天线第一章
- 格式:ppt
- 大小:2.61 MB
- 文档页数:66
ISM频带及小范围设备天线基础:第一章在此将介绍RF和天线的基础知识以及实际的天线设计原理。
Matthew Loy,Iboun Sylla,德州仪器天线基础天线是电子电路中RF射频信号之间的联接链路,例如PCB板与电磁波之间的信号,可通过无线链路的发射机及接收机之间的传输媒质进行传播。
在发射机内,天线通过激励其紧邻空间或近区场的电场或磁场将电子信号转化成为电磁波。
激励电场的天线被称为电子天线,激励磁场的天线被称为磁天线。
电场或磁场的振荡将产生一定的电磁波,并以光速c进行传播。
真空空间内的光速c0为300000 km/s。
当电磁波在电介质(dielectric medium)中传播且相应介电常数为εr 之时,其光速将降低至:我们可以通过以下公式,根据信号频率f以及光速c计算出波长:在使用常见单位时,真空空间内的波长可通过如下公式计算:如果电磁波在电介质中传播,例如PCB材料,波长εr需要除以介电常数的平方根。
我们可依照电磁波的传播过程划分出三个场区域:反应近区场(reactive near field)、辐射近区场(radiating near field)以及远区场(far field)。
• 在反应近区场内,反应场分量主宰了整个辐射场。
这就意味着任意电子特性(对应于电子天线)或磁特性(对应于磁化天线)的变化都将强烈的影响天线馈端(feed point)的天线阻抗。
天线至近区场边界的范围通常假定为:• 在辐射近区场内,辐射场成为主宰,该区域范围内的介质仅对天线阻抗有轻微的影响。
但如果考虑到与天线的距离,则天线的尺寸是不能被忽略的。
这就意味着辐射方向图(radiation pattern)的角度分布将取决于距离。
为了测定辐射方向图,所测量的与天线之间的距离应大于辐射近区场的边界范围,否则,所测量的方向图将有别于真实状况。
辐射近区场的半径如下计算:式中的D表示天线的最大尺寸。
• 对于距离大于R2的区域,其辐射方向图则取决于距离——即处于远区场。
第一章 基本振子的辐射基本振子是最基本的辐射源,是研究和分析各类线天线的基础,它包括基本电振子和基本磁振子。
而研究面天线的基本辐射源是惠更斯源。
§ 1 基本电振子(Electric Short Dipole )1. 定义一段理想的高频电流直导线,长度λ<<l ,半径l a <<,沿线电流均匀分布(等幅同相)。
又称电流源。
2.空间场分布假设电流源位于坐标原点,沿着z 轴放置,长度为l ,其上电流等幅同相分布,即z a I I ρρ0=,这里0I 是常数。
基本电振子示意图为求其空间的场分布,首先求出其矢量磁位A ρ,再由Aρ求出电场E ρ和磁场H ρ。
根据电磁场理论,电流分布()z a I z y x I ˆ,,0'''=ρ的电流源,其矢量磁位A ρ可以表示为:()()'''',,,4,,dl re z y x I z y x A jkr e l-⎰=ρρπμ(2-1)()z y x ,,--观察点坐标()''',,z y x --源点坐标r --源点到观察点的距离由于基本电振子的长度l 远小于波长λ和距离r ,因此式(2-1)可以表示成:()jkrz l l jkr z e rl I a dz e r I a z y x A ---==⎰πμπμ4ˆ4ˆ,,0'2/2/0ρ (2-2)引用直角坐标与球坐标的变换关系,将(2-2)式改写为: θπμθcos 4cos 0r le I A A jkrz r -==θπμθθsin 4sin 0r le I A A jkrz --=-=0=ϕA依据()⎥⎦⎤⎢⎣⎡∂∂-∂∂=⨯∇=θμμθϕr A rA r r a A H 1ˆ10ρρ,得到磁场表达式:jkr e r r k j l I H -⎥⎦⎤⎢⎣⎡+=2014sin πθϕ (2-3)0=r H0=θH由H j E ρρ⨯∇=ωε1可得电场表达式为: jkr r e jr rk l I E -⎥⎦⎤⎢⎣⎡+=320012cos πωεθ (2-4) jkr e r j rr k j l I E -⎥⎦⎤⎢⎣⎡-+=3220114sin πωεθθ (2-5)0=ϕE由此可见,基本电振子的场强矢量由三个分量ϕH 、r E 、θE 组成。
