八年级数学下册 一次函数的图像和性质教案
- 格式:doc
- 大小:160.67 KB
- 文档页数:3
一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
三、教学难点1. 一次函数图像的性质的理解和应用。
四、教学准备1. 教学课件或黑板。
2. 练习题。
五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。
2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。
3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。
4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。
5. 练习:让学生绘制一些一次函数的图像,并分析其性质。
7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。
8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。
六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。
2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。
七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。
八、课后作业1. 完成练习册上的一次函数相关习题。
2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。
九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。
2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。
十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。
2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。
3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。
《一次函数的图像和性质》教案1教学目标知识与技能总结一次函数图像的画法并初步感受其形象;过程与方法经历作图过程,初步了解作函数图像的一般步骤;经历将一次函数图像与表达式y=kx+b结合的探索过程,通过观察与思考、合作探究得出一次函数的性质及其简单应用.情感态度价值观通过本节课的学习,体会数形结合思想的重要性.教学重难点重点:一次函数图像的画法.难点:一次函数y=kx+b的图像是一条直线.教学过程设计复习引导学生回顾一次函数的定义.新授一次函数是一种形式上比较简单的函数,相应地,它的图像和性质又有什么特点呢?我们已经知道,对于由表达式给出的函数,可以由表达式确定出两个变量的一系列对应的数值.在直角坐标系中,以这些对应值为坐标描出相应的点,再用平滑的线连结这些点,就可以得到这个函数的图像.(一)试着做做已知一次函数y=2x-1.(1)填写下表:(2)以(1)中得到的每对对应值分别为横坐标和纵坐标,在图25—2的直角坐标系中描出相应的点.2,(1 2.凡是满足关系式y=2x-1的x,y的值所对应的点(x,y),如(-,)(3)把由(2)得到的点依次连结起来,就得到y=2x-1的图像.(二)一起探究1.一次函数y=2x-1图像的形状是怎样的?你和其他同学得到的结果一样吗?1-22,0),(1,1),(4,7)等,都在一次函数y=2x-1的图像上吗?3.请你从一次函数y=2x-1的图像上任意取一点,检验该点的横坐标x和纵坐标y是否满足关系式y=2x-1.注:1.2.由画图过程知,一次函数y=2x-1的图像是由所有满足关系式y=2x-1的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所对应的点都在一次函数y=2x-1的图像上.我们看到,一次函数y=kx+b的图像是一条直线.这样,在画一次函数的图像时,只要确定出两个点,再过这两点画直线就可以了.正是因为一次函数的图像是一条直线,所以也把一次函数y=kx+b的图像称为直线y=kx+b.