1.2分式的乘法和除法
- 格式:ppt
- 大小:1.02 MB
- 文档页数:9
1.2 分式的乘法和除法第1课时分式的乘法和除法要点感知1 分式乘分式,把、分别作为积的分子、分母,然后约去分子与分母的公因式,即·=. 预习练习1-1 计算:·=.1-2 计算:·.要点感知2 分式除以分式,把除式的分子、分母位置后,与被除式相乘.即如果u≠0,那么÷==.预习练习2-1 计算:-2xy÷=.2-2 计算:÷.知识点1 分式的乘法1.(2013·上海)计算:·=.2.化简:(a-2)·=.3.计算:(1)·(-);(2)·;(3)·;(4)·.知识点2 分式的除法4.计算÷3ab的值等于( )A.9a2bB.bC.D.9a2b25.化简(-)÷的结果是( )A.-x-1B.-x+1C.D.6.化简:(ab-b2)÷=.7.(2013·新疆)化简:÷=.8.计算:(1)÷;(2)÷;(3)÷;(4)(ab-b2)÷.9.化简分式·的结果是( )A. B. C. D.10.计算(x2+xy)÷的结果是( )A.(x+y)2B.x2+yC.x2D.x11.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖机的工作效率是小拖机的工作效率的( )A.倍B.倍C.倍D.倍12.若m等于它的倒数,则分式÷的值为( )A.-1B.3C.-1或3D.-13.(2013·黔南州)化简:÷=.14.某服装厂新进一种布料,n(m)布料可以做y件上衣,2n(m)布料可以做3y条裤子,那么一件上衣的用料是一条裤子的倍.15.计算:(1)·;(2)÷;(3)·.16.化简求值:·,其中x=-2.17.先化简分式·,然后请你选取一个合适的x的值,使分式的值为一个整数.挑战自我18.有这样一道题:“化简求值:÷,其中m=-2 014.”小明误把m=-2 014错写成m=2 014,最后的计算结果也是正确的,这是什么原因?19.把分式化成两个分式的乘积的形式.参考答案课前预习要点感知1 分子乘分子分母乘分母。
《分式的乘法和除法》作业设计方案(第一课时)一、作业目标本节课的作业目标是巩固学生对分式乘法和除法概念的理解,能熟练运用分式乘除法进行基本运算,同时培养学生自主学习和解决问题的能力,提高学生的数学思维能力。
二、作业内容1. 基础练习:(1)通过练习题的形式,让学生熟练掌握分式的乘法和除法运算规则,包括同分母、异分母的分式运算。
(2)针对易错点进行重点练习,如约分、通分等技巧,以及如何避免计算错误。
2. 应用拓展:(1)结合实际生活问题,创设分式乘除法的应用场景,让学生通过解决问题,加深对分式乘除法理解。
(2)引导学生探索分式乘除法与其他数学知识的联系,如与方程、函数等知识的结合应用。
三、作业要求1. 学生需认真阅读教材,理解分式的乘法和除法的基本概念和运算规则。
2. 完成基础练习部分,确保熟练掌握分式的乘法和除法运算。
3. 在应用拓展部分,学生需结合实际生活问题,独立思考并解决问题,注意问题的完整性和逻辑性。
4. 学生在解题过程中,应注重约分、通分等技巧的运用,减少计算错误。
5. 完成作业后,学生需自行检查答案,确保准确无误。
如有疑问,可向老师或同学请教。
四、作业评价1. 教师将根据学生完成作业的情况,进行评价和指导。
2. 评价内容主要包括学生掌握知识的情况、解题能力、思路清晰度、答案准确性等方面。
3. 对于表现优秀的学生,教师应给予肯定和表扬,激励其继续努力;对于存在问题的学生,教师应给予指导和帮助,鼓励其克服困难,提高学习成绩。
五、作业反馈1. 教师应及时收集学生的作业,认真批改,给予及时的反馈。
2. 针对学生在作业中出现的错误和疑问,教师应进行详细的讲解和指导,帮助学生掌握正确的解题方法和思路。
3. 教师应鼓励学生进行自我反思和总结,找出自己在学习中的不足和问题,制定改进措施,提高学习效果。
作业设计方案(第二课时)一、作业目标本作业旨在巩固学生在初中数学课程中学习的分式乘法和除法知识,通过实际操作练习,加深学生对分式运算的理解,提高学生的计算能力和解题技巧,为后续学习打下坚实的基础。
《分式的乘法和除法》作业设计方案(第一课时)一、作业目标本节课的作业设计旨在使学生掌握分式的乘法和除法的基本运算法则,能熟练运用分式运算解决实际问题,并培养学生的逻辑思维能力和数学应用能力。
二、作业内容1. 基础练习:(1)分式的乘法运算:通过大量的例题和习题,让学生熟练掌握分式乘法的基本步骤和运算法则,如:(a/b)×(c/d) = ac/bd等。
(2)分式的除法运算:让学生掌握分式除法可以转化为乘法的原理,并熟练运用此原理进行计算,如:a/b ÷ c/d = a/b × d/c等。
2. 拓展应用:(1)通过实际问题,让学生运用分式的乘法和除法解决实际问题,如:面积、体积、速度等问题中分式的运用。
(2)设计一些综合性的题目,让学生综合运用所学知识,提高解题能力。
三、作业要求1. 作业内容要紧扣本节课的教学重点和难点,既有基础练习,又有拓展应用。
2. 作业量适中,既要保证学生能够完成,又要达到巩固知识的目的。
