板坯连铸机扇形段制造质量控制要点简介
- 格式:pdf
- 大小:12.95 KB
- 文档页数:1
连铸坯凝固末端大压下的连铸机扇形段及其大压下方法连铸是金属在连续铸造过程中直接冷却成型,与传统的铸造方式相比,具有节省原料和能源、提高生产效率和产品质量的优势。
连铸坯凝固末端大压下是连铸过程中的关键步骤之一,本文将对连铸机扇形段及其大压下方法进行探讨和介绍。
连铸机扇形段是指连铸流程中坯体凝固末端的特定区域,通常位于最后一个凝固壁的后面。
连铸机扇形段在整个连铸过程中起到了至关重要的作用。
它不仅直接影响到坯体的凝固速度和坯体的内部结构,还可以通过调整扇形段的温度和压力来控制坯体的结晶组织和力学性能。
扇形段的设计与布置直接关系到连铸质量和生产效率。
它通常由数十个出口喷嘴组成,每个喷嘴都有特定的角度和流量。
出口喷嘴的角度决定了喷嘴之间的夹角,流量则决定了喷嘴的冷却效果。
通过合理的布置和调整出口喷嘴的角度和流量,可以实现坯体的均匀冷却和防止表面缺陷的产生。
在连铸坯凝固末端大压下过程中,主要采用的方法有多种。
其中一种是通过调整扇形段的温度来实现大压下效果。
具体来说,可以通过增加冷却水的流量来使扇形段的温度下降。
较低的温度可以增加钢坯表面的负压,从而提高连铸质量和表面质量。
另一种方法是通过增加扇形段的压力来实现大压下效果。
一般来说,增加冷却水的压力可以提高扇形段的冷却效果,进而提高连铸质量和表面质量。
除了以上两种方法,还可以通过调整喷嘴之间的距离和角度来实现大压下效果。
较小的夹角和较小的喷嘴间距可以增加连铸坯的冷却效果,从而实现大压下效果。
此外,还可以通过调整喷嘴的冷却水流量和压力来实现大压下效果。
适当增加冷却水的流量和压力可以提高坯体的冷却效果,进而实现大压下效果。
总而言之,连铸坯凝固末端大压下是连铸过程中的关键步骤之一,通过合理设计和调整扇形段的温度、压力和喷嘴间距等参数,可以实现坯体的均匀冷却和表面缺陷的防止。
这不仅有助于提高连铸质量和生产效率,还可以提高金属材料的力学性能和使用寿命。
因此,连铸机扇形段及其大压下方法的研究和应用具有重要的意义和价值。
连铸中的SMART扇形段技术和ASTC铸坯锥度控制2002年12月,VAI的七台九流板坯连铸机采用了SMART/ASTC技术进行了操作。
SMART/ASTC技术可用于板坯和方坯连铸机,可连铸各种钢种。
优化中心质量是连铸技术的重要目标。
改善中心质量的一种方法是通过减少最终凝固点附近的连铸厚度补偿热收缩。
这种工艺被称之为“轻压下”。
VAI开发了一种轻压下技术,叫做铸坯锥度自动控制(ASTC),和液压调节SMART扇形段技术联合使用。
该技术可根据在线计算的铸坯凝固位置动态地调节理想的辊缝形状。
SMART/ASTC技术可以按任何铸速、在瞬时连铸条件下优化铸坯内部质量。
由VAI开发的这项技术能迅速地改善拉坯扇形段内辊缝设定,在没有人工介入的情况下实现不同的连铸厚度。
冶金背景因为钢在某一固定温度不凝固,但是超过某一温度范围就会出现糊状区,即钢不完全是液态,也不完全是固态。
在这个糊状区,根据不同的参数如,合金化元素含量、凝固速度和过热温度,会出现偏析。
在最终凝固点附近,铸坯中心的连铸方向的温度梯度大于板坯表面的温度梯度。