例1画一次函数y=-1x+1的图像.2解:当x=0时,y=1.当y=0时,0=-1x+1解得x=2.2在直角坐标系中,过点(0,1)和点(2,0)画直线,即得一次函数y=-如图21-2-2.12x+1的图像,(四)练习1.在同一直角坐标系中画出y=2x-1和y=-2x的图像.2.在同一直角坐标系中画出y=x和y=1-x的图像.答案:1.2.(五)小结引导学生总结本节的主要知识点.《一次函数的图像和性质》教案2教学目标总结归纳出一次函数的性质——k>0或k<0时图像变化的情况;在特殊与一般的比较中概述一次函数的概念、图像及性质;尝试利用一次函数性质对变量变化规律进行初步预测;教学重难点重点:(1)总结正比例函数的图像特征.(2)探索一次函数的性质及其简单应用.难点:大家谈谈中的问题:对于两个函数,函数值的变化快慢与k(k>0)的值的关系的讨论.教学设计过程(一)观察与思考小红在同一直角坐标系中画出的正比例函数y=-3x和y=2x的图像.1.请你说明小红画出的图像是否正确.2.小红看到这两个正比例函数的图像都经过原点,于是猜想:所有正比例函数的图像都经过原点.你认为她的猜想正确吗?请说明理由.事实上,正比例函数的图像是经过原点0(0,0)的一条直线.(二)大家谈谈你认为怎样画正比例函数的图像,方法比较简单?注:只需画除原点外的一个点.(三)做一做1.请你在图中的坐标系中画出一次函数y=2x+3和y=1x-1的图像.22.请你在图中的坐标系中画出一次函数y=-2x+4和y=1x+2的图像2观察在图中所示的坐标系中画出的上述四个函数的图像,其中的哪些函数y的值是随x 值的增大而增大的?而哪些函数y的值是随x值的增大而减小的?这两类函数的区别和自变量的系数的符号有什么关系?由此,我们得到:一次函数y =kx +b 的性质当k >0时,y 的值随x 值得增大而增大;当k <0时,y 的值随x 值得增大而减小.注:1.注意引导学生观察图像趋势:从左向右看是上升还是下降.尤应解释清“从左向右即表示x 的值增大”.2.注意引导学生进行图像与解析式的对照,从而把对解析式的分类(k >0或k <0)与对图像的分类(上升或下降)联系起来.(五)大家谈谈已知两个函数:y 1=2x +30,y 2=4x .1.不画出它们的图像,说出当x 的值增大时,y 1,y 2的值怎样变化.2.当x 从1开始增大时,预测哪个函数的值先达到80. 3.函数值增大的快慢与k (这里k >0)的值有什么关系?注:1.当x 值增大时,y 1,y 2的值均增大. 2.当x 从1开始增大时,y 2=4x 的值先达到80.提示:设y 1=80,求得x 1=25;设y 2=80,求得x 2=20,说明对于y 2,当x =20时函数值 达到80;而对于y 1,则当x =25时函数值才达到80.3.当k >0时,k 越大,函数值增大得越快.(六)练习已知函数y =-3x +3,y =3x -3,y =x -5.其中,y 的值随x 值的增大而减小的是___________.答案y =-3x +3.(七)小结学生总结出一次函数的图像特征和性质.。
八年级下册数学教案《一次函数的图象与性质》学情分析1、本节课包括两个重点:一次函数的图象画法和一次函数图象性质。
2、一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面学习二次函数、反比例函数都打下了基础。
同时,在整个初中阶段,一元一次方程,一元一次不等式都存在于相应的一次函数中,三者相互依存,紧密联系,也为方程、不等式、函数的解法的互相转化补充提供了新的途径。
而二元一次方程与直线,二元一次方程组的解与相应两直线交点坐标的等价关系也使学生更为深刻地理解数形结合的数学思想,所以整节课在教材中有着承上启下的重要地位。
教学目的1、理解直线y = kx+b 与直线y = kx之间的位置关系。
2、会选择两个合适的点,画出一次函数的图象。
3、根据图象和表达式y = kx+b,探索并理解k>0和k<0的图象的变化情况,掌握一次函数的性质。
教学重点一次函数的图象和性质。
教学难点一次函数的性质。
教学方法讲授法,演示法,谈话法,练习法教学过程一、复习回顾复习正比例函数的图象与性质。
y = kx(k≠0)过(0,0)(1,k)的直线。
k>0时,x,y同号,函数图象在一、三象限,y随x的增大而增大。
k<0时,x,y异号,函数图象在二、四象限,y随x的增大而减小。