3. 作业难度要分层,既要照顾到基础较差的学生,又要让基础较好的学生有所挑战。
4. 要求学生独立完成作业,并在完成后进行自查,确保作业的准确性。
5. 要求学生将解题过程和答案工整地写在作业本上,字迹要清晰。
四、作业评价1. 教师根据学生完成作业的情况,给予相应的评价和反馈。
2. 评价内容包括:作业的正确性、解题思路的清晰性、字迹的工整性等方面。
3. 对于完成得好的学生,要给予表扬和鼓励,激发学生的学习积极性。
4. 对于完成得不好的学生,要给予指导和帮助,找出问题所在,帮助学生改进。
五、作业反馈1. 教师根据学生的作业情况,及时调整教学策略和方法,以更好地满足学生的学习需求。
2. 对于学生在作业中出现的共性问题,要在课堂上进行讲解和纠正。
3. 对于学生在作业中表现出的优点和不足,要及时向学生本人反馈,让学生了解自己的学习情况。
4. 鼓励学生将作业中的疑问和困惑及时向老师提问,以便及时解决问题。
1.2 分式的乘法和除法(第1课时)【教学目标】1、 理解并掌握分式的乘、除法运算法则。
2、能够灵活进行分式的乘法。
3、培养学生自主学习能力,类比学习能力,培养学生的创新意识和应用数学的意识。
【教学重点】让学生掌握分式的乘、除法运算【教学难点】分子、分母为多项式的乘法与除法运算【教学过程】一、情境引入1、计算:269⨯=.3245⨯=.42155÷=.2、分数的乘法与除法运算法则是什么?3、尝试计算:=⋅22332a b b a .=+÷+1212x x x x .4、引入:通过上面的练习,我们发现分式的乘法与除法又如何计算呢?二、自主学习1、自学教材,回答下列问题:分式的乘法法则是什么?分式的除法法则是什么?2、自主练习:计算:⑴ 336()4b a b a -⋅⑵5344(24)(36)x y x y -÷(3)24112x x x -⋅+- 3、归纳:分式的乘法与除法运算法则与分数的乘法与除法运算法则类似,其中要运用到幂的意义,因式分解等知识。
三、典例精析例1:计算:(1)22325x y y x •(2)12132-÷-x x x x例2:计算:(1);142122-⋅+x x x x (2)1212822+÷++x x x x x 。
让学生独立完成上述的计算题,然后交流,教师作个别辅导,最后总结归纳,分式的乘法与除法步骤:①分子、分母是整式,要先分解因式;②分式除以分式,按法则转换为乘法计算;③分式乘分式,分子乘分子、分母乘分母分别作为积的分子、分母,然后约去分子、分母的公式因。
特别要让学生展示自己的错误经验,比如未先因式分解的,或者结果没有化为最简分式的。
例3:先化简,再求值:2222111x x x x x x +++÷--,其中2x =。
本题可让学生先独立计算,教师作出个别辅导后,全班交流,并总结经验。
四、练习反馈⒈教材练习1,2⒉教材习题1.2 B 组5题 ⑴()1121224+÷++-x x x x ⑵()y x y xy x x y 244222++-÷- 让学生独立完成,并展示错误经验,集中点评。
分式的乘除运算与简化规则在分式的乘除运算与简化规则方面,有一些基本的知识和方法可以帮助我们解决问题。
本文将在此基础上详细介绍分式的乘除运算以及简化规则,并通过示例来加深理解。
让我们一起来探索吧!一、分式的乘法运算分式的乘法运算是指两个分式相乘的操作。
具体计算方法如下:1. 乘法法则:两个分式相乘,先将分子相乘,再将分母相乘。
例如:(a/b) * (c/d) = (a * c) / (b * d)2. 乘法简化:如果分子和分母有公因数,可以约去这些公因数,使分式更简洁。
例如:(4/6) * (9/12) = (4*9) / (6*12) = 36 / 72= 1 / 2 (将分子和分母都除以公因数12得到简化形式)二、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
具体计算方法如下:1. 除法法则:两个分式相除,先将除数的分子乘以被除数的分母,再将除数的分母乘以被除数的分子。
例如:(a/b) ÷ (c/d) = (a * d) / (b * c)2. 除法简化:如果分子和分母有公因数,可以约去这些公因数,使分式更简洁。
例如:(12/15) ÷ (8/10) = (12*10) / (15*8) = 120 / 120= 1 (将分子和分母都除以公因数120得到简化形式)三、分式的简化规则分式的简化规则是指将分子和分母中的公因数约去,使分式达到最简形式。
简化规则如下:1. 寻找公因数:分子与分母中有相同的因数,即为公因数。
例如:分式3/6中,公因数为3。
2. 约去公因数:将分子和分母都除以最大公因数,得到简化形式。
例如:分式3/6可以约去公因数3,得到最简形式1/2。
四、示例分析接下来,我们通过一些示例来加深理解分式的乘除运算和简化规则。
1. 示例一:计算分式的乘法运算和简化已知 (2/3) * (9/10),我们按照乘法法则进行计算:(2/3) * (9/10) = (2 * 9) / (3 * 10) = 18 / 30将分子和分母都约去公因数6,得到最简形式 3 / 5。