n满足条件,若2n>,则执行S3S3 依次从2到1n-检验能不能整除n,若不能整除n,满足上述条件的是()A.质数B.奇数C.偶数D.约数【例12】“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何.用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法.【例13】某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼.羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜,设计安全过河的算法.【例14】人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人.请问如何才能使人和鬼都平安的到达对岸.【例15】 现在有三个油瓶,分别能装8kg .5kg .3kg 的油,当8kg 的瓶子装满油时,设计一个用这三个瓶子倒油的算法,怎样倒能使这些油被平分到两个瓶子里.(注:没有其它瓶子)【例16】 设计一个算法求解方程组374513x y x y +=⎧⎨+=⎩【例17】 用二分法设计一个求方程220x -=的近似根的算法.【例18】 分别用自然语言.数学语言写出对任意四个整数a .b .c .d ,求出最小值的算法.【例19】 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下:S1 输入订单数额x (单位:件);输入单价A (单位:元); S2 若250x <,则折扣率0d =;若250500x <≤,则折扣率0.05d =; 若5001000x <≤,则折扣率0.10d =; 若1000x ≥,则折扣率0.15d =;S3 计算应付货款()1T Ax d =-(单位:元);S4 输出应付货款T .已知一客户买400件时付款38000元,则应付货款为88200元时订单数额是 .题型三:算法的三种基本逻辑结构与程序框图【例20】 流程图中表示判断框的是 ( )A .矩形框B .菱形框C .圆形框D .椭圆形框【例21】 框图与算法相比,下列判断正确的是( )A .程序框图将算法的基本逻辑展现得很清楚B .算法使用自然语言描述解决问题的步骤,程序框图使得这些步骤更为直观C .实质不变,形势变复杂了D .程序框图更接近于计算机理解【例22】 尽管算法千差万别,程序框图按逻辑结构分类有( )类A .2B .3C .4D .5【例23】 算法的三种基本结构是( )A .顺序结构、选择结构、循环结构B .顺序结构、流程结构、循环结构C .顺序结构、分支结构、流程结构.D .流程结构、循环结构、分支结构【例24】下列关于框图的逻辑结构正确的是()A.用顺序结构画出电水壶烧开水的框图是唯一的B.条件结构中不含顺序结构C.条件结构中一定含有循环结构D.循环结构中一定含有条件结构【例25】下面的问题中必须用条件结构才能实现的个数是()(1)已知三角形三边长,求三角形的面积;(2)求方程0+=(,ax ba b为常数)的根;(3)求三个实数,,a b c中的最大者;(4)求123100++++的值.A.4个B.3个C.2个D.1个【例26】已知函数()|3|=-,以下程序框图表示的是给定x值,求相应的函数值的算法,请将该程f x x序框图补充完整.【例27】写出下边程序框图的运行结果:【例28】如图给出的是计算13599++++的一个程序框图,其中判断框内应填入的条件是()A.99i>i<D.100i>C.100i<B.99【例29】写出右边框图中的运算结果,____S=.【例30】写出右面的程序框图所表示的函数.【例31】如右图给出的是计算1112420+++的值的一个程序框图,其中判断框内应填入的条件是()C.20i>D.20i<【例32】如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是()A.4?T>B.4?T<C.3?T>D.3?T<【例33】按如图所示的程序框图运算,若输入6x=,则输出k的值是()A.3B.4C.5D.6【例34】 已知程序框图如图所示,则该程序框图的功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NB .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NC .求数列1n ⎧⎫⎨⎬的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N【例35】 阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113 C.813 D .138【例36】 已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题A .1-B .1C .2D .12【例37】 已知程序框图如图所示,则执行该程序后输出的结果是_______________.【例38】 如图,下程序框图的程序执行后输出的结果是 .【例39】右边程序框图的程序执行后输出的结果是 .n=n+2S=0n=1S=S+nn 50否是输出S结束开始【例40】 执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【例41】 某程序框图如图所示,该程序运行后输出,M N 的值分别为 .【例42】在右边的程序框图中,若输出i的值是4,则输入x的取值范围是.【例43】在右面的程序框图中,若5x ,则输出i的值是()A.2 B.3 C.4 D.5【例44】执行如图所示的程序框图,输出的T等于()A.10B.15C.20D.30【例45】在数列{}na中,11a=,1n na a n-=+,2n≥.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是()A.8i≥B.9i≥C.10i≥D.11i≥【例46】执行右图所示的程序框图,输出结果y的值是_________.否是结束输出yy = e x - 2x > 2x = xx = 16开始【例47】按照如图的程序框图执行,若输出结果为15,则M处条件为()C.16k<D.8k≥开始S=0MS=S+k2k k=⨯结束输出S是否k=1【例48】若某程序的框图如图,若输入的x的值为12,则执行该程序后,输出的y值为.【例49】某程序框图如图所示,该程序运行后,输出的x值为31,则a等于()A.1-B.0C.1D.2【例50】右面的程序框图,如果输入三个实数a.b.c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()x c>C.c b>D.b c>【例51】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行S 的值是 .【例52】 执行下边的程序框图,若0.8p =,则输出的n = .【例53】 阅读如图的程序框图,若输入4m =,6n =,则输出a = ,i =(注:框图中的赋值符号“=”也可以写成“←”或“:=”)【例54】执行右边的程序框图,输出的T=.【例55】阅读右面的程序框图,则输出的S=()A.26B.35C.40D.57【例56】 随机抽取某产品n 件,测得其长度分别为12n a a a ,,,.