磁化电流密度
- 格式:ppt
- 大小:251.00 KB
- 文档页数:30
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果A B =A C ,是否意味着B =C ?为什么?答:否。
1.2 如果⨯⨯A B =A C ,是否意味着B =C ?为什么?答:否。
1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量);单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e 都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e 不是常矢量,z e 是常矢量;球坐标系中,坐标单位矢量,,r θφe e e 都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++A e e e ,其中a 、b 、c 为常数,则A 能是常矢量吗?为什么?答:否。
因为坐标单位矢量,ρφe e 的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-A e e ,其中a 为常数,则A 能是常矢量吗?为什么?答:是。
对cos sin r θa θa θ=-A e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=A 。
1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S内有负通量源进入与穿出闭合曲面的矢量线相等,S内没有通量源1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。
二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很大的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有 体电荷,,面电荷,线电荷和点电荷常用的电流分布模型有体电流模型,面电流模型和线电流模型他们是根据电荷和电流的密度分布来定义的2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比。
电偶极子的电场强度与距离r 的立方成反比2.4 简述ερ=∙∇E 和0E =⨯∇所表征的静电场特性ερ0=∙∇E 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
0 =⨯∇E 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以0ε与闭合面外的电荷无关,即dV dS E V S ρε⎰⎰=⋅01在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
2.6 简述0=∙∇B 和J B 0μ=⨯∇所表征的静磁场特性0=⋅∇B 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,J B 0μ=⨯∇表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和0μ倍,即I dl B C0μ=⋅⎰如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果u r u r u r u v g gA B =A C ,是否意味着ur u v B =C ?为什么? 答:否。
1.2 如果⨯⨯u r u r u r u v A B =A C ,是否意味着ur u v B =C ?为什么?答:否。
1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量); 单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e r r r都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e r r 不是常矢量,z e r是常矢量;球坐标系中,坐标单位矢量,,r θφe e e r r r都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++u r r r r A e e e ,其中a 、b 、c 为常数,则u rA 能是常矢量吗?为什么?答:否。
因为坐标单位矢量,ρφe e r r的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-u r r r A e e ,其中a 为常数,则u rA 能是常矢量吗?为什么?答:是。
对cos sin r θa θa θ=-u r r rA e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=u r r r L A 。
1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰r r r r(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰rr r r蜒ψ(曲面S 是闭合)1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰r r rÑ意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰r rÑ环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。
电流密度与磁化电流密度概述及解释说明1. 引言1.1 概述本文将探讨电流密度与磁化电流密度的基本概念、定义以及它们之间的关系与作用机制。
电流密度是描述单位截面上电荷流动的物理量,而磁化电流密度则是描述材料内部磁场分布产生的电流。
通过探究两者之间的联系,我们可以更深入地了解它们在物质行为和应用中的重要性。
1.2 文章结构本文共分为五个部分进行阐述。
第一部分为引言,对文章主题进行概述,并介绍文章结构。
第二部分将介绍电流密度和磁化电流密度的基本概念和定义,以便读者对其有充分的了解。
第三部分将详细讨论电流密度与磁化电流密度之间的关系及其作用机制,包括等效模型与安培环路定理、磁场产生原理与磁滞效应分析,以及它们在不同领域中的应用和重要性。
第四部分将介绍实验方法和技术分析,包括电场测量技术与仪器设备介绍、磁滞回线测量方法及数据处理技术,以及其他相关实验方法和技术分析。
最后一部分为结论与展望,总结电流密度与磁化电流密度的基本概念和关系,并提出未来研究方向的建议。
1.3 目的本文旨在系统地介绍和解释电流密度与磁化电流密度的概念、定义、关系以及作用机制。