这样导致残余熔体流向铸坯内部液相穴的末端并凝固,而且合金化元素的浓度很高,如C、Mn、P和S。
这就是中心偏析。
减少中心偏析的一种方法是轻压下。
即通过调节拉坯扇形段内的辊缝锥度机械地减少流向铸坯内部液相穴末端的铸坯厚度。
决定轻压下的最主要参数是铸坯规格、铸速、钢的化学性质、过热和铸坯的二次冷却。
由于在连铸过程中,连铸参数不断发生变化,所以动态的辊缝调节系统比简单的机械调节系统具有优势。
由VAI开发的动态调节SMART扇形段技术与工艺控制技术联合使用,称为铸坯锥度自动控制(ASTC),可用于最佳辊缝锥度的在线计算。
SMART扇形段设计由于连铸操作的边界条件要求很高,以前只是把静态软压下用于某一限定的规格。
在先进的数字模拟基础上结合广泛的试验,VAI开发了能动态定位扇形段内框的技术。
该系统不但可靠,而且非常适于钢厂的苛刻条件。
连铸坯质量控制连铸坯质量控制1. 引言2. 连铸坯质量特点连铸坯的质量特点主要包括以下几个方面:2.1 凝固结构连铸坯是通过冷却凝固过程形成的,其凝固过程直接影响到坯体的凝固结构。
凝固结构的好坏会对后续的加工以及材料性能产生重要影响。
2.2 化学成分均匀性连铸坯的化学成分均匀性是其质量的重要指标之一。
成分不均匀容易导致后续钢材性能不稳定,从而影响到产品的质量。
2.3 表面缺陷由于连铸坯制造过程中的一些不可避免的因素,气体夹杂、氧化皮等,会在坯体表面形成一些缺陷。
这些表面缺陷会对后续产品的外观质量产生负面影响。
2.4 尺寸偏差连铸坯的尺寸偏差是指坯体的实际尺寸与标准尺寸之间的差异。
尺寸偏差会影响到钢材的加工工艺和成形质量。
3. 连铸坯质量控制因素及措施连铸坯质量的影响因素众多,包括原料质量、连铸工艺参数、设备状况等。
针对这些影响因素,可以采取以下控制措施来提高连铸坯的质量:3.1 原料质量控制通过严格控制原料的化学成分和物理性能,确保连铸坯的化学成分均匀性和机械性能达到要求。
3.2 连铸工艺参数控制连铸工艺参数的合理设置对坯体的凝固结构和表面质量具有决定性影响。
需要通过优化连铸工艺参数,如冷却水流量、浇注速度等,来控制连铸坯的质量。
3.3 设备维护与改进连铸设备的状态对连铸坯质量也有重要影响。
定期进行设备维护和检修,及时处理设备故障,可以保证设备处于良好状态,进而提高连铸坯的质量。
3.4 检测手段与技术利用先进的检测手段和技术,如超声波检测、磁力检测等,可以对连铸坯进行质量检测,及时发现问题并采取相应措施。
4.连铸坯质量控制是钢铁生产中至关重要的环节。
通过对连铸坯质量特点的分析和影响因素的控制,可以采取相应的措施来提高连铸坯的质量。
这不仅对于保证下游产品质量,还对于提高工业生产效益和降低资源消耗具有重要意义。
开展连铸坯质量控制工作是必不可少的。
板坯连铸机扇形段制造质量控制分析摘要:板坯连铸机工作状态相对比较复杂,在面对不同的恶劣工作情况时,很有可能对板坯连铸机扇形段结构构成毁灭性影响,因此就需要对扇形段结构进行优化设计,对制造质量进行严格把控。
只有完全确保制造质量能够达到预期的标准,才能够使得扇形段在整个运行系统中发挥更加重要的作用,确保炼钢生产实践活动的平稳进行,促进我国工业的健康发展。