《天线理论与技术》教学大纲Antenna Theory and Technology第一部分大纲说明1. 课程代码:2. 课程性质:专业学位课3. 学时/学分:40/34. 课程目标:通过这门课的学习,使学生掌握天线的基础知识、常用天线的结构及分析方法。
配合相关软件的学习,最终使学生达到能够独立完成常用及新型天线的设计及改进方法。
5. 教学方式:课堂讲授、分组实验、分组专题报告与课堂讨论相结合6. 考核方式:考试7. 先修课程:电磁场与波、高频电子电路8. 本课程的学时分配表9. 教材及教学参考资料:(一)教材:宋铮,天线与电波传播,西安:西安电子科技大学出版社,2003年版(二)教学参考资料:1、John D. Kraus,天线(第三版),北京:电子工业出版社,2008年版2、Law & Kelton,Electromagnetics with Application ,北京:清华大学出版社,2001年版3、Warren L. Stutaman,天线理论与设计,北京:人民邮电出版社,2006年版4、卢万铮,天线理论与技术,西安:西安电子科技大学出版社,2004年版5、李莉,天线与电波传播,北京:科学出版社,2009年版第二部分教学内容和教学要求本课程讲授天线的基本理论和设计方法,主要内容有:天线的基本知识、常用天线的结构和分析方法、天线仿真与设计的常用软件、常用天线及新型天线的设计和改进方法。
第一章时变电磁场教学内容:1.1 麦克斯韦方程1.2 时变电磁场的边界条件1.3 波动方程与位函数1.4 位函数求解1.5 时变电磁场的唯一性定理1.6 时变电磁场的能量及功率1.7 正弦时变电磁场1.8 正弦时变电磁场中的平均能量与功率教学要求:本章是本课程的基础内容,讲授过程中注意和后续章节具体天线的分析和设计的结合。
教学建议:1.重点是麦克斯韦方程和时变电磁场的边界条件的分析方法。
2.讲授过程中注重讲授和后续章节内容的联系。
天线与电波教学实验指导书实验三 天线增益测量3.1实验内容和目的:用绝对测量法(即测传播损耗的方法)和相对测量法(即比较法)测量喇叭天线的增益,掌握天线增益的一般测量方法。
3.2测量原理1.天线增益的绝对测量根据福里斯公式,当发射功率为P t ,发射天线增益为G t ,接收天线增益为G r ,收发天线相距 R ,则位于远场区的接收天线的最大接收功率为2244⎪⎪⎭⎫ ⎝⎛=⋅=R G G P A RG P P r t t r er tt r πληπ当收发天线完全相同即G t =G r =G 时,接收功率为2244⎪⎪⎭⎫ ⎝⎛=⋅=R G P A R G P P t r er tt r πληπ由此可求出每个天线的增益为G P P R r t =⋅4πλ如用dB 表示,则为⎪⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛=t r P P R dB G lg 10214lg 10)(λπ因此,如果测出收发电平差、工作频率和收发距离,即可通过上式求出被测天线的增益。
2.天线增益的相对测量被测天线增益G 和参考天线增益G 0间存在简单的关系:G=gG 0式中,g 是被测天线相对于参考天线的增益。
因此如果参考天线的增益已知,只要测出g ,即可按上式求出被测天线的增益。
用比较法测天线增益,常用半波对称振子(或折合振子)作线天线的标准增益天线(其增益约为1.64或2.15dB );常用按最佳方向性系数设计的标准增益喇叭作面天线的增益标准天线,其增益理论设计值和实际值相当吻合,可按下式估算:)(4lg 102dB Ak D G λπ≈≈式中,A 是喇叭口面面积,k 是口面利用率。
对角锥喇叭天线k 取0.51。
3. 天线增益的综合测量设三个不同天线的增益分别为G G G 010203、、,先用比较法测得1和2对3的相对增益0302203011G G G G G G ==,当G 03已知时,则0320203101G G G G G G ==,,用dB 表示,即)()()()()()(0320203101dB G dB G dB G dB G dB G dB G +=+=, 当G dB 03()未知时,可用上述1项(天线增益的绝对测量)的方法测出G dB G dB 0102()()+,与上两式联立求出G dB 03()。