则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 . (注:框图中的赋值符号“=”也可以写成“←”“:=”)【例57】 某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7【例58】 如果执行右边的程序框图,输入2x =-,0.5h =,那么输出的各个数的和等于( )D .4.5【例59】2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的执行框内应填入.【例60】阅读右边的程序框图,若输出s的值为7-,则判断框内可填写( )A.3?i<B.4?i<C.5?i<D.6?i<【例61】某程序框图如图所示,若输出的57S=,则判断框内为( )B.5?k>C.6?k>D.7?k>【例62】 如图所示,程序框图(算法流程图)的输出x __ __.【例63】 阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2B .3C .4D .5【例64】 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 .【例65】 如果执行右面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于( )A .1C m n -B .1A m n -C .C m nD .A mn【例66】 如果执行下面的框图,输入5N =,则输出的数等于( )A .4B .45C .65D .56【例67】下面程序框图所表示的算法的功能是()A.计算11112349++++的值B.计算11113549++++的值C.计算11113599++++的值D.计算11112399++++的值第9题图【例68】右图是一个程序框图,其中判断框①处缺少一个判断条件,②为一输出框.⑴若在①处填空“2009n=”,请求出在输出框②处输出的y的值;⑵若在①处填空“2008②处输出的n的值.【例69】 程序program-3的任务为输入100个产品的内径尺寸数据,并找出其中的最值.;(2)________.程序program-3执行完毕,M1,M2的输出值中是最大值的是______.【例70】 任意给定一个正数,设计一个算法求以这个数为半径的圆的周长,并画出程序框图.【例71】 半径为r 的圆面积计算公式为2πS r =,写出计算圆面积的算法,并画出框图.【例72】 画出计算123⨯⨯的程序框图.【例73】 分别用数学语言和程序框图写出计算13579++++的算法.【例74】 三角形的面积公式12S ah =,用算法描述求7.18.5a h ==,时的三角形面积,并画出算法的程序框图.【例75】 设计一个算法计算ABC ∆的面积,并画出算法的程序框图.【例76】 画出求1220⨯⨯⨯的程序框图.【例77】 画出求123100++++的程序框图.【例78】 写出计算3333123100++++的值的一个程序框图.【例79】 写出求解一般的二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的程序框图。
专题:算法与程序框图1.如下图,程序框图所进行的求和运算是( ) A.23111222+++ (1012)+ B.11123+++ ...110+ C.111+++ (118)+ D.111246+++ (120)+ 答案:D2.在可行域内任取一点,规则如下程序框图所示,则能输出数对(x,y)的概率为( )A.14B.2πC.4πD.8π 答案:C3.已知程序框图如下图所示,若输入n=6,则该程序运行的结果是( )A.2B.3C.4D.15 答案:B4.流程线的功能是( )A.表示算法的起始和结束B.表示算法输入和输出的信息C.赋值、计算D.按照算法的顺序连接程序框答案:D6.在一个算法中,如果需要反复执行某一处理步骤,最好采用的逻辑结构是( )A.顺序结构B.条件结构C.循环结构D.顺序结构或条件结构答案:C9.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为1122()()x y x y ,,,,…()n n x y ,,,…(1)若程序运行中输出的一个数组是(9,t),则t= ;(2)程序结束时,共输出(x,y)的组数为 .答案:-4 1 00510.下边程序框图给出的程序执行后输出的结果是 .答案:244.下图是一个算法的程序框图,则输出S 的值是 .答案:63解析:2122+++…423133+=<,输出1+2+22+…+452263+=.2.如下程序框图,则最后输出的结果是( )A.5 049B.4 850C.2 450D.2 550答案:D4.如果下边程序运行后输出的结果是132,那么在程序中UNTIL 后面的“条件”应为( )A.i>11B.i>=11C.i<=11D.i<11答案:D6.阅读下边的程序框图,运行相应的程序,则输出s 的值为( )A.-1B.0C.1D.3答案:B解析:第一次运行程序时,i=1,s=3;第二次运行程序时,i=2,s=4;第三次运行程序时,i=3,s=1;第四次运行程序时,i=4,s=0,此时执行i=i+1后i=5,退出循环输出s=0.。
高一数学算法和程序框图试题答案及解析1.如图所示,程序框图(算法流程图)的输出结果是()A.B.C.D.【答案】A【解析】条件成立,第一次执行循环体,条件成立,第二次执行循环体条件成立,第三次执行循环体;条件不成立,退出循环,输出.【考点】程序框图的识别和应用.2.若某程序图如图所示,则该程序运行后输出的k的值是()A.4B.5C.6D.7【答案】B【解析】第一次执行循环体,.第二次执行循环体,,.第三次执行循环体,【考点】理解程序框图的逻辑结构.3.如下图所示程序框图,已知集合是程序框图中输出的值},集合是程序框图中输出的值},全集U=Z,Z为整数集,当时,等于( )A.B.{-3. -1,5,7}C.{-3, -1,7}D.{-3, -1,7,9}【答案】D.【解析】依次执行程序框图中的语句:,;,;,;,;,;,;,;∴,,∴.【考点】读程序框图.4.在如图所示的程序框图中,输入A=192,B=22,则输出的结果是( ).A.0B.2C.4D.6【答案】B.【解析】本题要注意的是C是A除以B所得的余数,按程序框图可知有如下过程:原来:,第一次:C=16,A=22,B=16;第二次:C=6,A=16,B=6;第三次:C=4,A=6,B=4;第四次:C=2,A=4,B=2;第五次:C=0,A=2,B=0,此时B=0,则输出A=2,故选B.【考点】读懂程序框图的流程,赋值语句(如A=B,是把B的值赋值给A).5.如果执行右边的程序框图,那么输出的()A.22B.46C.94D.190【答案】C【解析】.运行第1次,=1,=1,=2,=4,=2>5,否,循环;运行第2次,=3,=10,=3>5,否,循环;运行第3次,=4,=22,=4>5,否,循环;运行第4次,=5,=46,=5>5,否,循环;运行第5次,=6,=94,=6>5,是,输出S=94,故选C【考点】程序框图6.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。