关键词:板坯连铸机;扇形段制造;质量控制;分析1导言板坯连铸机是现代炼钢生产中必不可少的设备,在板坯连铸机组中,扇形铸坯导向段是与热铸坯直接接触的部位,主要起到了支撑和铸坯导向的作用,因此扇形段的质量和性能也是保证连铸产品质量和机组高效运行的关键。
由于生产工艺原因,连铸机扇形段一直是故障的多发部位,也是导致连铸机组非正常停机的最主要因素,而扇形段又以辊系故障居多。
为了减少此类故障,保证机组的高效稳定运行,必须要对扇形段的设计及制造质量严格把控。
本文以山钢板坯连铸生产线为例,结合多年生产设计实践,对板坯连铸机结构形式及扇形段制造质量控制进行了探讨研究。
2扇形段结构形式扇形段起着支撑和导向铸坯的作用,是在铸坯凝固过程中直接与之接触的设备,直接影响着铸坯的表面质量和内部质量。
每台扇形段主要由内外弧框架、夹紧装置及辊系装配组成。
扇形段驱动有单驱动和双驱动之分,单驱动1台扇形段只有1只驱动辊,其余13只为自由辊;双驱动有上、下两只驱动辊和12只自由辊。
自由辊与驱动辊均为分段辊形式,自由辊无芯轴,驱动辊有芯轴,驱动辊其升降动作通过两个压下油缸实现。
辊身表面均堆焊,辊子内部冷却通过旋转接头与主水路连接,轴承冷却通过接水板与主水路连接,板坯二次冷却通过气雾冷却系统,液压、润滑均通过快速接头与中间配管连接,拆装方便。
3板坯连铸机扇形段的结构分析二冷扇形段位于连铸机铸坯导向段二冷零号段以后,切割前辊道之前,包括弧形扇形段、矫直扇形段、水平扇形段等几部分,生产中主要起到了支撑、冷却、拉坯和铸坯导向的作用。
板坯连铸机扇形段制造质量控制板坯连铸机扇形段制造质量控制常虹(常州宝菱重工机械有限公司,江苏常州213019)摘要:分析了板坯连铸机主要零件制造过程中的质量控制点,提出了相应的解决措施。
关键词:连铸机;扇形段;质量控制;框架;辊子中图分类号:T G233.6引言常州宝菱重工机械有限公司(以下简称“宝菱重工”)是集冶金设备、备件研发、设计、制造、销售于一体的冶金装备制造公司,公司拥有完整的产品研发、工艺设计、机械制造、品质保证的综合技术实力和集成创新体系。
宝菱重工制造的连铸机已达到了国内先进水平,常规板坯连铸、薄板坯连铸、薄带连铸、特宽特厚板连铸、方坯连铸、圆坯连铸等各种形式连铸机在国内外均有优异的业绩。
本文就宝菱重工为某钢厂制造的宽厚板连铸机扇形段的质量控制进行了分析。
1 扇形段结构形式扇形段起着支撑和导向铸坯的作用,是在铸坯凝固过程中直接与之接触的设备,直接影响着铸坯的表面质量和内部质量。
每台扇形段主要由上、下框架及其辊装配组成。
扇形段驱动有单驱动和双驱动之分,单驱动1台扇形段只有1只驱动辊,其余13只为自由辊;双驱动有上、下两只驱动辊和12只自由辊。
自由辊为三分节辊,驱动辊为整体辊,其升降动作通过两个小油缸实现,辊身表面均堆焊,辊子内部冷却通过旋转接头与主水路连接,轴承冷却通过接水板与主水路连接,板坯二次冷却通过气雾冷却系统,液压、润滑均通过快速接头与中间配管连接,拆装方便。
2 主要零件及质量控制点为保证各段的连铸辊母线在规定理想弧的误差范围之内,需对各段的连铸辊母线进行测量并调整,通常称之为“对弧”。
对弧的准确性直接影响铸坯产品质量,是反映连铸机制造质量的重要依据。
按照检验大纲,对弧精度应达到±0.05m m,根据这个要求,在制造中对于上/下框架、辊子、轴承座等主要零件的主要尺寸及基面尺寸均须设立质量控制点。