二、探究一次函数图象的平移规律1、学生在同一坐标中画出下列函数图象。
(1)y = x-1y = xy = x+1(2)y = 2x-1y = -2xy = -2x+12、学生从以下3个角度观察上述函数。
①解析式②表格③图象思考:一次函数y = kx+b(k≠0)的图象是什么形状?它与直线y = kx (k≠0)有什么关系?归纳:一次函数y = kx+b(k≠0)的图象可以由直线y = kx平移|b|个单位长度得到(当b>0时,向上平移,当b<0时,向下平移)。
一次函数y = kx+b(k≠0)的图象也是一条直线,我们称它为直线kx+b。
3、师:由于一次函数的图象是直线,因此只要确定两个点,便可画出图象。
《一次函数的图象和性质》教学设计优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《一次函数的图象和性质》教学设计优秀5篇一次函数,也作线性函数,在X,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数的图像和性质教案第一章:一次函数的定义和表达式1.1 引入一次函数的概念通过实际生活中的问题,如“小华每天步行速度为5km/h,他从家出发,以这个速度行走,多少小时后他到达图书馆?”引入一次函数的概念。
1.2 一次函数的表达式解释一次函数的表达式为y = kx + b,其中k是斜率,b是截距。
举例说明斜率和截距的含义和计算方法。
第二章:一次函数的图像2.1 绘制一次函数的图像利用图形计算器或绘图软件,绘制一次函数y = 2x + 3的图像。
解释图像的斜率和截距与函数表达式之间的关系。
2.2 分析一次函数的图像特征讨论一次函数图像的斜率和截距对图像形状和位置的影响。
探索一次函数图像的单调性和截距的正负对图像与坐标轴的交点情况。
第三章:一次函数的性质3.1 斜率的性质解释斜率的含义:斜率表示函数图像的倾斜程度。
探讨斜率的正负与函数图像的左降右升关系。
3.2 截距的性质解释截距的含义:截距表示函数图像与y轴的交点。
探讨截距的正负与函数图像与y轴的交点位置。
第四章:一次函数的应用4.1 线性方程的解法解释线性方程的解法,包括代入法、消元法和图解法。
通过例题演示线性方程的解法并解释解的意义。
4.2 实际问题中的应用以实际问题为例,如“一辆汽车以60km/h的速度行驶,行驶3小时后停止,求汽车行驶的距离。
”演示一次函数的应用。
第五章:一次函数的综合练习5.1 练习题提供一些关于一次函数的练习题,包括选择题、填空题和解答题。
解答这些练习题并解释答案的正确性。
5.2 小组讨论分学生为小组,让他们讨论一次函数的图像和性质,并分享他们的发现。
鼓励学生提出问题并互相解答,促进学生之间的互动和学习。
第六章:一次函数的斜率和截距的计算6.1 斜率的计算解释斜率的计算方法:斜率k等于函数图像上任意两点的纵坐标之差与横坐标之差的比值,即k = (y2 y1) / (x2 x1)。
通过例题演示如何计算一次函数的斜率。
6.2 截距的计算解释截距b的计算方法:截距b等于函数图像与y轴的交点的纵坐标,即当x = 0时的y值。
一次函数的图象和性质数学教案
标题:一次函数的图象和性质
一、教学目标
1. 学生能够理解并掌握一次函数的基本概念。
2. 学生能够通过解析式画出一次函数的图像,并了解其性质。
3. 学生能够运用一次函数解决实际问题。
二、教学内容
1. 一次函数的定义
2. 一次函数的解析式与图像
3. 一次函数的性质
4. 一次函数的应用
三、教学过程
1. 引入新课:通过生活中的实例引入一次函数的概念,如商品的价格与销售量的关系等。
2. 新课讲解:
a) 一次函数的定义:形如y=kx+b(k≠0)的函数称为一次函数,其中k是斜率,b是截距。
b) 一次函数的解析式与图像:学生在教师的指导下,通过坐标系绘制一次函数的图像,并通过观察图像总结一次函数的性质。
c) 一次函数的性质:一次函数的图像是一条直线,直线的斜率决定了一次函数的增长速度,截距决定了函数图像与y轴的交点位置。
d) 一次函数的应用:结合具体例子,让学生学会用一次函数解决实际问题。
3. 练习巩固:设计一些题目,让学生进行练习,以检验他们对一次函数的理解程度。
4. 总结回顾:回顾本节课的主要内容,强调一次函数的定义、图像和性质。
四、作业布置
为学生布置一些一次函数的题目,让他们在课后继续深化理解和掌握一次函数的相关知识。
五、教学反思