高一数学算法和程序框图试题答案及解析1.如图是求样本平均数的程序框图,图中空白框中应填入的内容为()A.B.C.S=S+n D.S=S+【答案】A【解析】由于,故第次循环为.【考点】程序框图的应用.2.下图为某算法的程序框图,则程序运行后输出的结果是()A.2B.1C.3D.4【答案】C【解析】这里外是一个循环结构,一共循环了次,而内部是一个选择结构,根据条件确定的值是还是,然后把的值加给,次循环结束后,输出的值,便是正确答案,结果选择C.只要读懂题意,然后把人设想成计算机,按步骤逐步操作,最后就能得到正确答案.【考点】算法中的程序框图和循环结构与选择结构的嵌套.3.如图的程序框图,如果输入三个实数a,b,c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ).A.c>x?B.x>c?C.c>b?D.b>c?【答案】A.【解析】本题是寻找三个数中最大的数,在令a为x后,判断x与b的大小,因此第二个判断框里要判断的是x与c的大小,由于此时判断“是”时,c赋值为x,最后输出x,所以要填的是“c>x?”.【考点】程序框图的理解与应用,填写判断框处的语句是常考的一个考点.4.按右边程序框图运算:若,则运算进行几次才停止?A.B.C.D.【答案】C【解析】第一次循环,第二次循环,第三次循环,第四次循环,第五次循环。
【考点】直到型循环程序框图。
5.执行如图所示的程序框图,如果输入,那么输出的a值为()A.B.C.D.【答案】C【解析】根据程序框图的描述,是求使成立的最小a值,故选C.【考点】程序框图.6.执行下图的程序框图,若输入的x=2,则输出的y的值为【答案】23【解析】根据题意,本程序框图为求y的和循环体为“直到型”循环结构,输入x=2,第一次循环:y=2×2+1=5,x=5;第二次循环:y=2×5+1=11,x=11;第三次循环:y=2×11+1=23,∵|x-y|=12>8,∴结束循环,输出y=23.故答案为:23.【考点】本题为程序框图题,考查对循环结构的理解和认识,按照循环结构运算后得出结果.属于基础题.7.若某程序框图如图所示,则输出的p的值是 ()A.30B.28C.21D.55【答案】A【解析】根据框图的循环结构,依次;;。
题型一:算法的含义 【例1】 下面对算法描述正确的一项是( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同【例2】 关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止【例3】 下面四种叙述能称为算法的是( )A .在家里一般是妈妈做饭B .做米饭要需要刷锅.添水.加热这些步骤C .在野外做饭叫野炊D .做饭必需要有米【例4】 下面的结论正确的是( )A .一个程序算法步骤是可逆的B .一个算法可以无止境的运算下去C .完成一件事的算法有且只有一种D .设计算法要本着简单方便的原则【例5】 算法的有穷性是指( )A .算法最后包含输出B .算法的每个操作步骤都是可执行的C .算法的步骤必须有限D .以上都不正确【例6】 指出下列哪一个不是算法 ( )A .解方程260x -=的过程是移项和系数化为1B .从济南到温哥华需要先乘火车到北京,再从北京乘飞机到温哥华C .解方程2210x x +-=D .利用公式2πS r =,计算半径为3的圆的面积为2π3⨯【例7】 看下面的四段话,其中不是解决问题的算法的是( )A .从济南到北京旅游,先坐火车,再坐飞机抵达B .解一元一次方程的步骤是去分母.去括号.移项.合并同类项.系数化为1C .方程210x -=有两个实根D .求12345++++的值,先计算123+=,再由于336+=,6410+=,10515+=,最终结典例分析板块一.算法的含义与描述果为15【例8】不能描述算法的是()A.流程图B.伪代码C.数据库D.自然语言【例9】早上从起床到出门需要洗脸刷牙(5min).刷水壶(2min).烧水(8min).泡面(3min).吃饭(10min).听广播(8min)几个步骤,下列选项中最好的一种算法为()A.s1洗脸刷牙s2刷水壶s3烧水s4泡面s5吃饭s6听广播B.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭s5听广播C.s1刷水壶s2烧水的同时洗脸刷牙s3泡面s4吃饭的同时听广播D.s1吃饭的同时听广播s2泡面s3烧水的同时洗脸刷牙s4刷水壶【例10】已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算22=+;②输入直角三角形两直角边长a,b的值;c a b③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③题型二:算法分析(自然语言与数学语言)【例11】算法:S1 输入nS2 判断n是否是2,若2n>,则执行S3n=,则n满足条件,若2S3 依次从2到1n-检验能不能整除n,若不能整除n,满足上述条件的是()A.质数B.奇数C.偶数D.约数【例12】“鸡兔同笼“是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何.用方程组的思想不难解决这一问题,请你设计一个这类问题的通用算法.【例13】某人带着一只狼和一只羊及一捆青菜过河,只有一条船,船仅可载重此人和狼.羊及青菜中的一种,没有人在的时候,狼会吃羊,羊会吃青菜,设计安全过河的算法.【例14】人鬼过河现在河的岸边有三个人和三个鬼,河上只有一条小船,船上最多能坐两个“人”,在河的任何一边,当鬼的个数比人多时,鬼就会吃掉人.请问如何才能使人和鬼都平安的到达对岸.【例15】现在有三个油瓶,分别能装8kg.5kg.3kg的油,当8kg的瓶子装满油时,设计一个用这三个瓶子倒油的算法,怎样倒能使这些油被平分到两个瓶子里.(注:没有其它瓶子)【例16】设计一个算法求解方程组37 4513 x yx y+=⎧⎨+=⎩【例17】用二分法设计一个求方程220x-=的近似根的算法.【例18】分别用自然语言.数学语言写出对任意四个整数a.b.c.d,求出最小值的算法.【例19】某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下:S1 输入订单数额x(单位:件);输入单价A(单位:元);S2 若250x<,则折扣率0d=;若250500x<≤,则折扣率0.05d=;若5001000x<≤,则折扣率0.10d=;若1000x≥,则折扣率0.15d=;S3 计算应付货款()1T Ax d=-(单位:元);S4 输出应付货款T.已知一客户买400件时付款38000元,则应付货款为88200元时订单数额是.题型三:算法的三种基本逻辑结构与程序框图【例20】流程图中表示判断框的是()A.矩形框B.菱形框C.圆形框D.椭圆形框【例21】框图与算法相比,下列判断正确的是()A.程序框图将算法的基本逻辑展现得很清楚B.算法使用自然语言描述解决问题的步骤,程序框图使得这些步骤更为直观C.实质不变,形势变复杂了D.程序框图更接近于计算机理解【例22】尽管算法千差万别,程序框图按逻辑结构分类有()类A.2 B.3 C.4 D.5【例23】算法的三种基本结构是()A.顺序结构、选择结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构.D.流程结构、循环结构、分支结构【例24】下列关于框图的逻辑结构正确的是()A.用顺序结构画出电水壶烧开水的框图是唯一的B.条件结构中不含顺序结构C .条件结构中一定含有循环结构D .