正丁烷氧化法顺丁烯二酸酐生产工艺尾气的循环利用
- 格式:pdf
- 大小:310.86 KB
- 文档页数:5
2万吨年顺酐装置介绍一、装置概况吐哈石油天然气化工厂2万吨/年顺酐装置于2003年3月15日一次投产成功。
该装置采用正丁烷氧化法水吸收工艺,是正丁烷氧化法生产顺酐的第一套国产化装置,填补了国内空白。
装置产品顺丁烯二酸酐(C4H2O3 )(简称马来酐或顺酐)。
顺酐作为基本有机化工原料,可以广泛应用于树脂、农药、涂料、添加剂等化工产品。
为提高产品质量和收率、达到节能减排目标,2006年经过反复论证引进意大利CONSER公司溶剂吸收及尾气循环工艺,对吸收精制单元进行溶剂吸收技术改造,并与2007年10月12日一次投料成功,改造完成后设计能力2.2万吨/年。
历年投资2.16亿元,其中初期建设投资1.33亿元,历年技术改造投资8293万元。
二、工艺技术原设计为正丁烷固定床氧化水吸收技术,2006年引进意大利CONSER公司先进工艺技术改造成溶剂吸收技术。
溶剂吸收法是目前国际上正丁烷法生产顺酐的典型的、成熟可靠的工艺方法。
该工艺为连续操作,具有顺酐回收率高、原料正丁烷消耗低、产品质量好、运行连续稳定等优点。
本装置经过可研阶段对几家国外公司的比选,综合评价后,选择采用Conser公司的溶剂吸收及尾气循环工艺技术,以DBP(邻苯二甲酸二丁酯)作为溶剂,对反应部分生成的顺酐进行吸收、解吸、再去精制获得液态成品顺酐。
40%部分尾气循环回收再利用,溶剂经处理后循环使用。
三、工艺流程:装置按功能分为5个单元,气分单元、反应吸收单元、解析精制单元、溶剂洗涤单元和公用工程单元。
气分单元的主要功能是将原料石油液化气中的轻重组分分离除去,得到纯度为98%的正丁烷作为原料送入反应吸收单元。
反应吸收单元的主要功能是将正丁烷和氧气在催化剂的作用下在列管式固定床反应器中进行反应,生产顺酐混合气。
由溶剂DBP将其中的顺酐全部吸收,60%的废气被送进焚烧炉,剩余的40%的废气经过洗涤、干燥除去大部分杂质后,被送往压缩机入口重复循环。
解析精制单元的主要功能是在真空条件下回收所有在吸收系统中吸收在溶剂中的顺酐。
修正面积归一法分析正丁烷氧化制顺丁烯二酸酐反应尾气贾雪飞;张东顺;师慧敏;张明森【摘要】采用GC7890B型气相色谱仪,甲烷为FID和TCD的联系气,运用修正面积归一法分析正丁烷氧化制顺丁烯二酸酐反应尾气成分,计算丁烷转化率、顺丁烯二酸酐收率及选择性.结果表明,与常规水吸收法相比,修正面积归一法具有分析速度快,操作简单,自动化程度高的优点,解决了现有顺丁烯二酸酐尾气必须通过冷凝、溶解、滴定分析的难题,缩短了分析时间,降低了劳动强度.【期刊名称】《广州化学》【年(卷),期】2016(041)003【总页数】6页(P29-34)【关键词】尾气分析;修正面积归一法;正丁烷氧化制顺丁烯二酸酐反应【作者】贾雪飞;张东顺;师慧敏;张明森【作者单位】中石化北京化工研究院, 北京100013;中石化北京化工研究院, 北京100013;中石化北京化工研究院, 北京100013;中石化北京化工研究院, 北京100013【正文语种】中文【中图分类】TQ214顺丁烯二酸酐(又称马来酸酐,简称顺酐)是重要的有机化工原料,仅次于苯酐的第二大有机酸酐。
目前主要用于生产不饱和聚酯,另外还用于涂料、食品、农药、医药和纺织等行业。
早期由于我国苯法成套技术十分成熟,因此国内厂家主要以此法为主,但是近年来苯原料价格持续走高,且苯的利用率低,环境污染严重,苯法逐渐被正丁烷法所取代[1]。
正丁烷法是将正丁烷与空气混合,在催化剂的作用下进行选择性氧化反应生成顺酐,以及副产少量的一氧化碳、二氧化碳和其他产物。
由于顺酐在常温下为固体,目前实验室采用的分析方法是将反应尾气进行冷凝,得到顺酐的结晶体,并用热水进行溶解,最后采用碱法滴定得到反应尾气中顺酐的含量,未被冷凝的部分采用色谱分析法得到反应尾气中正丁烷、一氧化碳及二氧化碳的含量[2-5]。
这种离线分析方法操作复杂,分析时间长,不能实时体现反应体系组成,极大限制了正丁烷选择氧化制顺酐反应装置的自动化进程。