对本次教学进行反思,包括教学方法是否有效,学生的学习效果如何等,以便于改进今后的教学。
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
一次函数的图像和性质教案一、教学目标知识与技能:1. 理解一次函数的概念,掌握一次函数的表示方法。
2. 学会绘制一次函数的图像,并能分析图像的性质。
3. 能够运用一次函数解决实际问题。
过程与方法:1. 通过实例引入一次函数,引导学生发现一次函数的规律。
2. 利用数形结合的思想,让学生通过绘制函数图像来理解函数的性质。
3. 运用合作交流的方式,培养学生解决问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性。
2. 培养学生勇于探索、积极思考的科学精神。
3. 培养学生合作交流的良好习惯。
二、教学重点与难点重点:1. 一次函数的概念及表示方法。
2. 一次函数图像的特点。
3. 一次函数的性质。
难点:1. 一次函数图像的绘制。
2. 一次函数性质的理解与应用。
三、教学准备教师准备:1. 教学课件或黑板。
2. 函数图像的示例。
3. 实际问题情境的材料。
学生准备:1. 学习一次函数的相关知识。
2. 准备绘图工具(如直尺、圆规、橡皮等)。
四、教学过程1. 导入:通过一个实际问题情境,引入一次函数的概念。
2. 新课导入:讲解一次函数的定义,引导学生掌握一次函数的表示方法。
3. 课堂讲解:讲解一次函数的图像特点,让学生通过绘制函数图像来理解函数的性质。
4. 课堂练习:给出一些一次函数的实例,让学生分析其图像和性质。
5. 课堂小结:总结一次函数的图像和性质,引导学生掌握一次函数的解题方法。
五、课后作业1. 绘制一些一次函数的图像,并分析其性质。
2. 运用一次函数解决实际问题。
3. 准备课堂交流分享。
六、教学评估1. 课堂讲解:通过观察学生在课堂讲解中的参与程度和理解程度,评估学生对一次函数概念和表示方法的掌握情况。
2. 课堂练习:通过检查学生在课堂练习中的解答,评估学生对一次函数图像和性质的理解。
3. 课后作业:通过批改学生的课后作业,评估学生对一次函数图像和性质的掌握情况以及解决实际问题的能力。
一次函数的图像和性质教案教案标题:一次函数的图像和性质教案教案目标:1. 了解一次函数的定义和性质。
2. 理解一次函数图像的特征和变化规律。
3. 能够根据一次函数的表达式绘制函数图像。
4. 掌握一次函数的斜率和截距的概念及其在图像上的表现。
教学步骤:引入活动:1. 引导学生回顾线性方程的概念和性质,提问:线性方程与一次函数有何关系?知识讲解:2. 解释一次函数的定义和性质,包括函数表达式为y = kx + b,其中k为斜率,b为截距。
3. 通过示例和图表展示不同斜率和截距对一次函数图像的影响,让学生理解斜率和截距的意义。
4. 引导学生观察一次函数图像的特征,如直线、方向、斜率的正负等。
练习活动:5. 给学生一些一次函数的表达式,要求他们根据表达式绘制函数图像,并标注斜率和截距。
6. 提供一些实际问题,要求学生根据问题中的情境,写出对应的一次函数表达式,并绘制函数图像。
拓展活动:7. 引导学生思考一次函数图像的变化规律,如何通过改变斜率和截距来改变图像的特征。
8. 给学生一些挑战性问题,要求他们根据已知的一次函数图像,推导出对应的函数表达式。
总结和评价:9. 总结一次函数的图像和性质,强调斜率和截距的重要性。
10. 对学生进行个别评价,检查他们对一次函数图像和性质的理解程度。
教学资源:1. 教材或课件,包含一次函数的定义、性质和图像示例。
2. 白板、黑板或投影仪,用于绘制函数图像和解释概念。
3. 练习题和挑战性问题,用于巩固和拓展学生的知识。
教学评估:1. 观察学生在绘制函数图像和解答问题时的表现,评估他们对一次函数图像和性质的理解。
2. 收集学生完成的练习题和挑战性问题,检查他们对一次函数的应用能力。
教学延伸:1. 引导学生进一步探究一次函数的应用领域,如经济学、物理学等。
2. 鼓励学生自主学习更多复杂的函数,如二次函数、指数函数等,拓宽他们的数学知识。
一次函数的图像和性质教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的表示方法。
2. 让学生能够绘制一次函数的图像,理解图像的性质。
3. 培养学生运用一次函数解决实际问题的能力。
二、教学内容:1. 一次函数的概念及表示方法。