循环结构中一定含有条件结构【例25】 下面的问题中必须用条件结构才能实现的个数是( )(1)已知三角形三边长,求三角形的面积;(2)求方程0ax b +=(,a b 为常数)的根;(3)求三个实数,,a b c 中的最大者;(4)求123100++++L 的值.A .4个B .3个C .2个D .1个【例26】 已知函数()|3|f x x =-,以下程序框图表示的是给定x 值,求相应的函数值的算法,请将该程序框图补充完整.【例27】 写出下边程序框图的运行结果:否是输出ss=s+i i =i +2i <20s =0i =2结束开始【例28】 如图给出的是计算13599++++L 的一个程序框图,其中判断框内应填入的条件是( )i=i+2T = T + i否i = 1T= 0是输出T结束开始99i <.99i > C .100i < D .100i >【例29】 写出右边框图中的运算结果,____S =. a = 2b = 4S=ab +ba输出S结束开始【例30】 写出右面的程序框图所表示的函数.y =1+ x *xy = 2*x +4输出y结束否是x > 0输入x开始【例31】 如右图给出的是计算1112420+++L 的值的一个程序框图,其中判断框内应填入的条件是( ) i=i + 1结束输出S否是n=n +2S=S+1nS =0,i =1,n =2开始C .20i >D .20i <【例32】 如图是一个算法的程序框图,若该程序输出的结果为45,则判断框中应填入的条件是( ) A .4?T > B .4?T < C .3?T > D .3?T <S = S +1T ⋅ i T =T +1i =i+1S =0T =0i =1输出S 否是结束开始【例33】 按如图所示的程序框图运算,若输入6x =,则输出k 的值是( )A .3B .4C .5D .6结束输出k否是x >100?k =k +1x =2x +1k =0输入x开始【例34】 已知程序框图如图所示,则该程序框图的功能是( )A .求数列1n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈NB .求数列12n ⎧⎫⎨⎬⎩⎭的前10项和()n *∈N C .求数列1n ⎧⎫⎨⎬的前11项和()n *∈N D .求数列12n ⎧⎫⎨⎬⎩⎭的前11项和()n *∈N 开始0S =2n =1k = 10k ≤ 输出S结束1S S n=+ 2n n =+1k k =+ 是否【例35】 阅读右面的程序框图,运行相应的程序,输出的结果为( )A .1321B .2113C .813D .138输出y x y = z x = yz<20z = x +yx =1, y =1否是结束开始【例36】 已知某程序框图如图所示,则执行该程序后输出的结果是( )第 7 题结束输出 ai = i +1否是a = 1- 1a i ≥ 2010a = 2 , j = 1开始A .1-B .1C .2D .12【例37】 已知程序框图如图所示,则执行该程序后输出的结果是_______________. 结束输出 ai = i +1否是a = 1- 1a i ≥ 20a = 2 , j = 1开始【例38】 如图,下程序框图的程序执行后输出的结果是 .S=S+nn=n+1n=1S=0n 10否是输出S 结束开始【例39】 右边程序框图的程序执行后输出的结果是 .n=n+2S=0n=1S=S+nn 50否是输出S 结束【例40】 执行如图程序框图,输出S 的值等于 .12题图否是输出Si <=4i=i + 1S =S + AA=A + iA=0,S=0,i=1结束开始【例41】 某程序框图如图所示,该程序运行后输出,M N 的值分别为 . 【例42】 在右边的程序框图中,若输出i 的值是4,则输入x 的取值范围是 .N Y 结束输出 ix > 82i = i +1x = 3x -2i = 0输入 x【例43】 在右面的程序框图中,若5x =,则输出i 的值是( )x > 109i = i + 1N Y输出i结束x = 3x -2i = 0输入x开始 A .2 B .3 C .4 D .5【例44】 执行如图所示的程序框图,输出的T 等于( )A .10B .15C .20D .30【例45】 在数列{}n a 中,11a =,1n n a a n -=+,2n ≥.为计算这个数列前10项的和,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是( )A .8i ≥B .9i ≥C .10i ≥D .11i ≥【例46】 执行右图所示的程序框图,输出结果y 的值是_________. 否是结束输出yy = e x - 2x > 2x = xx = 16开始【例47】 按照如图的程序框图执行,若输出结果为15,则M 处条件为( ) C .16k < D .8k ≥【例48】 若某程序的框图如图,若输入的x 的值为12,则执行该程序后,输出的y 值为 . 开始S =0MS =S +k 2k k =⨯结束 输出S是 否k =1y=4xy=1y=x 2x < 1x > 1Y YNN 结束输出y输入x开始【例49】 某程序框图如图所示,该程序运行后,输出的x 值为31,则a 等于( )A .B .0C .1D .2x=1,x =an ≤4否是n=n+1x=2x+1输出x 结束开始【例50】 右面的程序框图,如果输入三个实数a .b .c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) x c > C .c b > D .b c >x =cx =b输出xb >xx =a输入a , b , c否否是是结束开始【例51】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.序号 (i ) 分组 (睡眠时间) 组中值 (i G ) 频数 (人数) 频率(i F )1 [4,5)4.5 6 0.12 2 [5,6)5.5 10 0.20 3 [6,7)6.5 20 0.40 4 [7,8)7.5 10 0.20 5 [8,9]8.5 4 0.08 S 的值是 .i i ≥ 5?S+G i ×F i S ,F iG i i i +110S N Y输出S输入结束开始【例52】 执行下边的程序框图,若0.8p =,则输出的n = .n =n +1S =S +12n S < p ?n =1, S =0输入 p输出m 否是结束开始【例53】 阅读如图的程序框图,若输入4m =,6n =,则输出a = ,i =(注:框图中的赋值符号“=”也可以写成“←”或“:=”)否i =i + 1输出a ,in 整除a ?a =m x ii = 1输入m ,n结束开始【例54】 执行右边的程序框图,输出的T = .输出TT = T+nn = n+2S =S+5S=0 ,T=0, n=0T > S 否是结束开始【例55】 阅读右面的程序框图,则输出的S =( )A .26B .35C .40D .57输出Si >5?i = i+1S=S+TT = 3i -1S =0 , i =1否是结束开始【例56】 随机抽取某产品n 件,测得其长度分别为12n a a a L ,,,.