光诱导电荷转移
- 格式:ppt
- 大小:388.50 KB
- 文档页数:13
胺存在下自由基聚合与活性自由基聚合3冯新德,丘坤元(北京大学化学与分子工程学院高分子科学与工程系,北京 100871)谨以此文庆贺中国化学会高分子科学委员会成立50周年! 摘要:综述了胺存在下自由基聚合,包括含胺的过氧化二酰与芳叔胺氧化还原体系、有机过氧化氢物与芳叔胺或脂肪叔胺氧化还原体系、过硫酸盐与脂肪胺氧化还原体系和极性单体的胺光诱导电荷转移引发自由基聚合,以及活性Π控制自由基聚合,主要为原子转移自由基研究的成果。
关键词:含胺氧化还原体系;胺光诱导电荷转移自由基聚合;活性自由基聚合;原子转移自由基聚合;引发聚合机理烯类自由基聚合是通过引发剂分解产生自由基来引发单体的链(式)聚合反应,因所用的单体的多样性、聚合方法简便、重复性好,因而不仅成为实验室制备高分子最常用的方法,同时也成为工业生产高分子产品的重要技术。
自由基聚合的特点,一是慢引发快增长,二是自由基的活性高很容易进行双分子终止,因而得到无活性聚合物。
上世纪50~80年代,在自由基聚合研究中,为了提高引发速率而发展了单一组分的高活性自由基引发剂外,更重要的是使用两组分的氧化还原引发体系。
氧化还原引发体系由于具有快速、低温、低活化能的特点甚受瞩目,已广泛用于乳液、溶液和本体聚合。
在自由基聚合机理研究方面采用自由基捕获和电子自旋共振谱(ESR)方法测定初级自由基的精细结构研究也取得了重要进展。
上世纪80年代,出现了引发转移终止剂聚合和金属络合自由基聚合“活性”自由基聚合的报道,而到90年代出现了氮氧中间体聚合,也称稳定自由基聚合;原子转移自由基聚合,也称为过渡金属催化自由基聚合;可逆加成断裂链转移聚合等活性Π控制自由基聚合。
本文主要介绍作者研究室在胺存在下自由基聚合的研究工作,包括含胺氧化还原引发体系[1~3],主要有过氧化二酰与芳叔胺体系、有机过氧化氢物与芳或脂肪叔胺体系、过硫酸盐与脂肪胺体系,和极性单体的胺光诱导电荷转移引发自由基聚合[3,4],以及活性自由基聚合研究的成果。
光致电子转移反应机理的研究及应用光致电子转移反应(PET)是一种利用光能激发组分之间电子的转移过程的物理化学反应。
通过光激发,低能电子从一个电子受体跃迁到一个电子供体分子上,导致分子结构的改变。
PET反应机理和应用在化学和生物领域具有广泛的研究价值和应用前景。
PET反应机理的研究主要关注于电子受体和电子供体之间的相互作用。
在可见光范围内,电子供体通常会吸收光能并转移给电子受体分子,从而产生带电粒子的转移。
电子供体与电子受体之间的距离和取向对于光激发和电子转移速率至关重要。
而分子的结构、电子亲和力和自旋态等因素也会影响PET反应的发生和速率。
PET反应具有很强的应用潜力。
在有机合成领域,PET反应可以用于合成新颖的有机分子,尤其是许多有机光敏物质。
例如,PET反应可以用于制备具有捕光功能的配合物、荧光探针和电子传递材料。
这些有机光敏物质在光子学器件、传感器、荧光显微镜和化学分析等领域有广泛的应用。
另外,PET反应还可以用于有机光化学催化,如光催化水分解、CO2转化和有机反应的可见光催化。
在生物学领域,PET反应具有研究荧光蛋白发光性质和信号传递的重要意义。
蛋白质结构中的芳香氨基酸残基,如色氨酸和酪氨酸,通常可以作为电子供体或电子受体,参与到PET反应中。
通过研究PET反应,可以揭示生物大分子的能量和电子转移机理,从而深入了解光合作用、荧光蛋白发光机制以及酶催化反应等生物过程。
在光学材料领域,PET反应也被用于制备具有特殊光学性质的材料。
例如,将PET技术应用于制备光电存储材料、光学传感器和光子晶体材料,可以增强材料的光学性能和调控光学信号传输。
总之,光致电子转移反应机理和应用的研究对于开发新的有机合成方法、理解光敏分子行为、揭示生物大分子的光生物学过程以及开发新型光学材料具有重要意义。
随着科学技术的发展,PET反应在化学、生物和材料科学中的应用前景将继续拓展,为实现更多的科技突破和创新提供了新的思路和方法。
有机化学中的光化学反应光化学反应是有机化学中一种重要的反应类型,它利用光的能量来促使有机物发生化学变化。
在这篇文章中,我们将探讨有机化学中的光化学反应的特点、机制以及在生物、药物等领域中的应用。
一、光化学反应的特点光化学反应是在光照条件下进行的化学反应,其特点主要有以下几个方面:1. 光是反应的能量源:与传统的热化学反应不同,光化学反应利用光的能量来提供反应所需的能量。
通过吸收光的能量,有机物分子可被激发至激发态,从而导致化学键的断裂、形成等反应发生。
2. 反应速率受光强度影响:光化学反应的速率与入射光的强度呈正相关。
入射光越强,反应发生的速率越快。
这与传统的热化学反应速率受温度影响的规律相似。
3. 光化学反应具有选择性:在光照条件下,只有特定波长范围的光能被吸收,因此光化学反应具有一定的选择性。
这一特点使得光化学反应在有机合成中具有独特的优势。
