生产培训教材系列--硬质合金压制员工培训.
- 格式:ppt
- 大小:667.50 KB
- 文档页数:20
压铸培训教材压铸是一种加工工艺,与砂型铸造和蜡模铸造不同,具有大批量生产、尺寸精密、外表漂亮的特点。
压铸可分为热室压铸和冷室压铸。
压铸的过程包括低速阶段、高速阶段和增压阶段,目的是为了排出空气、获得漂亮的压铸外观、卷入空气的细微化、补充因冷却收缩导致的缩孔和使铸件获得致密的组织。
新的压铸工艺包括真空压铸、ACURAD压铸、局部加压法和半凝固压铸。
在压铸过程中,需要注意安全事项,例如模具分型面处不得站立,炉子里不能有水分进入,操作时必须切断电源开关等。
应急措施包括铝液爆炸时躲避并高声通知,发现火情或异常动作时立即关闭电源并用灭火器或砂子扑灭,如有人员受伤,必须送医院抢救。
安全的三原则是整理、整顿、清洁、清扫,点检、保养和作业标准化。
铝合金压铸件的不良分析及对策包括尺寸不良、外观不良、内部不良、材质不良和其他不良。
压铸件是铝液高速、高压浇入精密的模具中,不良原因及对策相对明确易掌握。
压铸是一种大批量生产的方法,但是不良发生具有连续性,可能在较短的时间内造成大量废品。
此外,压铸件的尺寸精度很高,稍微的变形都可能导致组装和加工不良,意外的尺寸问题也经常会发生。
压铸模具的冷却速度很快,这可能会导致大型铸件和薄形产品出现花斑等不良现象。
由于高速高压,压铸可能导致气体收缩留在铸件中,因此气孔的彻底消除很困难,电焊补孔也可能导致压铸气孔膨胀,而T6热处理也不现实。
此外,压铸还可能产生硬质点等不良。
压铸不良的直接原因包括产品形状设计不合理、压铸机及充填条件的不合理、模具及浇口系统的不合理、压铸作业的不适当、原材料及溶解技术的不适当以及作业者的失误。
而压铸不良的间接原因则包括工艺的不合理、品质管理(操作、作业标准、检查标准等)的未落实、操作者和管理者不重视等。
尺寸不良包括尺寸不良、错位、型芯让模、滑块让模、变形、多肉、缺肉、浇口、渣包缺肉等。
其中,尺寸不良的原因可能是图面尺寸误记、检查失误、修模遗漏等。
为了解决这些问题,可以加强图纸管理、定期更换型芯、改变浇口方向、改变产品形状、修正模具磨损等。
前言本手册是作为公司工程部工作参考,及对XX公司新进员工培训教材而编写的。
本手册基本介绍了五金模具的基本结构、各模板的加工工艺、以及常见的标准文件,主要为工程部标准参考文件,对现有的加工技术作统一标准,达到方便加工,提升品质与效率、同时达到降低成本的作用。
通过本手册,新进员工可以尽快地学习了解本公司的加工技术、工作内容及方法。
以便在今后的学习与工作中做的更好。
本册现共编有三个部分,第一部分为模具的结构,使我们能更好的了解到各板件的加工内容,第二部分为加工工艺,规范了现有的加工技术及方法,第三部分为常用的标准文件图表,便于工作中的查阅。
本手册的完成要感谢各位主管及相关工程人员的支持。
因时间及能力的所限,本手册难免存在错误及不足之处,请各位读者批评指正,以利更好的完善加工技术,及今后新进员工的教育培训。
目录第一节模具的结构五金模板英文名称。
1复合模的结构。
2冲孔模的结构。
3连续模的结构。
4第二节冲压模具的制造工艺热处理模板加工区分(CNC/WE)。
5非热处理模板加工区分(CNC/WE)。
6孔的加工工艺。
7槽的加工工艺。
9模板加工注意事项。
11附录CNC加工作业规范。
13CNC常计算公式。
19第三节标准文件及图表加工中常用英文注解。
21加工工艺简表。
22颜色及图层管制表。
23标准螺纹孔及沉头孔参数表。
25G码功能表。
26M码功能表。
28图面几何公差符号。
29附录审图程序。
29模具结构篇我司主要是针对五金模具的加工,所以首先要了解模具的结构.本章节主要介绍五金冲压模具结构及各个零部件的功用和加工方式.模具从结构上分一般有复合模、冲孔模、成形模、拉伸模;从冲压件上分有弹片模、端子模、汽车模;从冲压速度上分有高速啤模、低速啤模;从工序上分单程模、连续模;从加工内容上分有涨形模、缩形模、切边模等。
不同的公司和地区因为文化和习惯的不同,而叫法有所区别。