正丁烷为原料年产25吨順酐的工艺设计以正丁烷为原料年产25吨顺酐的工艺设计一、引言顺酐是一种重要的有机化工原料,广泛应用于塑料、涂料、溶剂等领域。
本文将以正丁烷为原料,设计一种工艺,实现年产25吨顺酐的生产。
二、工艺流程1. 原料准备:将正丁烷经过脱水、脱硫等预处理工序,提高其纯度和质量,确保后续反应的顺利进行。
2. 氧化反应:将预处理后的正丁烷与氧气在催化剂的作用下进行氧化反应,生成乙醛。
该反应需要控制适当的温度和压力,以提高反应效率和产率。
3. 乙醛重整:将乙醛经过重整反应,使其分解为一氧化碳和氢气。
4. 合成顺酐:将一氧化碳与氢气在催化剂的作用下进行合成反应,生成顺酐。
该反应需要控制适当的温度、压力和催化剂的选择,以提高产率和产品质量。
5. 分离纯化:将合成的顺酐进行分离纯化,去除杂质和副产物,得到高纯度的顺酐产品。
6. 产品储存:将纯化后的顺酐进行储存,以备后续使用或销售。
三、工艺优化为了提高工艺的经济效益和产品质量,可以考虑以下优化措施:1. 催化剂的选择:选择合适的催化剂,以提高反应速率和产率。
可以考虑使用负载型催化剂,增大活性金属的表面积和分散度,提高催化效果。
2. 反应条件的优化:通过调整反应温度、压力和物料的配比,优化反应条件,提高产率和产品质量。
同时要考虑设备的耐压性和耐腐蚀性。
3. 副产物的利用:对于反应中生成的副产物,可以考虑进行回收利用,以提高资源利用率和降低生产成本。
4. 能源消耗的降低:通过改进工艺流程和设备设计,减少能源消耗,降低生产成本。
可以考虑采用换热器、蒸汽回收等技术手段。
5. 自动化控制:引入自动化控制系统,实现对反应过程的实时监测和调节,提高生产的稳定性和一致性。
四、安全环保措施在工艺设计中,必须充分考虑安全和环保因素,采取相应的措施保障生产过程的安全可靠和环境友好。
1. 设备的安全性:选择耐压、耐腐蚀的设备材料,进行严密的设备设计和制造,确保设备的安全运行。
克拉玛依职业技术学院毕业论文题目:正丁烷氧化法生产顺酐班级:精化0631姓名:马元彩指导老师:徐雪松完成日期:2009-05-10克拉玛依职业技术学院制二零零九年三月克拉玛依职业技术学院石油化学工程系正丁烷氧化法生产顺酐摘要主要介绍了国内外顺酐的发展趋势,分析了我国顺酐工业的生产现状及国外的差距,对我国顺酐工业的发展提出了建议。
正文简述了以正丁烷为原料,固定床,有机溶剂回收生产顺酐的工艺流程,同时介绍了工业上采用正丁烷固定床氧化法的工艺特点及流程,并与流化床工艺进行了比较,最后得出结论:采用正丁烷氧化法生产工艺有很大的优势和发展前景,不但原料丰富,而且降低了一部分的动力费用等。
[关键词]顺酐正丁烷固定床流化床氧化法AbstractMainly introduces the development trend of domestic and maleic anhydride,maleic anhydride analysis of industrial production in China and abroad,the gap between the status quo of China's maleic anhydride industrial development proposals.Outlined in the body of n-butane as the raw material,fixed bed,organic solvent recovery process of the production of maleic anhydride and at the same time introduced the use of industrial fixed bed butane oxidation is the process characteristics and processes,and fluidized bed technology and compared,and finally come to the conclusion:the use of n-butane production of Oxidation technology have great advantages and development prospects,not only rich in raw materials,and reduced costs as part of the driving force.