2.1 上、下框架框架是连铸机设备的重点部件,加工周期长、精度要求高。
框架属于焊接式扁体结构,需要有足够的强度才能保证精度。
板坯连铸生产工艺及质量控制研究摘要:连铸生产工艺本身具备高效、经济等特点,在相关部门的要求下,连铸工艺对连铸坯质量有着较高的要求。
在特定的连铸工艺下,连铸装备水平、钢种性质、工况等基础上,才能有效控制结晶质量。
本文主要探讨的是连铸生产工艺极其质量控制,首先分析了结晶器冷却工艺及质量控制,同时阐述了扇形段二冷工艺质量控制,最后总结了连铸机辊距工艺及质量控制。
关键词:板坯连铸;生产工艺;质量控制1板坯连铸机油气润滑系统由于油气润滑有着诸多较干油集中润滑方面的优势,油气润滑技术应用于连铸方面的研究一直在进行着。
方坯连铸由于润滑点数相对小,油气润滑技术早期成功应用于方坯连铸中;随着技术的发展,采用一套油气润滑系统对上千个润滑点甚至是几千个润滑点的板坯连铸机进行润滑的技术已经变得成熟并得到了广泛的应用。
在中国,油气润滑开始于20世纪90年代,随着宝钢、武钢等企业从国外大批引进具有油气润滑配套的轧机、高线等设备。
在连续铸钢领域,油气润滑技术首先在方坯连铸机上应用,并逐步开始在板坯连铸生产线乃至其他各个领域推广使用。
1.1板坯连铸机油气润滑系统介绍油气润滑技术由油雾润滑发展而来。
19世纪后期,人们用矿物油润滑蒸汽缸,出现了油气润滑的雏形。
在20世纪初,空压机得到广泛应用,同时空压机润滑需要一种类似油雾润滑装置的润滑器,在工业的应用过程中发现,从空压机里出来的空气中含有油,并且像“雾”一样沉积在设备周围起到润滑作用。
20世纪60年代,人们发现可以用压缩空气作为载体将润滑油通过管路输送到润滑点,初步奠定了油气润滑的基础。
到20世纪70年代,油气润滑技术工业应用得到了发展,使润滑技术进入了一个新的时代。
油气润滑是一种集中润滑方式,其原理是运用连续流动的压缩空气对间歇供给的稀油产生作用以形成涡流状的液态油滴并沿管壁输送至润滑点。
这一新型的流体被称为“气液两相流体”。
在油气润滑中,喷入轴承的油滴的状态在很大程度上取决于喷嘴的设计、压缩空气的速度和润滑油的表面张力。
板坯连铸机扇形段弧度调整技术及精度维护要领八钢二炼钢板坯连铸机扇形段弧度的调节及精度的保持周期,关系到板坯连铸机设备的检修周期、人员负荷以及铸坯的质量,而影响弧度保持的因素包含规范清洁垫片、按标准预紧地脚螺栓、测量误差的降低等诸多方面,通过一年时间的现场学习和摸索,总结出一些提高调整精度的工作方法。
标签:板坯连铸;弧度;精度;周期前言二炼钢厂共有4台板坯连铸机,每条产线都由大包、扇形段、后区等区域组成。
其中,扇形段又称板坯连铸机的铸流导向系统。
它由大量导向辊组成,其目的是对铸流起挤压、导向、支撑的作用。
由于工作环境恶劣,并且经受长期的运转和受力工作,致使辊面发生变形和磨损以及各支点位移下沉,最终导致扇形段跑弧。
弧度偏离误差范围时,引起铸坯发生角裂、纵向裂纹,形成大量质量坯,严重影响企业的经济效益。
至此,扇形段弧度调整技术及精度维护要领便成为了保障铸坯质量的重要环节和技术重点,只有通过不断的改进测量方法,规范调整细节,紧抓调整质量和精度,才能有效服务生产,发挥技术改进和创新的现实作用。
