单糖的性质
- 格式:ppt
- 大小:799.50 KB
- 文档页数:41
第二节单糖一、单糖的结构1、单糖的链式结构单糖的种类虽多,但其结构和性质都有很多相似之处,因此我们以葡萄糖为例来阐述单糖的结构。
葡萄糖的分子式为C6H12O6,具有一个醛基和5个羟基,我们用费歇尔投影式表示它的链式结构:教材P21以上结构可以简化:教材P212、葡萄糖的构型葡萄糖分子中含有4个手性碳原子,根据规定,单糖的D、L构型由碳链最下端手性碳的构型决定。
人体中的糖绝大多数是D-糖。
3、葡萄糖的环式结构葡萄糖在水溶液中,只有极小部分(<1%)以链式结构存在,大部分以稳定的环式结构存在。
环式结构的发现是因为葡萄糖的某些性质不能用链式结构来解释。
如:葡萄糖不能发生醛的NaHSO3加成反应;葡萄糖不能和醛一样与两分子醇形成缩醛,只能与一分子醇反应;葡萄糖溶液有变旋现象,当新制的葡萄糖溶解于水时,最初的比旋是+112度,放置后变为+52.7度,并不再改变。
溶液蒸干后,仍得到+112度的葡萄糖。
把葡萄糖浓溶液在110度结晶,得到比旋为+19度的另一种葡萄糖。
这两种葡萄糖溶液放置一定时间后,比旋都变为+52.7度。
我们把+112度的叫做α-D(+)-葡萄糖,+19度的叫做β-D(+)-葡萄糖。
这些现象都是由葡萄糖的环式结构引起的。
葡萄糖分子中的醛基可以和C5上的羟基缩合形成六元环的半缩醛。
这样原来羰基的C1就变成不对称碳原子,并形成一对非对映旋光异构体。
一般规定半缩醛碳原子上的羟基(称为半缩醛羟基)与决定单糖构型的碳原子(C5)上的羟基在同一侧的称为α-葡萄糖,不在同一侧的称为β-葡萄糖。
半缩醛羟基比其它羟基活泼,糖的还原性一般指半缩醛羟基。
葡萄糖的醛基除了可以与C5上的羟基缩合形成六元环外,还可与C4上的羟基缩合形成五元环。
五元环化合物不甚稳定,天然糖多以六元环的形式存在。
五元环化合物可以看成是呋喃的衍生物,叫呋喃糖;六元环化合物可以看成是吡喃的衍生物,叫吡喃糖。
因此,葡萄糖的全名应为α-D(+)-或β-D(+)-吡喃葡萄糖。
单 糖糖:多羟基醛、酮及其缩合物,或水解后能产生多羟基醛、酮的一类有机化合物。
分子由C/H/O 组成,大都符合Cn(H 2O)m ,故又称碳水化合物。
分为单糖、低聚糖(寡糖)、多糖。
单糖:不能再水解的多羟基醛/酮。
如:葡萄糖,果糖。
低聚糖(寡糖):由2~10个单糖结构组成,以二糖最多见。
如:蔗糖,麦芽糖。
多糖:含10个以上单糖结构。
如:淀粉,纤维素。
一、单糖分类单糖按官能团分为醛糖和酮糖;按碳原子个数分为丁糖、戊糖、己糖等,自然界中最多的是戊糖和己糖。
如:葡萄糖是己醛糖,果糖是2-己酮糖。
二、单糖结构式(以葡萄糖为例) (一)开链式以标准费歇尔投影式表示,根据最大位号手性碳原子上的羟基在右或左来判别D 或L构型,常以简化的费歇尔投影式表示:OH CH 2OHOH HOOH CHO CH 2OH CHOOH CH 2OHHOH H H HO OH HCHO D-G 开链式(最常用)(二)直立氧环式单糖具有一些特殊性质(如不与亚硫酸氢钠加成、只能与一分子醇形成缩醛、具有变旋光现象),说明单糖不仅仅以开链结构存在,还存在其它形式。
测定发现,单糖主要以氧环形式存在:分子中的羟基与醛基形成环状半缩醛。