[Key words]Maleic anhydride N-butane fixed bed fluidized bed Oxidation目录前言 (3)1.概论 (4)1.1顺酐的国内外现状及发展趋势 (4)1.2对我国顺酐发展的建议 (4)1.2.1做好苯氧化法向正丁烷氧化法转变的技术准备工作 (4)1.2.2扩大装置生产能力,提高市场竞争能力,积极参与国际竞争 (5)2.顺酐的性质、用途 (6)2.1顺酐的性质 (6)2.2顺酐的用途 (6)3.生产顺酐的方法 (7)3.1苯氧化法生产顺丁烯二酸酐 (7)3.1.1反应原理 (7)3.1.2工艺条件 (8)3.1.3工艺流程 (8)3.2丁烷氧化法生产顺丁烯二酸酐 (9)3.2.1反应原理 (9)3.2.2工艺条件 (10)3.2.3工艺流程 (11)3.3工业采用正丁烷固定床氧化生产顺酐工艺流程 (11)3.3.1工艺流程 (11)3.4.工业生产中两种方法的优缺点 (13)3.4.1原料成本 (13)3.4.2产量 (13)3.4.3催化剂 (13)4.生产顺酐的先进方法 (14)结束语 (16)致谢 (17)参考文献 (18)前言本论文是根据《有机化工生产技术》教材和实习单位工业上生产顺酐书写而成。
关于顺酐生产技术的总结报告化工1021 王健 2010323238任务点01 生产工艺路线选择顺丁烯二酸酐简称顺酐,又名马来酸酐,是一种重要的有机化工原料和精细化工产品,是目前世界上仅次于苯酐和醋酐的第三大酸酐主要用于生产不饱和聚酯树脂、醇酸树脂、用于农药、医药、涂料、油墨、润滑油添加剂、造纸化学品、纺织品整理剂、食品添加剂以及表面活性剂等领域。
生产方法选择国内顺酐企业现状任务点02 工艺参数影响因素分析催化剂性能是影响化学反应速率的主要因素,因此,动力性分析时,温度、组成、空速一般由催化剂性能决定。
经济性分析:从能耗、设备要求、生产能力方面考虑温度、压力、组成、空速 。
热力学分析动力性分析催化剂性能配比反应温度 压力(浓度)化学平衡移动反应温度 压力(浓度) 组成(含杂质) 空速(反应时间)反应速率反应原理:C6H6+7.5O2→6CO2+3H2O+3264.45KJ/mol C6H6+6O2→3CO2+3CO+3H2O+2416.31KJ/mol C6H6+1.5O2→C6H4O2(苯醌)+H2O+530.86KJ/mol主反应方程式: C6H6+4.5O2→C4H2O3+2H2O+2CO2+1804KJ/mol 副反应方程:动力学分析由于氧化反应为不可逆反应,不考虑化学平衡移动问题。
温度因素苯是最稳定的碳氢化合物之一,苯易燃,空气中能完全氧化。
因此苯氧化生产顺酐除了需要活性较高的催化剂外,还需要比较高的反应温度。
工业生产上一般控制在623~723K。
动力学分析压力升高,反应速率升高(气相反应,压力高相当于浓度高)。
放热量大。
若原料质量流量不变,压力升高,流速降低,停留时间增长,副反应增加。
配比提高苯或空气,反应速率提高。
但,氧化反应体系,配比由体系爆炸极限限制。
安全考虑,通常苯含量在爆炸极限下限。
过低会影响设备生产能力。
空速空速:影响选择性和转化率,直接关系到催化剂的生产能力和单位时间的放热量。
实验名称:正丁烷氧化制顺丁烯二酸酐二、实验原理1、苯氧化法:通常采用V-P-Ti-O催化剂,在固定床或流化床反应器于380~450℃下反应。
该方法工艺路线成熟,原料易得,是国内应用比较普遍的方法,但是由于在苯的六个碳中有两个变成CO2,对原料浪费较大,在国际上开始被正丁烷氧化代替。