则如图所示的程序框图输出的s = ,s 表示的样本的数字特征是 . (注:框图中的赋值符号“=”也可以写成“←”“:=”)i =i +1S =(i -1)×S+a ii 否是开始结束输 出 Si ≤ n ? S=0, i=1输入 n ,a 1,a 2,...,a n【例57】 某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7k=k+1S=S+2SS <100?S=0k=0输出k否是结束开始【例58】 如果执行右边的程序框图,输入2x =-,0.5h =,那么输出的各个数的和等于( )D .4.5x ≥ 2输出 yx = x + hy = 1y = x y = 0x<1x < 0输入x, h否否否是是是结束开始【例59】 2010年上海世博会园区每天9:00开园,20:00停止入园.在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 .开始T ←9,S ←0输出T ,S否是T ≤19T ←T +1输出a结束【例60】 阅读右边的程序框图,若输出s 的值为7-,则判断框内可填写( )A .3?i <B .4?i <C .5?i <D .6?i <否是结束输出 ss =s -ii =i +2s =2i =1开始【例61】 某程序框图如图所示,若输出的57S =,则判断框内为( ) B .5?k > C .6?k > D .7?k >否是结束输出SS =2S +kk =k +1S =1,k =1开始【例62】 如图所示,程序框图(算法流程图)的输出x =__ __.开始x =1x=x +1x 是奇数x=x +2x >8?输出x结束是否否【例63】 阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2B .3C .4D .5结束输出i否是s>11?i=i+1s=s+aa =i ∙2at =1s =0开始【例64】 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 .开始输入 n,x 1,x 2,…x ns 1=0,s 2=0,i =1i ≤ n输出s结束i=i +1s =1i s 2-1i s 12()s 1=s 1+x i s 2=s 2+x i 2是否【例65】 如果执行右面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于( )A .1C mn - B .1A m n - C .C m n D .A m n 开始输入 n,mk =1,p =1p=p (n-m+k )k<m 输出pk=k+1结束是否【例66】 如果执行下面的框图,输入5N =,则输出的数等于( )否是k =k +1结束输入Sk <NS =S +1k (k +1)k =1,S =0输入N开始 A .4 B .45 C .65 D .56【例67】 下面程序框图所表示的算法的功能是( )A .计算11112349++++L 的值B .计算11113549++++L 的值 C .计算11113599++++L 的值 D .计算11112399++++L 的值 第9题图否是结束输出Si=i+1n=n+2S=S+1n i>50S=0,n=1,i=1开始【例68】 右图是一个程序框图,其中判断框①处缺少一个判断条件,②为一输出框.⑴若在①处填空“2009n =”,请求出在输出框②处输出的y 的值; ⑵若在①处填空“2008②处输出的n 的值.是否否是结束②输入x=4,y=2,n=1x=x+3n=n+1①y=y+2x=4xn=n+1n 为偶数开始【例69】 程序program-3的任务为输入100个产品的内径尺寸数据,并找出其中的最值.该程序流程图如下,否是否否是是结束输出M1 , M2值i = i +1(2)(1)M2 < aM1 < a输入a 值i < 100M1= a , M2 = a , i = 1输入 a 值开始;(2)________.程序program-3执行完毕,M1,M2的输出值中是最大值的是______.【例70】 任意给定一个正数,设计一个算法求以这个数为半径的圆的周长,并画出程序框图.【例71】 半径为r 的圆面积计算公式为2πS r =,写出计算圆面积的算法,并画出框图.【例72】 画出计算123⨯⨯的程序框图.【例73】 分别用数学语言和程序框图写出计算13579++++的算法.【例74】 三角形的面积公式12S ah =,用算法描述求7.18.5a h ==,时的三角形面积, 并画出算法的程序框图.【例75】 设计一个算法计算ABC ∆的面积,并画出算法的程序框图.【例76】 画出求1220⨯⨯⨯L 的程序框图.【例77】 画出求123100++++L 的程序框图.【例78】 写出计算3333123100++++L 的值的一个程序框图.【例79】 写出求解一般的二元一次方程组11112212112222a x a xb a x a x b +=⎧⎨+=⎩的程序框图。
高考数学专题—算法与程序框图一、基础知识要求1.算法与程序框图(1)算法:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤;(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.三种基本逻辑结构及相应语句易错点:直到型循环是“先循环,后判断,条件满足时终止循环”;当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.二、算法与程序框图常见题型:(共4种题型:由程序框图求输出结果、由输出结果判断输入量的值、辨析程序框图的算法功能、完善程序框图)1、由程序框图求输出结果:已知程序框图,求输出的结果,可按程序框图的流程依次执行,最后得出结果.例1、【2020年高考江苏】如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.【答案】3-【解析】由于20x >,所以12y x =+=-,解得3x =-. 故答案为:3-例2、【广西南宁市第三中学2020届高三适应性月考卷】运行如图所示的程序算法,则输出的结果为A .2B .12C .13D .132【答案】A【解析】当2a =时, 1k =;当132a =时,3k =; 当132132a ==时,5k =;…;当132a =时,99k =,当2a =时,101k =,跳出循环; 故选:A .例3、【河北省衡水中学2020届高三下学期第二次调研数学】执行如图所示的程序框图,输出的结果是A .5B .6C .7D .8【答案】B【解析】1i =,12n =, 第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选B .例4、【广东省深圳市2020届高三下学期第二次调研数学】执行如图的程序框图,如果输入的k =0.4,则输出的n =A .5B .4C .3D .2【答案】C【解析】模拟程序的运行,可得k =0.4,S =0,n =1, S 11133==⨯, 不满足条件S >0.4,执行循环体,n =2,S 11113352=+=⨯⨯(1111335-+-)25=,不满足条件S >0.4,执行循环体,n =3,S 11111335572=++=⨯⨯⨯(11111133557-+-+-)37=, 此时,满足条件S >0.4,退出循环,输出n 的值为3. 故选:C .例5、【甘肃省西北师大附中2020届高三5月模拟试卷】“辗转相除法”是欧几里得《原本》中记录的一个算法,是由欧几里得在公元前300年左右首先提出的,因而又叫欧几里得算法.如图所示是一个当型循环结构的“辗转相除法”程序框图.