如连续模有的叫操兵模、顺送模、级进模等。
这将在介绍各种模具结构时做具体说明。
铸造工培训材料一、铸造的概念:铸造是金属成形的一种方法,作为区别于其他成形方法的特点,铸造是一种液态金属成形的方法。
即将金属加热到液态,使其具有流动性,然后浇入到具有一定形状的型腔的铸型中,液态金属再重力场或外力场(压力、离心力、电磁力、振动惯性力等)的作用下充满型腔,冷却并凝固成具有型腔形状的铸件。
二、铸造方法:铸造方法的种类很多。
从一般砂型铸造到各种特种铸造,虽各具特点,但本质相同:即为了获得铸件,首先必须熔配出符合化学成分要求的液态金属,然后使其在铸型中凝固、冷却,形成铸件。
三、铸件缺陷及影响因素:铸件形成过程中产生的某些宏观缺陷,如宏观偏析、缩孔、气孔、非金属夹杂物、裂纹等都是十分有害的。
即使经过锻造、压延等塑性加工,也不能完全消除它们对金属制品性能的影响。
这些铸造缺陷将作为塑性加工后的痕迹,残留在金属制品中,对金属制品的使用性能具有潜在的危险性。
因此,铸造初期对工艺、质量的控制是至关重要的,也是必不可少的。
铸件形成过程中影响铸件质量的因素是多方面的,如果罗列起来有几十种因素,但归纳起来有四类:1、材料因素:材料成分、结晶特点、密度、比热、导热系数、结晶潜热、粘度、表面张力等。
2、铸型(模具)因素:铸型的蓄热系数、密度、比热、导热系数、铸型的温度、强度、透气性等。
3、工艺因素:浇注温度、浇注速度、静压头、外力场的影响等。
4、铸件结构因素:铸件的折算厚度、复杂程度等。
另外需要设备的铸造过程还有设备因素。
四、缸头铸造的工艺流程:造型、熔化浇注落砂浇口切断精整表面处理分类专检检验。
五、各工序质量标准:A、造型工序质量要求:外观无充填不良等缺陷;毛刺清理干净0.2mm以下;吹砂口残高为0至-0.5mm;顶出杆痕高为-0.5至0。
B、铸造工序质量要求:加工基准平整无凸凹点。
外观无拉伤、粘模、冷隔、缩陷、凸凹不平、粘砂、气孔;散热片无弯曲、变形;无涂层脱落痕迹;砂芯无断裂。
C、落砂工序质量要求:无砂芯断裂;基准点无磕碰、凸凹;外观无磕碰或充填不良。
硬质合金制备过程中的基本原理、烧结工艺及应用培训硬质合金是一种由金属粉末和粉末冶金工艺制备而成的高强度、高硬度材料。
其制备过程包括原料选择、粉末的制备、混合、成型和烧结等步骤。
硬质合金的基本原理是以金属粉末为基础材料,通过添加适量的碳化物粉末(如钨碳化钴粉末)作为增强相,经过混合、压制和烧结等工艺步骤形成。
在烧结过程中,金属粉末首先在高温下熔化,然后通过熔湿作用与碳化物相互反应生成金属碳化物结合相,使金属基体形成牢固且均匀分布的增强相颗粒。
烧结工艺是硬质合金制备过程中至关重要的一步。
主要包括预压、烧结及后处理三个阶段。
在预压阶段,通过将混合好的金属粉末和碳化物粉末放入模具中,利用压力将其预压成坯体。
这一步骤旨在提高粉末的绿密度和可压性,并为后续的烧结提供条件。
然后,将预压好的坯体放入高温的烧结炉中进行烧结。
烧结过程中,坯体在高温下逐渐熔化,金属与金属碳化物进行反应,并合成出独特的金属碳化物相。
同时,由于烧结炉中的高温和压力作用,使得金属碳化物颗粒之间发生颗粒扩散和晶粒长大现象,从而形成致密且强度高的硬质合金。
最后,在后处理阶段,将烧结好的硬质合金进行加工和调质,以达到所需的硬度和强度。
这包括切割、切磨、车削、磨削等工艺,以及热处理过程,如回火和时效处理等。
硬质合金的应用非常广泛,常见的应用包括切削工具、矿业工具、电子元件等领域。
由于硬质合金具有极高的硬度、耐磨性和耐腐蚀性,因此在切削加工领域被广泛应用于车削、钻孔、铣削和切割等工艺中。
同时,在矿业工具领域,硬质合金可以用作凿岩钻头、矿山钻头等,因为它的耐磨性和强度能够满足严苛的工况要求。
在电子元件领域,由于硬质合金具有优异的导热性和耐腐蚀性能,因此常用于制造散热器、金属工具接触点等。
总之,硬质合金的制备是一个复杂的过程,包括原料选择、混合、成型和烧结等多个步骤。
通过控制工艺参数和多次迭代优化,可以获得具有优异性能的硬质合金材料,满足不同领域的应用需求。