1 现场检修中扇形段弧度调整的现状1.1 弧度调整频繁,检修负荷大2010年至今,扇形段0-7#段弧度检测及超标数据调整是每次定修的不变内容之一,还是年修项目中的重中之重。
在常规检修项目中,完成这项作业项目需要测量人员2名,调整人员2名,并且长达2-8小时的作业时间,由于此检修项目频繁,极大增加了检修作业的负荷以及人员需求。
1.2 弧度测量数据误差较大1.2.1 现场环境的影响扇形段位于连铸平台的“腹内”,上方由于有盖板的遮蔽,导致现场光线昏暗,严重影响测量人员视力范围。
其次,扇形段二冷水开关阀门经常出现锈蚀,无法关闭,测量人员为避免淋湿快速结束测量,导致测量无法细心进行,随着夏天的临近,段里高温、潮湿的环境是影响测量人员精神状态的重要因素。
1.2.2 测量工器具的影响扇形段测量使用1-4号4快测量样板,由于0-7段频繁测量需要,此样板磨损较为明显,增大了测量读数的误差。
连铸板坯的质量保证发表日期:2007-11-3 阅读次数:262摘要:连铸板坯的质量控制十分重要。
自从应用连铸以来在实验中和生产实践中找到了很多提高连铸板坯质量的方法,随着科技的进步新的更好的方法会不断地涌现。
关键词:板坯连铸机; 钢水质量; 温度控制; 中间包; 扇形段大型板坯连铸机的出现是冶金历史上的一次重大的革命。
从而淘汰了多年使用的铸锭、脱锭、初轧的旧的生产方式,由连铸的方式代替。
生产方式的改变大大的减少了生产用地,省掉了很多机械设备,节省了大量的能源。
板坯的利用率提高到95%~97%。
因而节省大量设备投资和生产成本。
因此提高铸坯合格率和铸坯质量是生产中十分关键的问题。
下面简介提高铸坯质量的措施。
1 对钢水质量的要求钢水要进行脱硫、脱磷、脱夹杂物的控制级温度控制。
钢水成分要进行调整,主要是调整钢水中的C、Mn、Si、Al 等成分,称之为合金微调。
钢水进行真空冶炼,主要是脱去氢气、氧气和氮气。
对钢水进行吹氩处理,目的是均匀钢水温度,并使夹杂物上浮。
经过上述处理的高质量合格钢水,由炼钢厂送入连铸厂大包回转台上,准备浇铸。
2 浇铸温度的控制影响铸坯质量的重要因素是: 浇铸温度、浇铸速度、冷却水量、保护渣、耐火材质等。
其中浇铸温度是十分关键的要素。
钢水的铸造温度高低与钢坯中夹杂物的多少、产生内外裂纹和中心偏析及生产操作的稳定性有十分密切的关系。
当浇铸温度偏低时, 内裂和中心偏析可以得到理想的改善, 而且钢坯的晶粒组织均匀, 使得柱状晶粒减小并减少, 等轴晶粒比例提高, 但缺点是由于钢水温度低, 夹杂物不易上浮, 中间包水口易堵。
但铸造温度高时容易产生漏钢事故, 内裂和中心偏析增强, 也可能产生钢坯纵裂使铸坯质量降低。
选择合适的铸造温度十分重要。
一般控制大包内的钢水温度为1600℃, 中间包内钢水温度为1550℃, 结晶器内钢水温度为1500℃, 偏差控制为±10℃。
3 采用大容量中间包中间包授受大包铸入的钢水, 在铸入到结晶器内, 它具有贮存钢水, 稳流, 缓冲浇铸和浮渣的作用, 是实现多炉连浇的必须设备。
连铸板坯偏离角纵裂的质量控制
连铸板坯偏离角和纵裂都是连铸过程中常见的缺陷,对于质量控制非常重要。
以下是几点质量控制建议:
1.优化结晶器设计,减少板坯偏离角和纵裂的发生。