2. 一次函数图像的性质。
3. 一次函数图像的绘制方法。
4. 一次函数在实际问题中的应用。
三、教学重点与难点:1. 重点:一次函数的概念,一次函数图像的性质,一次函数图像的绘制方法。
2. 难点:一次函数图像的性质的理解与应用。
四、教学方法:1. 采用讲授法,讲解一次函数的概念、表示方法、图像性质等。
2. 采用演示法,展示一次函数图像的绘制过程。
3. 采用案例分析法,分析一次函数在实际问题中的应用。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,激发学生的学习兴趣。
2. 新课导入:讲解一次函数的概念、表示方法。
3. 案例分析:分析一次函数在实际问题中的应用。
4. 课堂互动:让学生上台演示一次函数图像的绘制过程,其他学生进行评价。
6. 课后作业:布置有关一次函数的练习题,巩固所学知识。
六、教学评价:1. 通过课堂互动、课后作业和课堂表现,评价学生对一次函数概念和表示方法的掌握情况。
2. 通过绘制一次函数图像和分析图像性质,评价学生对一次函数图像性质的理解和应用能力。
3. 通过解决实际问题,评价学生运用一次函数解决实际问题的能力。
七、教学资源:1. PPT课件:展示一次函数的概念、表示方法、图像性质等内容。
2. 黑板:用于板书重要概念和公式。
3. 练习题:用于巩固所学知识。
4. 实际问题案例:用于引导学生运用一次函数解决实际问题。
八、教学进度安排:1. 第1-2课时:讲解一次函数的概念和表示方法。
2. 第3-4课时:讲解一次函数图像的性质。
3. 第5-6课时:讲解一次函数图像的绘制方法。
4. 第7-8课时:分析一次函数在实际问题中的应用。
九、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、作业完成情况等。
一次函数图像与性质教学设计(8篇)第1篇:一次函数图像性质教学反思《一次函数的图象和性质》教学反思从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。
究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。
这样,教师才能灵活的把握课堂教学。
而现在,教师缺乏的正是这一点,还是为了教而教。
按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。
而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。
从这一角度讲,教师应在把握知识的基础上。
结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。
新教材在知识安排上,往往从实例引入,抽象出数学模型。
通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。
侧重于学生能力的培养,让学生知道学什么,如何学。
因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。
一是通过画函数图象理解一次函数图象的形状。
二是两点法画一次函数的图象。
三是探究一次函数的图象与 k、b 符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。
值得老师们探讨。
为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。
如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。
在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。
学生目标明确,操作性强,受到了较好的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。
一次函数的图象和性质教案设计一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念通过实际生活中的问题,如“某商品的售价与购买数量之间的关系”,引出一次函数的概念。
解释一次函数的表达式为y = kx + b,其中k 是斜率,b 是截距。
1.2 理解斜率和截距的含义解释斜率k 表示函数图象的倾斜程度,斜率为正表示图象向上倾斜,斜率为负表示图象向下倾斜。