以D-葡萄糖为例:分子中C 5上的羟基与醛基形成半缩醛,而原醛基碳成为新的手性碳原子,因此环状结构存在两种形式,称为α-型和β-型:CH 2OH CHOCH 2OH CH OH OCH 2OH C OH HO D-G 0.1%β-D-G 63%α-D-G 37%[α]D = +18.7o [α]D = +112o [α]D = +52o 高温醋酸结晶变旋光现象注:1、半缩醛OH 与氧环同侧为α-型,异侧为β-型;2、D-葡萄糖在水溶液中是开链式、环状α-、β-型三者的平衡体系;3、把α-、β-型葡萄糖分别溶于水,其旋光度最终都会转变为+52o,称为变旋光现象;因为在水溶液中都会达成环状与开链结构三者的平衡体系;4、α-、β-型间互称“异头物”、“端基异构体”,其关系属于旋光异构体中的非对映体;5、上述环状结构表示即为“直立氧环式”。
单糖的定义名词解释单糖是指一种简单的糖分子,由一条碳链构成,每个碳上有一个氧原子和一个氢原子,以及若干个羟基(-OH)。
单糖是构成复杂糖类(多糖)的基本单位。
它们通常具有甜味,溶于水,并可进行发酵和各种化学反应。
一、单糖的分类根据单糖分子中所含碳原子数量的不同,单糖可以分为三种类别:三碳糖(三糖)、四碳糖(四糖)和五碳糖(五糖)。
在自然界中常见的单糖有葡萄糖、果糖、半乳糖等。
它们的分子式分别是C6H12O6、C6H12O6和C5H10O5。
二、单糖的生物学功能1. 能量供应:单糖在生物体内可以被代谢为三磷酸腺苷(ATP),从而为细胞提供能量。
葡萄糖是最常见的单糖,它是维持生命活动所必需的主要能源。
2. 结构支持:单糖在生物体内还可以通过连接形成复杂的多糖,如淀粉、纤维素和壳聚糖等。
这些多糖在细胞壁、植物纤维、昆虫外骨骼等结构中起着重要的支持和保护作用。
3. 能源储备:部分单糖在生物体内可以转化为多糖,并在需要能量时进行分解释放。
例如,动物体内的多糖糖原可由葡萄糖合成,并在需要时被分解为葡萄糖分子供能。
4. 细胞信号传递:单糖还在细胞信号传递中扮演着重要角色。
细胞表面的单糖分子可以作为信号分子参与细胞识别、交流和相互作用。
三、单糖的化学性质1. 发酵:单糖可通过发酵反应产生能量和代谢产物。
例如,葡萄糖可以被酵母菌发酵为乙醇和二氧化碳。
2. 氧化还原:单糖可以在适当条件下进行氧化还原反应。
葡萄糖的选择性氧化还原反应在生物体内起着重要作用,例如细胞呼吸。
3. 缩合反应:单糖分子中的羟基可以与其他有机物质反应,形成糖苷键。
这种缩合反应使单糖能与其他物质结合,产生多种生物活性物质。
四、单糖与健康单糖作为人体所需营养物质,对健康起着重要作用。
适量摄入单糖有助于提供能量、维持身体机能的正常运转、促进肠道健康等。
然而,过量摄入单糖会增加脂肪蓄积、引发肥胖、糖尿病等健康问题。
因此,在日常饮食中,合理控制单糖的摄入量至关重要。
有机化学基础知识点糖类与多糖的命名与性质糖类与多糖是有机化学中重要的基础知识点,它们在生物学、化学工程等领域具有广泛的应用。
本文将针对糖类与多糖的命名与性质进行探讨。
一、糖类的命名与性质1. 单一糖类的命名与性质单糖是由单个糖分子组成的简单糖类化合物,常见的单糖有葡萄糖、果糖和半乳糖等。
单糖的命名主要通过其分子结构确定,如葡萄糖的分子式为C6H12O6。
在命名单糖时,需要根据糖醇为主链的形式,指定它们的立体构型。
单糖的性质表现出溶解性强、呈甜味、具有旋光性等特点。
此外,不同单糖的甜度和旋光性也存在一定差异,这与它们的分子结构和立体构型有关。
2. 糖苷与糖醛的命名与性质糖苷是由糖分子与非糖分子(如苷、甾类等)通过醚键连接而成的化合物。
糖苷的命名方式为:首先指定非糖部分的名称,其次通过连接符号将糖部分的名称写在后面,如乙酰葡萄糖。
糖醛是以羟基代替甲基的糖类衍生物。
其命名方式为:首先指定糖醛的名称,然后加上醛前缀,如葡萄庚糖醛。
糖苷和糖醛在生物体内具有重要的生理功能和药理作用。