例如,在结晶器中增加支撑或调整结晶器的几何形状,改善结晶器水平度等。
2.调整结晶器水平度控制技术,尽可能消除结晶器扭曲,确保板坯表面水平度。
3.对连铸机参数进行调整,如调整注浆速度、流量等,保证连铸过程的稳定性。
4.对冷却过程进行监测,调整冷却水的流量和温度等参数,确保冷却过程稳定、均匀。
5.定期对铸坯进行人工检查,发现偏离角、纵裂等缺陷及时采取措施,提高铸坯质量。
6.在生产过程中使用先进的检测设备对铸坯进行自动检测,及时发现缺陷,及时采取措施,优化质量控制。
以上几点是一些常见的质量控制建议,通过合理的技术手段和质量控制措施,可以有效减少连铸板坯的偏离角和纵裂缺陷的发生,提高产品质量。
板坯连铸机扇形段对铸坯质量控制分析摘要:在板坯连铸机的生产过程中,由于各种生产技术手段的限制,铸坯质量会有裂纹等缺陷,影响连铸生产效果。
因此,就需要对板坯连铸机的扇形段进行优化设计,确保其质量能够达到现在连铸产业中的高标准要求。
本文就对板坯连铸机扇形段对铸坯质量控制有关内容进行分析,可供参考。
关键词:板坯连铸机;扇形段;ASTC;轻压下;二冷水;驱动力1板坯连铸机结构的分析板坯连铸机是一个复杂的工作系统,涉及到多种高科技技术的应用,不同的部分之间相互协作,共同发挥出良好的生产实践性能。
通常,板坯连铸机需要由碳素结构钢、压力容器钢等组成,每个组成部分都能够对整体的各项性能指标构成一定的影响。
板坯连铸机在1960年左右就已出现,发展至今,相关技术研究已相对成熟,生产工艺已经得到了提高。
在改革开放的背景下,国外的各种板坯连铸机设计技术逐渐传入我国,使得国内在该领域也有了较大的技术提升。
但从世界范围内来看,关于板坯连铸机的扇形段方面相对来说还处于技术匮乏状态,还需要着重根据各种工况的不同,进行有针对性的设计,提高扇形段工作的效果。
在当前以计算机信息技术为主的高科技技术的冲击下,能够使得扇形段结构设计仿真更加真实可靠,促进该领域的健康发展。
板坯连铸机的扇形段结构并不是孤立的,而是有许多不同的扇形段组合在一起形成的复杂系统。
从分析整个板坯连铸机的工作情况来看,可以很明显的发现,不同部分的扇形段能够有效地发挥支撑、冷却、拉坯导向等作用。
针对支撑作用,主要是能够有效地降低钢液静压的作用。
扇形段内的夹紧导向装置,能对内外弧框架进行夹紧。
2扇形段基础框架组成部件扇形段基础框架分为弧形段、矫直段、水平段3个基础框架,都采用整体式框架结构。
一般板坯连铸机基础框架上安装6组弧形扇形段,2组矫直扇形段,6组水平扇形段。
每个扇形段上有四个油缸,每个油缸内置一个位置传感器,用于辊缝检测和控制,每个扇形段上还装有水系统喷嘴,对铸坯进行冷却,每个扇形段有两个驱动辊,上辊和下辊,分别连接减速机和电机。
板坯连铸机扇形段制造质量控制要点简介板坯连铸机扇形段是结构复杂且必须高精度加工的关键部件之一,其制造质量直接影响到铸坯的质量和母材的性能。
因此,制造扇形段必须严格控制各个环节,下面主要介绍几个关键的制造质量控制要点。
第一,精度控制。
扇形段的形状、尺寸和表面质量必须保证高精度,以保证铸坯的形状、尺寸和表面质量。
同时,扇形段上的导流管和护流板的精度也必须高,以确保铸液的流动稳定和铸坯表面质量的均匀性。