C6H6 + 4.5O2→C4H2O3 +CO2 +H2O2、碳四馏分氧化法CH3-CH2-CH2-CH3 +2O2→C4H2O3 +H2O丁烷是碳四馏分中最廉价又容易获得的原料,它与空气混合氧化生产成本较低,采用V -O-P催化剂,由于能充分利用原料,且原料的重量收率较高,近年来该法发展迅速,工业上已有替代苯氧化法的趋势,本实验采用此方法。
但是,由于近年国际市场石油价格变动较大,丁烷气的价格也变化较大,使该工艺在原料材料价格上不占优势。
同时,由于丁烷气在空气中的爆炸极限只有1.8%,在用固定床进行生产时,反应放热剧烈,反应器体积和操作空速要求较高,生产的工艺要求和技术比苯直接氧化法高,现在国际上使用流化床反应器,可以使原料气浓度在丁烷的爆炸上限范围,即40%以上,但该反应器对催化剂强度和活性要求较高,在我国尚未投入生产。
三、实验流程及仪器设备本实验由原料气配气系统,反应器控温系统,催化反应器,产物吸收及气相色谱分析系统组成。
具体介绍如下:1、原料气配气系统由液化丁烷气罐、空气压缩机、空气储罐、丁烷气体及空气质量流量计、原料气混合罐组成。
空气首先由压缩机压缩到空气储气罐里,然后经过减压阀到空气流量计,流量计的读数由显示仪控制,一般为1000ml/min左右,注意流量计的读数是指气体在标准状态下的体积,不是实际测定状态下的体积或质量流量,流量计的读数和气体温度、压力没有太大关系。
可以换算摩尔或质量。
丁烷经过减压阀也到质量流量计,并根据实验的条件,一般控制和空气的体积比为1.6%以下,以免发生爆炸危险。
丁烷气体质量流量计的读数需乘以0.29,才是丁烷的标准体积。
浅谈顺酐生产工艺路线发表时间:2018-06-19T16:33:11.853Z 来源:《基层建设》2018年第12期作者:赵哲煊[导读] 摘要:顺酐全名顺丁烯二酸酐,是全球酸酐排名第三大酸酐。
克拉玛依金源精细化工有限责任公司新疆克拉玛依 834003 摘要:顺酐全名顺丁烯二酸酐,是全球酸酐排名第三大酸酐。
随着顺酐生产技术不断提高,被广泛应用于各种制造行业,主要包括医药行业、油脂树脂行业以及润滑油添加剂行业等。
基于此,文章就顺酐生产工艺路线进行简要分析,希望可以提供一个有效的借鉴。
关键词:顺酐;生产工艺;路线 1.顺酐的生产工艺1.1苯氧化法苯法生产顺酐是在固定床反应器中,使原料苯经过催化剂V–MO–P碳化硅的催化,与空气接触完成氧化反应,生成顺酐气体。
然后顺酐气体经水的吸收,以及恒沸脱水,减压连续精馏后,得到顺酐。
苯法顺酐的生产工艺中,通过对催化剂的装填、反应器压力、反应器进口气温度、空速和熔盐温度的优化来完善整个工艺。
目前,在我国顺酐的生产厂家大部分均采用的是苯法工艺,其装置小部分从国外引进,大部分采用仍国内技术。
例如常州亚邦化工集团采用的就是苯工艺法。
基本原理是采用苯原料依托固定床氧化,使用二甲苯恒沸脱水、加入冷凝器加水吸收的回收工艺、反应热的回收利用等先进工艺。
在苯法生产工艺中,首先原料来源可以得到保障与支持;其次苯法采用的连续精馏可使顺酐质量更加稳定且提高收率降低能耗;另外,近年来采用背压式汽轮机新装置利用余热产生蒸汽使得热平衡得到更大的完善,不仅充分利用热能,可降低生产成本,增加经济效益。
由于原材料等原因,我国基本上采取苯氧化法,但是弊端是对苯的利用率低,污染了环境,其主要污染物为废气、废水、废渣。
1.2顺酐生产工艺正丁烷氧化法C4馏分中成本最低且最易得到原料是正丁烷,与氧气混合氧化产生顺酐是三种方式中成本最低。
正丁烷氧化法由于污染小、成本低的特征,在近年来得到广泛的应用,随着混合C4馏分为原料固定床氧化工艺发展并成熟,逐渐占据生产工艺中主导地位,正丁烷生产顺酐方式主要有两大优势:第一,正丁烷原料以苯原料价格更为便宜,由于苯原料被各生产行业广泛使用,使得苯价格不断上浮,更是加剧苯与正丁烷单价差异;第二,正丁烷原材料生产中所释放的有毒副产物比苯原材料更少,极大程度上减少了环境的污染,并且正丁烷氧化生产工艺所需要装置与苯氧化生产工艺装置相同,差别仅在于将催化剂环节更换为正丁烷氧化设备。