当输入2020m =,303n =时,则输出的m 是A .2B .6C .101D .202【答案】C【解析】输入2020m =,303n =,又1r =. ①10r =>,202r =,303m =,202n =; ②2020r =>,3032021101÷=,101r =,202m =,101n ;③1010r =>,0r =,101m =,0n =; ④0r =,则0r >否,输出101m =.故选:C.例6、【重庆市第一中学2019-2020学年高三下学期期中数学】冰雹猜想也称奇偶归一猜想:对给定的正整数进行一系列变换,则正整数会被螺旋式吸入黑洞(4,2,1),最终都会归入“4-2-1”的模式.该结论至今既没被证明,也没被证伪. 下边程序框图示意了冰雹猜想的变换规则,则输出的i=A.4B.5C.6D.7【答案】B【解析】由题意,第一次循环,12S Z∉,35116S=⨯+=,011i=+=,1S≠;第二次循环,12S Z∈,11682S=⨯=,112i=+=,1S≠;第三次循环,12S Z∈,1842S=⨯=,213i=+=,1S≠;第四次循环,12S Z∈,1422S=⨯=,314i=+=,1S≠;第五次循环,12S Z∈,1212S=⨯=,415i=+=,1S=;此时输出5i=.故选:B例7、【重庆市南开中学2019-2020学年高三下学期线上期中数学】若某程序框图如图所示,则输出的S 的值是A .31B .63C .127D .255【答案】C【解析】第一次运行,1i =,0S =,8i <成立,则2011S =⨯+=,112i =+=; 第二次运行,2i =,1S =,8i <成立,则2113S =⨯+=,213i =+=; 第三次运行,3i =,3S =,8i <成立,则2317S =⨯+=,314i =+=; 第四次运行,4i =,7=S ,8i <成立,则27115S =⨯+=,415i =+=; 第五次运行,5i =,15S =,8i <成立,则215131S =⨯+=,516i =+=; 第六次运行,6i =,31S =,8i <成立,则231163S =⨯+=,617i =+=; 第七次运行,7i =,63S =,8i <成立,则2631127S =⨯+=,718i =+=; 第八次运行,8i =,127S =,8i <不成立, 所以输出S 的值为127. 故选:C .2、由输出结果判断输入量的值例8、【2020·黑龙江哈尔滨六中期中】执行如图所示的程序框图,若输出的结果是1516,则输入的a 为( )A .3B .6C .5D .4【解析】 (1)第1次循环,n =1,S =12;第2次循环,n =2,S =12+122;第3次循环,n =3,S =12+122+123;第4次循环,n =4,S =12+122+123+124=1516.因为输出的结果为1516,所以判断框的条件为n <4,所以输入的a 为4.故选D.例9、我国古代数学著作《周髀算经》有如下问题:“今有器中米,不知其数.前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =1.5(单位:升),则输入k 的值为( )A .4.5B .6C .7.5D .9【解析】选B.由程序框图知S =k -k 2-k 2×3-k 3×4=1.5,解得k =6,故选B.例10、执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2【答案】D【解析】程序运行过程如下表所示:此时故选D. 例11、【2020届华大新高考联盟高三4月教学质量测评数学】执行如图所示的程序框图,设输出数据构成集合A ,从集合A 中任取一个元素m ,则事件“函数()2f x x mx =+在[)0,+∞上是增函数”的概率为A .14B .12C .34D .35【答案】C【解析】当20x y =-⇒=; 当2111x y =-+=-⇒=-; 当1100x y =-+=⇒=; 当0113x y =+=⇒=; 当1128x y =+=⇒=; 当213x =+=,退出循环. 所以{}0,1,3,8A =-,又函数()2f x x mx =+在[)0,+∞上是增函数,所以002mm -≤⇒≥. 函数()2f x x mx =+在[)0,+∞上是增函数的概率为34. 故选:C .3、辨析程序框图的算法功能:对于辨析程序框图功能问题,可将程序执行几次,即可根据结果作出判断.例12、执行右面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足 ( ) A.y=2x B.y=3x C.y=4x D.y=5x【答案】C【解析】由题图可知,x=0,y=1,n=1,执行如下循环: x=0,y=1,n=2;x=12,y=2,n=3;x=12+1=32,y=6,退出循环,输出x=32,y=6,验证可知,C 正确.例13、执行如图所示的程序框图,输出的结果为 ( )A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)【答案】B【解析】x=1,y=1,k=0,进入循环:s=1-1=0,t=1+1=2,x=0,y=2,k=0+1=1<3;s=0-2=-2,t=0+2=2,x=-2,y=2,k=1+1=2<3;s=-2-2=-4,t=-2+2=0,x=-4,y=0,k=2+1=3≥3,跳出循环,输出(x,y),即(-4,0).例14、执行下面的程序框图,如果输入的N=4,那么输出的S=( )A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2 【答案】B【解析】由程序框图依次计算可得,输入N=4, T=1,S=1,k=2; T=12,S=1+12,k=3; T=13×2,S=1+12+13×2,k=4; T=14×3×2,S=1+12+13×2+14×3×2,k=5; 此时k 满足k>N,故输出S=1+1+1+1.例15、如果执行下边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B,则( )A.A+B 为a 1,a 2,…,a N 的和B. A+B2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 【答案】C【解析】随着k 的取值不同,x 可以取遍实数a 1,a 2,…,a N ,依次与A,B 比较,A 始终取较大的那个数,B 始终取较小的那个数,直到比较完为止,故最终输出的A,B 分别是这N 个数中的最大数与最小数.例16、【2020届清华大学中学生标准学术能力诊断性测试高三5月测试数学】下列程序框图的算法思想源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入16a =,10b =,则程序中需要做减法的次数为A .6B .5C .4D .3【答案】C【解析】由16a =,10b =,满足a b ,满足a b >,则16106a =-=;满足a b ,不满足a b >,则1064b =-=; 满足a b ,满足a b >,则642a =-=; 满足a b ,不满足a b >,则422b =-=; 不满足ab ,则输出2a =;则程序中需要做减法的次数为4, 故选:C .4、完善程序框图:完善程序框图问题,结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.