对于扇形段的精度控制,需要使用高精度的机械加工设备和先进的测量仪器进行检验,如数控加工中心和三坐标测量仪等。
第二,材料选择和热处理。
扇形段是高温、重负载和疲劳环境下工作的部件,因此需要选择高强度、高温抗变形的材料,并对其进行适当的热处理,以提高其力学性能和抗腐蚀性能。
常用的扇形段材料包括耐热铸钢、高温合金和不锈钢等,其热处理方式则根据不同的材料和牌号而定,一般包括热处理、回火和表面喷涂等。
第三,装配和检验。
扇形段采用分段焊接和机械加工的方式进行制造,各个部分必须精准安装和连接。
在装配过程中,需要严格按照工艺要求进行,避免产生焊接变形和连接不牢等质量问题。
同时,还需要对扇形段进行多项检验,如尺寸检查、平整度检测和表面质量检验等,以确保其制造质量符合设计要求。
第四,质量管理。
扇形段的制造必须建立完备的质量管理体系,包括工艺流程、检验标准、检查记录等。
必须对每个工序进行质量把关,发现问题及时处理,做到追溯和预防质量问题。
同时,还要加强对外部供应商的管理,严格控制原材料质量和外协零部件的质量。
综上所述,板坯连铸机扇形段制造质量的控制要点主要包括精度控制、材料选择和热处理、装配和检验以及质量管理等方面,只有在全面控制这些要点的基础上,才能保证扇形段的制造质量,提高铸坯质量和母材性能,为铸造生产提供可靠保障。
浅谈板坯连铸机安装中的测量控制要点摘要:板坯连铸机的工艺设备相互交错,设备紧密相连。
因此,在设备安装之前和施工过程中,测量的准确性是极其必要的。
工程控制测量是各种工程测量的基础和基准。
关键词:板坯连铸机;测量技术;应用1 引言测量放线主要是根据设计要求配合施工过程,采用测量基面位置和仰角的方法。
这是施工的第一阶段,施工前必须做好技术准备,熟悉和检查设计图纸,仔细检查尺寸,了解施工现场控制点的坐标和高度,并制定测量操作计划,准备测量设备以满足测量精度要求。
2 板坯连铸机施工测量技术特征2.1 精度要求高施工测量的精度主要取决于建(构)筑物的大小、性质、用途、材料、施工方法等因素。
一般而言,钢结构建筑施工测量精度应高于钢筋混凝土结构建筑,局部精度往往高于整体定位精度。
连续性设备精度高于单体设备、连续铸钢设备安装精度高于炼钢设备;连铸机设备安装中精度高的设备安装标准为标高±0.2mm,中心偏差±0.2mm,水平度偏差1/1000:测量人员在进行施工测量前,必须详细了解进行施工测量的建(构)筑物、设备所要求的精确性,以及根据此精确性应该采取的测量方法和技巧,在实施施工测量时才能做到准确无误。
根据需要和条件,可以采用全站仪、经纬仪、水准仪等多种设备按三角网、导线网等形式实施平面控制测量。
2.2 施工测量的有序性整个施工过程往往会涉及多个环节,多道工序。
由于施工现场各工序交叉作业,场地变动及施工机械的震动,致使测量标志易遭到破坏。
因此,测量标志从形式、选点到埋设,均应当考虑其安全性和便于检查:如有破坏,应及时重新校核测量恢复。
通过施工测量工作的有序性,确保施工测量的精确性。
安装过程在原有的基准点外,还应相应的增设辅助中心标板。
3 测量控制方案3.1 测量控制工艺施工准备一测量控制网测量一基准销、中心标板埋设测量一设备安装辅助中心线定位一设备找正(初找、精找)。
3.2 施工准备①技术准备。