正丁烷法顺酐生产工艺现状摘要:顺酐是世界上仅次于苯酐的第二大酸酐原料,其下游产品有着广泛的开发和应用前景。
本文综述了正丁烷法顺酐的生产工艺现状,从不同工艺技术路线介绍了正丁烷法顺酐工艺流程,以及正丁烷法顺酐生产工艺的优势。
关键词:正丁烷法顺酐氧化反应器一、顺酐生产工艺概况顺酐生产工艺按原料路线可分为苯氧化法、正丁烷氧化法两种主要生产方法。
按生产工艺技术氧化反应部分分为固定床与流化床,后处理回收部分分为水吸收与溶剂吸收。
1.原料路线顺酐生产原料路线可分为苯氧化法、正丁烷氧化法。
国外目前占主导地位的是以正丁烷为原料的生产路线,国内生产装置以苯法为主。
由于我国资源的特殊性,煤资源较丰富,焦炭产量大,煤化工的下游产品焦化苯供应充足,使苯法生产顺酐具有资源优势。
正丁烷法制顺酐工艺资源利用方面比苯法合理,环境污染程度比苯法轻。
随着我国石化行业快速发展和炼油能力提高,C4资源逐步得到综合利用,正丁烷法顺酐装置近几年发展较快。
2.氧化工艺2.1正丁烷法流化床正丁烷进料浓度通常为 4.0 mol~4.3 mol%,流化床反应器上部设有催化剂分离装置,外部设有催化剂过滤装置。
反应器操作温度为400~430 ℃,热量通过反应器内安装的蒸汽盘管产生蒸汽供装置使用。
反应生成气体冷却后进入回收工序。
2.2正丁烷法固定床原料正丁烷与空气按一定比例充分混合后进入反应器,在装填了一定数量催化剂的列管内发生反应,正丁烷与空气的混合比例通常为 1.6 mol~2.0 mol%。
反应器热点温度通常在440~470 ℃。
反应热由熔盐冷却器和气体冷却器移出,产生蒸汽供装置使用。
反应生成气体冷却后进入回收工序。
二、正丁烷法顺酐生产工艺现状正丁烷法与苯法在工艺流程上近似,区别最大的就是氧化反应催化剂不同,丁烷法氧化反应器反应管比苯法长一些,最长达到 6 500 mm,后处理既可以采用水吸收也可以采用溶剂吸收。
1.氧化反应部分(固定床反应器)国内运行的正丁烷法顺酐装置全部为国产化技术固定床工艺。
顺丁烯二酸酐工艺流程与用途1顺丁烯二酸酐工艺流程1. 1 混合C4 精制混合C4 精制单元工艺流程如图1所示。
脱水塔装填3 A 分子筛, 1开1备切换操作,当混合C4 含水质量分数大于2 @ 10- 5时切换至备用塔。
用250 e 氮气对脱水塔进行再生。
加氢进料泵出口压力为3. 2MPa。
二级加氢反应混合物经高温分液罐进行气液分离后, 气相进入冷却器被冷却到15 e 左右。
脱异丁烷塔为106层浮阀塔, 进料(加氢C4 )温度为75 e , 塔顶引出物经冷凝冷却器冷却至约45 e 后进入回流罐进行气液分离。
从回流罐排出的气体经冷却器冷却到15 e 后送至异丁烷回收罐。
1. 2 氧化氧化单元工艺流程如图2所示。
以60 000 m3 /h 流量, 用主风机将温度为155 e 、压力为0. 19MPa的空气送至正丁烷混合器。
预处理后的正丁烷液体以2 753. 43 kg /h流量连续进入蒸发罐。
蒸发获得的气态正丁烷( 0. 32MPa, 43 e )以2 753. 43 kg /h流量进入过热器。
在过热器管程内, 气态正丁烷被壳程内的饱和蒸汽加热至120 e , 然后进入正丁烷混合器。
自静态混合器出来的混合气体( 压力为0. 18MPa, 温度为155 e )以77 021m3 /h流量连续由底部进入反应器管程。
正丁烷的催化氧化反应温度为450 e , 反应热用壳程熔盐移出。
反应生成气在切换冷却器的管程中被降温到126~133 e , 然后进入溶剂吸收工序。
1. 3 溶剂吸收与解吸溶剂吸收与解吸单元工艺流程如图3 所示。
吸收与解吸解吸塔由3个填充段构成, 上部2段为规整填充, 底部1段为散堆填充。
解吸塔内真空度由3段蒸汽喷射系统保持, 底部用再沸器加热, 顺酐自顶部填充段下方侧线采出。
溶剂循环及处理因为溶剂循环系统有少量损失, 故新鲜贫溶剂须不断由外界定期性地补充到系统中。
经过一段时间循环后, 溶剂系统中就会累积一定量的焦油和反丁烯二酸(即富马酸), 需通过萃取系统将这2种杂质脱除。