解释截距b 表示函数图象与y 轴的交点。
1.3 例题解析提供几个一次函数的例题,让学生理解并应用一次函数的定义与表达式。
1.4 练习题设计一些练习题,让学生巩固对一次函数的定义与表达式的理解。
第二章:一次函数的图象2.1 绘制一次函数的图象解释一次函数图象是一条直线,并且讨论斜率和截距对直线位置的影响。
利用图形计算器或在线绘图工具,让学生绘制一次函数的图象。
2.2 分析一次函数图象的性质讨论一次函数图象的斜率和截距与直线的位置关系。
解释一次函数图象与坐标轴的交点。
2.3 例题解析提供几个关于一次函数图象的例题,让学生理解并应用一次函数图象的性质。
2.4 练习题设计一些练习题,让学生巩固对一次函数图象的理解。
第三章:一次函数的性质3.1 斜率的性质解释斜率的正负与函数图象的倾斜方向的关系。
讨论斜率的绝对值与函数图象的陡峭程度的关系。
3.2 截距的性质解释截距的正负与函数图象与y 轴的交点位置的关系。
讨论截距的绝对值与函数图象与y 轴的距离的关系。
3.3 例题解析提供几个关于一次函数性质的例题,让学生理解并应用一次函数的性质。
3.4 练习题设计一些练习题,让学生巩固对一次函数性质的理解。
第四章:一次函数的应用4.1 线性方程的解法解释如何利用一次函数的性质解决线性方程的问题。
提供一些线性方程的例题,让学生理解并应用解法。
4.2 实际问题应用提供几个实际问题,如“某商品的售价与购买数量之间的关系”,让学生应用一次函数的知识解决问题。
4.3 例题解析提供几个关于一次函数应用的例题,让学生理解并应用一次函数的知识解决实际问题。
21.2 一次函数的图像和性质
1.会用两点法画出正比例函数和一次函数的图象,并能结合图象说出正比例函数和一次函数的性质;(重点)
2.能运用性质、图象及数形结合思想解决相关函数问题.(难点)
一、情境导入 做一做:在同一个平面直角坐标系中画出下列函数的图象.
(1)y
=12x ; (2)y =1
2x +2;
(3)y =3x; (4)y =3x +2. 观察函数图象有什么形式? 二、合作探究
探究点一:一次函数的图象
【类型一】 一次函数图象的画法
在同一平面直角坐标中,作出下
列函数的图象.
(1)y =2x -1; (2)y =x +3; (3)y =-2x; (4)y =5x . 解析:分别求出满足各直线的两个特殊点的坐标,经过这两点作直线即可.(1)一次函数y =2x -1图象过(1,1),(0,-1);(2)一次函数y =x +3的图象过(0,3),(-3,0);(3)正比例函数y =-2x 的图象过(1,-2),(0,0);(4)正比例函数y =5x 的图象过(0,0),(1,5).
解:如图所示.
方法总结:此题考查了一次函数的作
图,解题关键是找出两个满足条件的点,连
线即可.
【类型二】 判定一次函数图象的位置
已知正比例函数y =kx (k ≠0)的函
数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )
解析:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小,∴k <0.∵一次函数y =x +k 的一次项系数大于0,常数项小于0,∴一次函数y =x +k 的图象经过第一、三、四象限,且与y 轴的负半轴相交.故选B.
方法总结:一次函数y =kx +b (k 、b 为常数,k ≠0)是一条直线.当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小.图象与y 轴的交点坐标为(0,b ).
探究点二:一次函数的性质
【类型一】 判断增减性和图象经过的象限等
对于函数y =-5x +1,下列结论:
①它的图象必经过点(-1,5);②它的图象经过第一、二、三象限;③当x >1时,y <0;④y 的值随x 值的增大而增大.其中正确的个数是( )
A .0个
B .1个
C .2个
D .3个
解析:∵当x =-1时,y =-5×(-1)+1=6≠5,∴点(1,-5)不在一次函数的图象上,故①错误;∵k =-5<0,b =1>0,∴此函数的图象经过第一、二、四象限,故②错误;∵x =1时,y =-5×1+1=-4.又∵k =-5<0,∴y 随x 的增大而减小,∴当x >1时,y <-4,则y <0,故③正确,④
错误.综上所述,正确的只有③.故选B.