例17、【2020届河南省商丘周口市部分学校联考高三5月质量检测数学】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:“松长六尺,竹长两尺,松日自半,竹日自倍,何日竹逾松长?”如图是解决此问题的一个程序框图,其中a 为松长、b 为竹长,则矩形框与菱形框处应依次填A .2a a a =+;a b <B .2aa a =+;a b < C .2a a a =+;a b ≥ D .2aa a =+;a b > 【答案】B【解析】松日自半,则表示松每日增加原来长度的一半,即矩形框应填2aa a =+;何日竹逾松长,则表示竹长超过松长,即松长小于竹长,即菱形框应填ab <. 故选:B例18、【2019·全国1·理T8文T9】下图是求12+12+12的程序框图,图中空白框中应填入( )A.A=12+A B.A=2+1A C.A=11+2AD.A=1+12A【答案】A【解析】执行第1次,A=12,k=1≤2,是,第一次应该计算A=12+12=12+A ,k=k+1=2;执行第2次,k=2≤2,是,第二次应该计算A=12+12+12=12+A,k=k+1=3;执行第3次,k=3≤2,否,输出,故循环体为A=12+A,故选A. 例19、【2018·全国2·理T7文T8】为计算S=1-12+13−14+…+199−1100,设计了右侧的程序框图,则在空白框中应填入( ) A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【答案】B【解析】由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5…最后输出S=N-T=1-12+13−14+…+199−1100,一次处理1i 与1i+1两项,故i=i+2. 例20、下面程序框图是为了求出满足3n-2n>1 000的最小偶数n,那么在和两个空白框中,可以分别填入( ) A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A ≤1 000和n=n+1 D.A ≤1 000和n=n+2【答案】D【解析】因为要求A 大于1 000时输出,且程序框图中在“否”时输出,所以“”中不能填入A>1 000,排除A,B.又要求n 为偶数,且n 初始值为0,所以“”中n 依次加2可保证其为偶数,故选D.例21、执行下面的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( ) A.x>3B.x>4C.x ≤4D.x ≤5【答案】B【解析】因为输入的x 的值为4,输出的y 的值为2,所以程序运行y=log 24=2. 故x=4不满足判断框中的条件,所以空白判断框中应填x>4.例22、【2020年高考浙江】设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S .下列命题正确的是A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素 【答案】A【解析】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项D ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项C ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128S T =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈, 若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍.若12p ≥,则32311p p p p p <<,故322111,p pp p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆.若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==,即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =, 此时{}234456711111111,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.例23、【2020年高考全国II 卷理数】0-1周期序列在通信技术中有着重要应用.若序列12na a a 满足{0,1}(1,2,)i a i ∈=,且存在正整数m ,使得(1,2,)i m i a a i +==成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +==的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12na a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是A .11010B .11011C .10001D .11001【答案】C【解析】由i m i a a +=知,序列i a 的周期为m ,由已知,5m =,511(),1,2,3,45i i k i C k a a k +===∑对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a +===++++=++++=≤∑52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a +===++++=++++=∑,不满足; 故选:C。
§13.1算法与程序框图1.算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.通常程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带方向箭头,按照算法步骤的执行顺序将程序框连接起来.3.三种基本逻辑结构(1)顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)条件结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式.其结构形式为(3)循环结构是指从某处开始,按照一定的条件反复执行某些步骤的情况.反复执行的步骤称为循环体.循环结构又分为当型(WHILE型)和直到型(UNTIL型).其结构形式为4.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.()(2)程序框图中的图形符号可以由个人来确定.()(3)输入框只能紧接开始框,输出框只能紧接结束框.()(4)条件结构的出口有两个,但在执行时,只有一个出口是有效的.()2.下列关于“赋值语句”叙述正确的是() A.3.6=x是赋值语句B.利用赋值语句可以进行代数式的化简C.赋值语句中的等号与数学中的等号意义相同D.赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值4.如图,是求实数x的绝对值的算法程序框图,则判断框①中可填________.5.阅读如图所示的程序框图,运行相应的程序,输出的s值等于________.题型一算法的顺序结构例1f(x)=x2-2x-3.