通过深入探究它们之间的联系,我们可以更好地理解电荷和磁场在材料中传播和相互作用的过程,并揭示其在物质性质和应用中的重要影响。
同时,通过介绍实验方法和技术分析,我们希望能够为相关领域的科研人员提供实际工具和参考,促进相关领域的研究进展。
最后,结论部分将对整篇文章进行总结,并展望未来电流密度与磁化电流密度方面的研究方向。
2. 电流密度与磁化电流密度的基本概念和定义2.1 电流密度:电流密度是描述单位截面内通过导体的电流量的物理量,用符号J表示。
它是一个矢量,其方向与电流方向相同。
其大小表示单位截面内通过的总电荷量与时间的比率。
在导体中,电子的漂移速度并不高,而电荷数目非常大。
因此,在宏观尺度上,我们更关注单位截面内通过的总电荷量而不是单个电子。
计算公式为:J = I / A其中,J为电流密度(单位:安培/平方米或安培/平方厘米),I为通过导体截面的总电流(单位:安培),A为导体横截面积(单位:平方米或平方厘米)。
三、简答题1. 电磁场理论赖以建立的重要实验及其重要意义。
2. 静电场能量公式12e W dV ρϕ=⎰、静磁场能量公式12m W J AdV =⋅⎰的适用条件。
3.静电场能量可以表示为12e W dV ρϕ=⎰,在非恒定情况下,场的总能量也能这样完全通过电荷或电流分布表示出来吗为什么4. 写出真空中Maxewll 方程组的微分形式和积分形式,并简述各个式子的物理意义。
5. 写出线性均匀各向同性介质中麦克斯韦方程微分形式和积分形式,其简述其物理意义。
6.电象法及其理论依据。
答:镜像法的理论基础(理论依据)是唯一性定理。
其实质是在所研究的场域外的适当地方,用实际上不存在的“像电荷”代替真实的导体上的感应电荷或介质中的极化电荷对场点的作用。
在代替的时候,必须保证原有的场方程、边界条件不变,而象电荷的大小以及所处的位置由Poisson 方程和边界条件决定。
7. 引入磁标势的条件和方法。
|答:在某区域内能够引入磁标势的条件是该区域内的任何回路都不被电流所链环,就是说该区域是没有自由电流分布的单连通区域。
若对于求解区域内的任何闭合回路,都有 则引入φm , 8. 真空中电磁场的能量密度和动量密度,并简述它们在真空中平面电磁波情况下分别与能流密度及动量流密度间的关系。
9. 真空中和均匀良导体中定态电磁波的一般形式及其两者的差别。
10. 比较库仑规范与洛伦兹规范。
11.$12.分别写出在洛仑兹规范和库仑规范下电磁场标势矢势所满足的波动方程,试比较它们的特点。
13. 写出推迟势,并解释其物理意义。
答:推迟势的物理意义:推迟势说明电荷产生的物理作用不能立刻传至场点, 而是在较晚的时刻才传到场点, 所推迟的时间r /c 正是电磁作用从源点x ’传至场点x 所需的时间, c 是电磁作用的传播速度。
14. 解释什么是电磁场的规范变换和规范不变性答:设ψ为任意时空函数,作变换ψ∇+='→A A A ,t∂∂-='→ψϕϕϕ /有B A A =⨯∇='⨯∇,E tAt A =∂∂--∇=∂'∂-'∇-ϕϕ,0d =⋅⎰Ll H 0=⨯∇H mH ϕ-∇=V rc r t t '-'=⎰d )/,(4),(0x J x Απμ即()ϕ'',A 与()ϕ,A 描述同一电磁场。
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果A B =A C ,是否意味着B =C ?为什么?答:否。
1.2 如果⨯⨯A B =A C ,是否意味着B =C ?为什么?答:否。
1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量);单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e 都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e 不是常矢量,z e 是常矢量;球坐标系中,坐标单位矢量,,r θφe e e 都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++A e e e ,其中a 、b 、c 为常数,则A 能是常矢量吗?为什么?答:否。
因为坐标单位矢量,ρφe e 的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-A e e ,其中a 为常数,则A 能是常矢量吗?为什么?答:是。
对c o ss i n r θa θa θ=-A e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=A 。
1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S内有负通量源进入与穿出闭合曲面的矢量线相等,S内没有通量源1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。
一:1.7 什么是矢量场的通量?通量的值为正,负或0 分别表示什么意义?矢量场F穿出闭合曲面S的通量为:当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S 内必有发出矢量线的源,称为正通量源。
当小于0 时,小于有汇集矢量线的源,称为负通量源。
当等于0 时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。
1.8什么是散度定理?它的意义是什么?矢量分析中的一个重要定理:称为散度定理。
意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。
1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义?矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。
大于0 或小于0,表示场中产生该矢量的源,常称为旋涡源。
等于0,表示场中没有产生该矢量场的源。
1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗?在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。
能用于闭合曲面.1.11如果矢量场F 能够表示为一个矢量函数的旋度,这个矢量场具有什么特性=0,即F为无散场。
1.12如果矢量场F 能够表示为一个标量函数的旋度,这个矢量场具有什么特性=0即为无旋场1.13只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?不对。
电力线可弯,但无旋。
1.14无旋场与无散场的区别是什么?无旋场F 的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即=0无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。