3. 糖醇的命名与性质糖醇是糖类中去除一个或多个氧原子后形成的醇类化合物,也称为糖醇或醇糖。
常见的糖醇有山梨醇、甘露醇等。
糖醇的命名方式为:以相应糖类的名称为前缀,后缀加上醇,如葡萄糖醇。
糖醇具有甜味、溶解性好、相对稳定等性质。
它们在医药、食品工业等领域中广泛应用,如山梨醇被用作低热值甜味剂。
二、多糖的命名与性质1. 多糖的命名与结构多糖是由多个糖分子通过糖苷键连接而成的大分子化合物,包括两种主要类型:寡糖和多糖。
寡糖由2-10个糖分子组成,而多糖由数十到数百个糖分子组成。
多糖的命名方式主要是通过糖分子的种类、数量以及它们之间的连接方式进行描述。
例如,淀粉是由α-D葡萄糖分子通过α-1,4-糖苷键和α-1,6-糖苷键连接而成的多糖。
2. 多糖的性质多糖具有高分子量、溶解性较差、具有胶凝能力等特点。
它们在生物体内发挥着结构支持、能量储存和信息传递等重要作用。
单糖糖类化合物亦称碳水化合物,是自然界存在最多、分布最广的一类重要的有机化合物。
葡萄糖、蔗糖、淀粉和纤维素等都属于糖类化合物。
糖类化合物是一切生物体维持生命活动所需能量的主要来源。
它不仅是营养物质,而且有些还具有特殊的生理活性。
例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。
此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。
因此,糖类化合物对医学来说,具有更重要的意义。
糖类化合物由C,H,O三种元素组成,分子中H和O的比例通常为2:1,与水分子中的比例一栗,可用通式Cm(H2O )n表示。
因此,曾把这类化合物称为碳水化合物。
但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2O )n 通式,如鼠李糖(C6H12O5)、脱氧核糖(C5H10O4)等;而有些化合物如乙酸(C2H4O2)、乳酸(C3H6O3)等,其组成虽符合通式Cm(H2O )n,但结构与性质却与糖类化合物完全不同。
所以,碳水化合物这个名称并不确切,但因使用已久,迄今仍在沿用。
从化学构造上看,糖类化合物是多羟基醛、多羟基酮以及它们的缩合物。
糖类化合物可根据能还被水解及水解产物的情况分为三类。
单糖:不能水解的多羟基醛或多羟基酮。
如葡萄糖、果糖等。
二糖:水解后生成两分子单糖的糖。
如蔗糖、麦芽糖等。
多糖:能水解生成许多分子单糖的糖。
如淀粉、糖原、纤维素等。
糖类常根据其来源而用俗名。
第一节单糖单糖一般是含有3-6个碳原子的多羟基醛或多羟基酮。
最简单的单糖是甘油醛和二羟基丙酮。
按碳原子数目,单糖可分为丙糖、丁糖、戊糖、己糖等。
自然界的单糖主要是戊糖和己糖。
根据构造,单糖又可分为醛糖和酮糖。
多羟基醛称为醛糖,多羟基酮称为酮糖。
例如,葡萄糖为己醛糖,果糖为己酮糖。
单糖中最重要的与人们关系最密切的是葡萄糖等。
一、单糖的结构葡萄糖的分子式为C6H12O6,分子中含五个羟基和一个醛基,是己醛糖。
其中C-2,C-3,C-4和C-5是不同的手性碳原子,有16个(α4=16)具有旋光性的异构体,D-葡萄糖是其中之一。
单糖、双糖在食品应用方面的物理性质1 甜度各种单糖或双糖的相对甜度为:蔗糖1.0,果糖1.5,葡萄糖0.7,半乳糖0.6,麦芽糖0.5,乳糖0.4。
2 溶解度常见的几种糖的溶解度如下:果糖78.94%,374.78g/100g 水;蔗糖66.60%,199.4g/100g水;葡萄糖46.71%,87.67g/100g 水。