求f(3)、f(-5)、f(5),并计算f(3)+f(-5)+f(5)的值.设计出解决该问题的一个算法,并画出程序框图.阅读如图所示的程序框图,若输入的a ,b ,c 分别是21,32,75,则输出的a ,b ,c 分别是( )A .75,21,32B .21,32,75C .32,21,75D .75,32,21题型二 算法的条件结构例2 下图中x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( )A .11B .10C .8D .7如图,若依次输入的x 分别为5π6、π6,相应输出的y 分别为y 1、y 2,则y 1、y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定题型三 算法的循环结构例3 阅读如图所示的程序框图,运行相应的程序,则输出n 的值为( )A .7B .6C .5D .4执行如图所示的程序框图,若输入n =8,输出S 等于( )A.49B.67C.89D.1011典例:(5分)为了求满足1+2+3+…+n <2 013的最大的自然数n ,程序框图如图所示,则输出框中应填输出( )A .i -2B .i -1C .iD .i +1A 组 专项基础训练一、选择题 1.已知一个算法: (1)m =a .(2)如果b <m ,则m =b ,输出m ;否则执行第3步. (3)如果c <m ,则m =c ,输出m .如果a =3,b =6,c =2,那么执行这个算法的结果是( )A .3B .6C .2D .m3.如图所示,程序框图(算法流程图)的输出结果为 ( )A.34B.16C.1112 D.25244.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .65阅读如图所示的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为( ) A .-1 B .1 C .3D .9二、填空题6.已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥2,2-x ,x <2.图中表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写________;②处应填写________.9.给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.10.执行下边的程序框图,若p =0.8,则输出的n =________.B 组 专项能力提升1.执行右面的程序框图,如果输入的N =4,那么输出的 S 等于( )A .1+12+13+14B .1+12+13×2+14×3×2C .1+12+13+14+15D .1+12+13×2+14×3×2+15×4×3×2。
算法与程序框图(1)____________________________________________________________________________________________________________________________________________________________________1.正确理解算法的概念,掌握算法的基本特点。
2.熟悉各种程序框及流程线的功能和作用。
1.算法的概念算法(algorithm)一词出现于12世纪, 源于算术(algorism), 即算术方法。
指的是用阿拉伯数字进行算术运算的过程。
在数学中, 算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤。
现在, 算法通常可以编成计算机程序, 让计算机执行并解决问题。
后来, 人们把它推广到一般, 把进行某一工作的方法和步骤称为算法。
广义地说, 算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法, 洗衣机的使用说明书是操作洗衣机的算法, 歌谱是一首歌曲的算法。
在数学中, 主要研究计算机能实现的算法, 即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法, 等等。
在数学中, 按照一定规则解决某一类问题的明确和有限的步骤称为算法。
思路简单清晰, 叙述复杂, 步骤繁琐, 计算量大, 完全依靠人力难以完成。
而这些恰恰就是计算机的特长, 它能不厌其烦地完成枯燥的、重复的繁琐的工作。
正因为这些, 现代算法的作用之一就是使计算机代替人完成某些工作, 这也是我们学习算法的重要原因之一。
算法具有五个重要特点:(1)______: 算法应由有限步组成, 至少对某些输入, 算法应在有限多步内结束, 并给出计算结果。
(2)______: 算法对每一个步骤都有确切的, 能有效执行且得到确定结果的, 不能模棱两可。
(3)______: 算法从初始步骤开始, 分为若干明确的步骤, 每一步都只能有一个确定的后续步骤, 前一步是后一步的前提, 只有执行完前一步才能进入到后一步, 并且每一步都确定无误后, 才能解决问题。
专题:算法与程序框图
1.如下图,程序框图所进行的求和运算是( ) A.23111222+++ (10)
12+ B.11123+++ (110)
+ C.111246+++ (118)
+ D.111246+++ (120)
+
2.在可行域内任取一点,规则如下程序框图所示,则能输出数对(x,y)的概率为( )
A.14
B.2π
C.4π
D.8
π
3.已知程序框图如下图所示,若输入n=6,则该程序运行的结果是( )
A.2
B.3
C.4
D.15
4.流程线的功能是( )
A.表示算法的起始和结束
B.表示算法输入和输出的信息
C.赋值、计算
D.按照算法的顺序连接程序框
6.在一个算法中,如果需要反复执行某一处理步骤,最好采用的逻辑结
构是( )
A.顺序结构
B.条件结构
C.循环结构
D.顺序结构
或条件结构
9.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为
1122()()x y x y ,,,,…()n n x y ,,,…
(1)若程序运行中输出的一个数组是(9,t),则t= ;
(2)程序结束时,共输出(x,y)的组数为 .
10.下边程序框图给出的程序执行后输出的结果是.
4.下图是一个算法的程序框图,则输出S的值是.
2.如下程序框图,则最后输出的结果是( )
A.5 049
B.4 850
C.2 450
D.2 550
4.如果下边程序运行后输出的结果是132,那么在程序中UNTIL后面的“条件”应为( )
A.i>11
B.i>=11
C.i<=11
D.i<11
6.阅读下边的程序框图,运行相应的程序,则输出s的值为( )
A.-1
B.0
C.1
D.3
专题:算法与程序框图
1.答案:D
2.答案:C
3. 答案:B
4.答案:D
6.答案:C
9.答案:-4 1 005
10.答案:24
4.答案:63解析:2122+++…423133+=<,输出1+2+22+…+452263+=.
2.答案:D
4.答案:D
6.答案:B
解析:第一次运行程序时,i=1,s=3;
第二次运行程序时,i=2,s=4;
第三次运行程序时,i=3,s=1;
第四次运行程序时,i=4,s=0,此时执行i=i+1后i=5,
退出循环输出s=0.。