二、光化学反应的机制光化学反应的机制因反应类型不同而有所差异,但一般可分为以下几种机制:1. 光诱导电荷转移反应:在该反应中,光激发的电子从一个分子转移到另一个分子,从而导致化学键的断裂或生成。
这类反应常见于染料分子中,对于合成有机化合物具有重要意义。
2. 单线态氧化和还原反应:在光照条件下,某些有机分子可被激发至单线态,从而与其他物质发生氧化或还原反应。
这类反应在生物体内广泛存在,对于细胞的正常功能至关重要。
3. 多步聚合反应:光照条件下,某些有机分子可通过引发剂的作用进行多步聚合反应,从而形成高分子化合物。
这类反应在高分子材料的制备和合成中具有重要应用。
三、光化学反应的应用光化学反应在生物、药物、材料等领域中有着广泛的应用。
以下以生物和药物领域为例,简要介绍其应用情况:1. 光动力疗法:光动力疗法是利用光敏剂在光照下释放活性氧或活性氮等物质,从而杀灭癌细胞或病原体。
这种治疗方法被广泛应用于肿瘤治疗、传染病治疗等领域。
2. 光化学传感器:光化学反应可用作设计和制备光化学传感器,用于检测环境中的有害物质。
光诱导电荷转移及其应用引言随着经济的发展,世界人口的增加,人类对资源的需求急剧增加。
然而经济发展的负面影响逐渐显现:全球变暖,影响最为深远的是二氧化碳、氟氯烃、甲烷、低空臭氧和氮氧化物等温室气体浓度增加导致的全球温室效应急剧增加。
环境污染,包括大气和河流的污染,废水废气废渣等工业三废对环境造成的影响不可估量。
近年来的雾霾天气和反常的气候都与环境变化息息相关。
资源短缺,由于人类过度开发不可再生能源,煤炭、石油和天然气等传统能源出现枯竭。
因此试图寻找更加绿色友好的能源成为了各领域科学家研究的热门话题。
众所周知,目前太阳能的利用率还很低。
太阳能是一个巨大的能源金库,太阳辐射的能量主要来源于氢核聚变反应,其每年提供给地球的能量达到3×1024J,相当于全球每年消耗能量的1万倍,如果地球表面的0.1%用转化率10%的太阳能电池覆盖就能满足目前的能源需求。
目前太阳能电池板几乎普及,电池板中最主要的材料是高纯度单晶硅。
但是单晶硅使用价格昂贵,对太阳能转换效率低,因此人们开始考虑其他利用太阳能的方式。
自然界中植物的光合作用让人们广受启发,在常温下,植物细胞中的叶绿素可以将水转换为人类呼吸的水,将二氧化碳转化为糖类。
通过对光合作用中电荷转移的研究,化学家试图通过分子设计实现同样的功能。
一、电荷转移机理光合作用原初过程是光诱导电子转移反应,光诱导电子转移可以发生在分子内部,即电子由给体单元向受体单元转移,反应的产物通常称为分子内电荷转移态;电子转移也可以发生在具有不同的是能力的分子之间,反应的产物成为分子间电荷转移态或者激子复合物。
目前化学家已经发现了很多有机物可以作为高效的电子给体和电子受体,即D-A系统。
由于电子能级的存在,在光的作用下,电子可以发生能级跃迁。
电子跃迁过程中吸收释放能量的形式是多样的,与辐射无关的是称为无辐射跃迁,与辐射有关的称为辐射跃迁。
参与无辐射跃迁的能量形式有热能和电能等,辐射跃迁分为受激辐射、自发辐射、受激辐射三类。
1.3荧光分子探针识别机理1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET)典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。
其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。
PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。
PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。
由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。
图1-1 PET荧光探针的一般原理图LUMO图1-2 PET荧光探针的前线轨道原理图已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。
de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。
化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。
钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。
de Silva研究小组利用类似于EDTA结构的氨羧酸基团设计的化合物3是螯合型PET荧光分子探针,识别基羧酸基团形成一个小的空穴,可以有效螯合碱土金属Ca2+和Mg2+。
大多数PET荧光分子探针的设计是基于受体与客体结合,使光诱导电子转移作用受到抑制,荧光团发射出强烈荧光的原理,但是当与过渡金属作用时,结果有时会发生变化。