方法总结:一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.
【类型二】 一次函数的图象与系数的关系
已知函数y =(2m -2)x +m +1, (1)当m 为何值时,图象过原点? (2)已知y 随x 增大而增大,求m 的取值范围;
(3)函数图象与y 轴交点在x 轴上方,求m 的取值范围;
(4)图象过第一、二、四象限,求m 的取值范围.
解析:(1)根据函数图象过原点可知,m +1=0,求出m 的值即可;(2)根据y 随x 增大而增大可知2m -2>0,求出m 的取值范围即可;(3)由于函数图象与y 轴交点在x 轴上方,故m +1>0,进而可得出m 的取值范围;(4)根据图象过第一、二、四象限列出关于m 的不等式组,求出m 的取值范围.
解:(1)∵函数图象过原点,∴m +1=0,即m =-1;
(2)∵y 随x 增大而增大,∴2m -2>0,解得m >1;
(3)∵函数图象与y 轴交点在x 轴上方,∴m +1>0,解得m >-1;
(4)∵图象过第一、二、四象限,
∴⎩
⎪⎨⎪⎧2m -2<0,m +1>0,解得-1<m <1. 方法总结:一次函数y =kx +b (k ≠0)中,当k <0,b >0时,函数图象过第一、二、四象限.
探究点三:一次函数图象的平移
在平面直角坐标系中,将直线l 1:
y =-2x -2平移后,得到直线l 2:y =-2x +4,则下列平移作法正确的是( )
A .将l 1向右平移3个单位长度
B .将l 1向右平移6个单位长度
C .将l 1向上平移2个单位长度
D .将l 1向上平移4个单位长度 解析:∵将直线l 1:y =-2x -2平移后,
得到直线l 2:y =-2x +4,∴-2(x +a )-2
=-2x +4,解得a =-3,故将l 1向右平移3个单位长度.故选A.
方法总结:求直线平移后的解析式时要注意平移时k 的值不变,只有b 发生变化.解析式变化的规律是:左加右减,上加下减.
探究点四:一次函数的图象与性质的综合运用
一次函数y =-2x +4的图象如
图,图象与x 轴交于点A ,与y 轴交于点B .
(1)求A 、B 两点坐标;
(2)求图象与坐标轴所围成的三角形的面积.
解析:(1)x 轴上所有的点的纵坐标均为0,y 轴上所有的点的横坐标均为0;(2)利用(1)中所求的点A 、B 的坐标可以求得OA 、OB 的长度.然后根据三角形的面积公式可以求得△OAB 的面积.
解:(1)对于y =-2x +4,令y =0,得-2x +4=0,∴x =2.∴一次函数y =-2x +4的图象与x 轴的交点A 的坐标为(2,0);令x =0,得y =4.∴一次函数y =-2x +4的图象与y 轴的交点B 的坐标为(0,4);
(2)由(1)中知OA =2,OB =4.∴S △AOB =12·OA ·OB =12×2×4=4.∴图象与坐标轴所围成的三角形的面积是4.
方法总结:求一次函数与坐标轴围成的三角形的面积,一般地应先求出一次函数图象与x 轴、y 轴的交点坐标,进而求出三角形的底和高,即可求面积.
三、板书设计
1.一次函数的图象 2.一次函数的性质
3.一次函数图象的平移规律
本节课,学生活动设计了三个方面:一是通过画
函数图象理解一次函数图象的形状.二是两点法画一次函数的图象.三是探究一次函数的图象与k、b符号的关系.在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性值得深入探讨.为了达到上述目的,应结合每个活动,给学生明确的目的和要求,而且提供操作性很强的程序和题目.学生目标明确,操作性强,受到了较好的效果.。