实在室温下葡萄糖的溶解度较低,其渗透压不足以抑制微生物的生长,贮藏性差,工业上一般在较高温度下55℃(70%),不会结晶,贮藏性好。
一般说来糖浓度大于70%就可以抑制微生物的生长。
果汁和蜜饯类食品就是利用糖作为保藏剂的。
3 结晶性就单糖和双糖的结晶性而言:蔗糖>葡萄糖>果糖和转化糖。
淀粉糖浆是葡萄糖、低聚糖和糊精的混合物,自身不能结晶并能防止蔗糖结晶。
在生产硬糖是不能完全使用蔗糖,当熬煮到水分含量到3%以下时,蔗糖就结晶,不能得到坚硬、透明的产品。
一般在生产硬糖时添加一定量的(30%-40%)的淀粉糖浆。
在生产硬糖时添加一定量淀粉糖浆的优点是:(1)不含果糖,不吸湿,糖果易于保存;(2)糖浆中含有糊精,能增加糖果的韧性;(3)糖浆甜味较低,可缓冲蔗糖的甜味,使糖果的甜味适中。
4 吸湿性和保湿性吸湿性:糖在空气湿度较高的情况下吸收水分的情况。
保湿性:指糖在较高空气湿度下吸收水分在较低空气湿度下散失水分的性质。
对于单糖和双糖的吸湿性为:果糖、转化糖>葡萄糖、麦芽糖>蔗糖。
对于生产硬糖要求生产材料的吸湿性低,如蔗糖;对于生产软糖的材料要求吸湿性要高,如转化糖和果葡糖浆。
5 渗透性相同浓度下(只哦量百分浓度)下,溶质分子的分子质量越小,溶液的摩尔浓度就越大,溶液的渗透压就越大,食品的保存性就越高。
对于蔗糖来说:50%可以抑制酵母的生长,65%可以抑制细菌的生长,80%可以抑制霉菌的生长。
6 冰点降低当在水中加入糖时会引起溶液的冰点降低。
糖的浓度越高,溶液冰点下降的越大。
实验八糖类化合物的性质糖类化合物是一类多羟基的内半缩醛、酮及其聚合物。
按其水解情况的不同,糖类化合物可分为单糖、低聚糖和多糖三类。
1、单糖的性质:单糖的性质包括一般性质和特殊性质。
一般性质主要表现为羰基的典型反应及羟基的典型反应。
特殊性质有水溶液中的变旋现象;与苯肼成砂;稀碱介质中的差向异构化;半缩醛、酮羟基与含羟基的化合物成苷;氧化反应(醛糖能被溴水温和氧化成糖酸;醛、酮都能被吐伦试剂、斐林试剂氧化;被稀硝酸氧化为糖二酸;被高碘酸氧化断裂成甲醛或甲酸);强酸介质中与酚类化合物缩合而呈现颜色反应(如Molicsh反应、Seliwanoff反应)等。
2、双糖的性质:双糖根据分子中是否还保留有原来一个单糖分子的半缩醛羟基而分成还原性双糖(如麦芽糖、乳糖、纤维二糖)与非还原性双糖(如蔗糖)。
还原性双糖由于分子中还保留有原来单糖分子中的一个半缩醛羟基,水溶液中能开环成开链的醛式而表现出还原性(能被吐伦试剂或斐林试剂氧化)、变旋现象及成砂反应。
非还原性糖由于分子中没有半缩醛羟基而没有上述性质。
双糖分子可在酸或酶催化下水解成单糖而表现出单糖的还原性。
3、多糖的性质:多糖由成千上万个单糖单位缩合而成,难溶于水,无甜味,无还原性,能被酸或碱催化而逐步水解成单糖。
淀粉是一种常见的多糖,在酸或酶催化下水解,可逐步生成分子较小的多糖,最后水解成葡萄糖:淀粉-各种糊精-麦芽糖-葡萄糖。
碘与淀粉显蓝紫色,与不同分子量的糊精显红色或黄色,糖分子量太小时,与碘不显色。
常用碘实验对淀粉进行定性分析及检验淀粉的水解程度。
【实验步骤】一、糖的还原性1、与吐伦试剂反应:取4支试管,各加入吐伦试剂1ml,然后分别加入4滴2%葡萄糖、2%果糖、2%蔗糖、2%麦芽糖溶液,摇匀,将试管同时50~60℃水浴中加热,观察有无银镜产生。
2、与斐林试剂的反应:取5支试管,各加入1ml斐林试剂A和1ml斐林试剂B,混匀,然后分别加入4滴2%葡萄糖、2%果糖、2%蔗糖、2%麦芽糖、1%淀粉溶液,摇匀,将试管同时放入沸水浴中加热2~3分钟,然后取出冷却,观察。